A Bibliometric Analysis of Fluorite Resource Utilization Technology: Global and Chinese Development in the Past 25 Years
Abstract
1. Introduction
2. Data Sources and Methods
2.1. Data Source and Retrieval
2.2. Data Processing and Graphing
3. Results and Discussions
3.1. Characteristics of Publications
3.2. Journal Distribution, Co-Cited Journals, and Co-Cited References
Co-Cited Reference | Type | Journal | Co-Citations | DOI | Country |
---|---|---|---|---|---|
Froth flotation of fluorite: A review (Gao ZY, 2021) | Review | Advances in Colloid and Interface Science | 27 | 10.1016/j.cis.2021.102382 | China/USA/Norway/Poland |
Selective flotation of scheelite from calcite and fluorite using a collector mixture (Gao ZY, 2015) | Article | Minerals Engineering | 23 | 10.1016/j.mineng.2014.12.025 | China |
The flotation separation of scheelite from calcite using acidified sodium silicate as depressant (Feng B, 2015) | Article | Minerals Engineering | 19 | 10.1016/j.mineng.2015.06.017 | China |
Froth flotation of scheelite-A review (Kupka N, 2018) | Review | International Journal of Mining Science and Technology | 19 | 10.1016/j.ijmst.2017.12.001 | Germany |
Investigation of the depressants involved in the selective flotation of scheelite from apatite, fluorite, and calcium silicates: focus on the sodium silicate/sodium carbonate system (Foucaud Y, 2019) | Article | Powder Technology | 17 | 10.1016/j.powtec.2019.04.071 | France/Russia |
Probing disorder in isometric pyrochlore and related complex oxides (Shamblin J, 2016) | Article | Nature Materials | 17 | 10.1038/nmat4581 | USA/Germany |
Flotation separation of fluorite from calcite using polyaspartate as depressant (Zhu HL, 2018) | Article | Minerals Engineering | 15 | 10.1016/j.mineng.2018.02.016 | China |
Beneficiation studies of tungsten ores-A review (Yang XS, 2018) | Review | Minerals Engineering | 15 | 10.1016/j.mineng.2018.06.001 | Finland |
High-entropy ceramics (OsesC, 2020) | Review | Nature Reviews Materials | 13 | 10.1038/s41578-019-0170-8 | USA |
Diverse mechanisms drive fluoride enrichment in groundwater in two neighboring sites in northern China (Li DN, 2018) | Article | Environmental Pollution | 13 | 10.1016/j.envpol.2018.02.072 | China |
3.3. Active Countries, Institutions, and Authors
3.3.1. Contribution of Country Analysis
3.3.2. Contribution of Institutional Analysis
3.3.3. Contribution of Authors Analysis
3.4. Popular Research Topics
3.4.1. Theme Evolution Analysis
3.4.2. Keyword Co-Occurance Analysis
3.4.3. Keyword Burst Analysis
3.4.4. Timeline View Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, Z.Y.; Dong, Z.L.; Zhang, Y.X.; Suo, G.B.; Liu, S. Strategic mineral resource competition: Strategies of the dominator and nondominator. Resour. Policy 2021, 69, 101835. [Google Scholar] [CrossRef]
- Calvo, G.; Valero, A. Strategic mineral resources: Availability and future estimations for the renewable energy sector. Environ. Dev. 2022, 42, 100640. [Google Scholar] [CrossRef]
- Dou, S.Q.; Xu, D.Y.; Zhu, Y.G.; Keenan, R. Critical mineral sustainable supply: Challenges and governance. Futures 2023, 146, 103101. [Google Scholar] [CrossRef]
- Vivoda, V. Friend-shoring and critical minerals: Exploring the role of the Minerals Security Partnership. Energy Res. Soc. Sci. 2023, 100, 103085. [Google Scholar] [CrossRef]
- Zuo, Z.; Cheng, J.; Guo, H.; McLellan, B.C. Catastrophe progression method-Path (CPM-PATH) early warning analysis of Chinese rare earths industry security. Resour. Policy 2021, 73, 102161. [Google Scholar] [CrossRef]
- Zuo, Z.L.; Cheng, J.H.; Guo, H.X.; Li, Y.L. Knowledge mapping of research on strategic mineral resource security: A visual analysis using CiteSpace. Resour. Policy 2021, 74, 102372. [Google Scholar] [CrossRef]
- Masoudi, S.M.; Ezzati, E.; Rashidnejad-Omran, N.; Moradzadeh, A. Geoeconomics of fluorspar as strategic and critical mineral in Iran. Resour. Policy 2017, 52, 100–106. [Google Scholar] [CrossRef]
- Sánchez, V.; Cardellach, E.; Corbella, M.; Vindel, E.; Martín-Crespo, T.; Boyce, A.J. Variability in fluid sources in the fluorite deposits from Asturias (N Spain): Further evidences from REE, radiogenic (Sr, Sm, Nd) and stable (S, C, O) isotope data. Ore Geol. Rev. 2010, 37, 87–100. [Google Scholar] [CrossRef]
- Cherai, M.; Rddad, L.; Talbi, F.; Carranza, E.J.M. 3D modeling for mineral resource assessment of fluorite ore and its industrial application in Jbel Tirremi, northeast Morocco. Model. Earth Syst. Environ. 2023, 9, 3135–3150. [Google Scholar] [CrossRef]
- Morizawa, Y. Synthesis of Organofluorine Compounds with Raw Materials in Fluoro Chemical Industry. J. Synth. Org. Chem. Jpn. 2018, 76, 364–369. [Google Scholar] [CrossRef]
- Forjan, R.; Baragaño, D.; Boente, C.; Fernández-Iglesias, E.; Rodríguez-Valdes, E.; Gallego, J.R. Contribution of fluorite mining waste to mercury contamination in coastal systems. Mar. Pollut. Bull. 2019, 149, 110576. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, X.A.; Loureiro, M.L.; Arias, C. Measuring productivity in the extractive industries. Evidence from Spanish fluorite mining. Resour. Policy 2021, 73, 102187. [Google Scholar] [CrossRef]
- U.S. Geological Survey. Mineral Commodity Summaries 2016; US Geological Survey: Reston, VA, USA, 2016; pp. 62–63. [Google Scholar]
- U.S. Geological Survey. Mineral Commodity Summaries 2017; US Geological Survey: Reston, VA, USA, 2017; pp. 62–63. [Google Scholar]
- U.S. Geological Survey. Mineral Commodity Summaries 2018; US Geological Survey: Reston, VA, USA, 2018; pp. 60–61. [Google Scholar]
- U.S. Geological Survey. Mineral Commodity Summaries 2019; US Geological Survey: Reston, VA, USA, 2019; pp. 60–61. [Google Scholar]
- U.S. Geological Survey. Mineral Commodity Summaries 2020; US Geological Survey: Reston, VA, USA, 2020; pp. 60–61. [Google Scholar]
- U.S. Geological Survey. Mineral Commodity Summaries 2021; US Geological Survey: Reston, VA, USA, 2021; pp. 60–61. [Google Scholar]
- U.S. Geological Survey. Mineral Commodity Summaries 2022; US Geological Survey: Reston, VA, USA, 2022; pp. 62–63. [Google Scholar]
- U.S. Geological Survey. Mineral Commodity Summaries 2023; US Geological Survey: Reston, VA, USA, 2023; pp. 70–71. [Google Scholar]
- U.S. Geological Survey. Mineral Commodity Summaries 2024; US Geological Survey: Reston, VA, USA, 2024; pp. 72–73. [Google Scholar]
- U.S. Geological Survey. Mineral Commodity Summaries 2025; US Geological Survey: Reston, VA, USA, 2025; pp. 72–73. [Google Scholar]
- Levresse, G.; Gonzalez, P.E.; Tritlla, J.; Camprubi, A.; Cienfuegos, A.E.; Morales, P.P. Fluid characteristics of the world-class, carbonate-hosted Las Cuevas fluorite deposit. J. Geochem. Explor. 2003, 78–79, 537–543. [Google Scholar] [CrossRef]
- Lazar, G.; Mikhail, K.; Yana, V. Diversification as a Method of Ensuring the Sustainability of Energy Supply within the Energy Transition. Resources 2023, 12, 19. [Google Scholar] [CrossRef]
- Geng, W.; Ming, Z.; Peng, L.L.; Liu, X.M.; Bo, L.; Duan, J.H. China’s new energy development: Status, constraints and reforms. Renew. Sustain. Energy Rev. 2016, 53, 885–896. [Google Scholar] [CrossRef]
- Wang, X.; Yuan, S.; Gao, P.; Liu, Q.K.; Tian, P.C.; He, J.H. Effective flotation separation of fluorite and barite with the environmentally friendly surfactant caprylhydroxamic acid. Sep. Purif. Technol. 2025, 359, 130529. [Google Scholar] [CrossRef]
- Huang, J.W.; Zhang, Q.W.; Wang, S.J.; Wang, C.; Chen, M.; Li, H.C. Efficient selective flotation separation of fluorite from calcite using ferrous and ferric species as combined depressant. Miner. Eng. 2024, 205, 108451. [Google Scholar] [CrossRef]
- Otero, M.A.; Grenat, P.R.; Pollo, F.E.; Baraquet, M.; Martino, A.L. Effect on growth and development of common toad (Rhinella arenarum) tadpoles in environment related to fluorite mine. Sci. Total Environ. 2023, 904, 166936. [Google Scholar] [CrossRef]
- Fuge, R. Fluorine in the environment, a review of its sources and geochemistry. Appl. Geochem. 2019, 100, 393–406. [Google Scholar] [CrossRef]
- Song, S.; Lopez-Valdivieso, A.; Martinez-Martinez, C.; Torres-Armen ta, R. Improving fluorite flotation from ores by dispersion processing. Miner. Eng. 2006, 19, 912–917. [Google Scholar] [CrossRef]
- Dolgov, N.A.; Smirnov, I.V.; Besov, A.V. Studying the Elastic Properties and Adhesive Strength of Plasma-Sprayed Double-Layer Coatings During Tensile Tests. Powder Metall Met C+ 2015, 54, 40–46. [Google Scholar] [CrossRef]
- Zhang, D.J.; Liu, Z.Y.; Liu, S.X.; Liu, Y. Research on Rock Movement Control Method in Underground Mining Based on the Action of Granular Lateral Pressure. Min. Metall. Explor. 2023, 40, 1921–1935. [Google Scholar] [CrossRef]
- Singh, G.; Kumari, B.; Sinam, G.; Kriti; Kumar, N.; Mallick, S. Fluoride distribution and contamination in the water, soil and plants continuum and its remedial technologies, an Indian perspective- a review. Environ. Pollut. 2018, 239, 95–108. [Google Scholar] [CrossRef]
- Huang, J.W.; Zhang, Q.W.; Li, H.C.; Wang, C. Difficulties and Recent Achievements in Flotation Separation of Fluorite from Calcite-An Overview. Minerals 2022, 12, 12080957. [Google Scholar] [CrossRef]
- Cherniak, D.J. Diffusion in Carbonates, Fluorite, Sulfide Minerals, and Diamond. Diffus. Miner. Melts 2010, 72, 871–897. [Google Scholar]
- Cooper, I.D. Bibliometrics basics. J. Med. Libr. Assoc. 2015, 103, 217–218. [Google Scholar] [CrossRef]
- Li, Z.H.; Du, C.L. Current status and research hotspots of pesticide-containing waste water treatment: Systematic review and bibliometric analysis. J. Water Process Eng. 2025, 69, 106738. [Google Scholar] [CrossRef]
- Li, K.; Rollins, J.; Yan, E. Web of Science use in published research and review papers 1997–2017: A selective, dynamic, cross-domain, content-based analysis. Scientometrics 2018, 115, 1–20. [Google Scholar] [CrossRef]
- Tan, J.; Guan, W.M.; Cao, A.Y.; Wang, C.X.; Zhang, Z.Z.; Duan, Y.; Chen, H. Global research status and intelligent technology development trend of open-pit mining blasting: Visualization analysis based on CiteSpace and VOSviewer. Geomech. Geophys. Geo-Energy Geo-Resour. 2025, 11, 46. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Yang, L.; Wang, Q.Q.; Bai, X.; Deng, J.; Hu, Y.J. Mapping of Trace Elements in Coal and Ash Research Based on a Bibliometric Analysis Method Spanning 1971–2017. Minerals 2018, 8, 89. [Google Scholar] [CrossRef]
- Guo, Y.G.; Liu, Y.J.; Guan, J.; Chen, Q.Q.; Sun, X.H.; Liu, N.; Zhang, L.; Zhang, X.J.; Lou, X.Y.; Li, Y.S. Global Trend for Waste Lithium-Ion Battery Recycling from 1984 to 2021: A Bibliometric Analysis. Minerals 2022, 12, 1514. [Google Scholar] [CrossRef]
- Nong, K.; Chen, S.; Ren, Z.P.; Zeng, M. Analysis of Glauconite Research Trends Based on CiteSpace Knowledge Graph. Minerals 2024, 14, 1260. [Google Scholar] [CrossRef]
- Gougar, M.L.D.; Scheetz, B.E.; Siemer, D.D. A novel waste form for disposal of spent-nuclear-fuel reprocessing waste: A vitrifiable cement. Nucl. Technol. 1999, 125, 93–103. [Google Scholar] [CrossRef]
- Sohrabi, M.; Abbasisiar, F.; Jafarizadeh, M. Dosimetric characteristics of natural calcium fluoride of Iran. Radiat. Prot. Dosim. 1999, 84, 277–280. [Google Scholar] [CrossRef]
- Reau, J.M.; Hagenmuller, P. Fast ionic conductivity of fluorine anions with fluorite-or tysonite-type structures. Rev. Inorg. Chem. 1999, 19, 45–77. [Google Scholar] [CrossRef]
- El Omari, M.; Sénégas, J.; Réau, J.M. Ionic conductivity properties and 19F NMR investigation of Pb1-xCrxF2+x solid solutions with fluorite-type structure. Solid State Ion. 1999, 116, 229–239. [Google Scholar] [CrossRef]
- Xing, Z.L.; Fu, W.T.; Li, L.J.; Wu, S. Bibliometric analysis of microplastics research: Advances and future directions (2020–2024). Cont. Shelf Res. 2024, 285, 105371. [Google Scholar] [CrossRef]
- Kemec, A.; Altinay, A.T. Sustainable Energy Research Trend: A Bibliometric Analysis Using VOSviewer, RStudio Bibliometrix, and CiteSpace Software Tools. Sustainability 2023, 15, 3618. [Google Scholar] [CrossRef]
- Tsilika, K. Exploring the Contributions to Mathematical Economics: A Bibliometric Analysis Using Bibliometrix and VOSviewer. Mathematics 2023, 11, 4703. [Google Scholar] [CrossRef]
- Liu, X.J.; Yuan, J.Y.; Feng, Y.F.; Zhang, Z.Y.; Tang, L.Y.; Chen, H.M. Knowledge graph and development hotspots of biochar as an emerging aquatic antibiotic remediator: A scientometric exploration based on VOSviewer and CiteSpace. J. Environ. Manag. 2024, 360, 121165. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.M. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technology. 2006, 57, 359–377. [Google Scholar] [CrossRef]
- Chen, C.M.; Song, M. Visualizing a field of research: A methodology of systematic scientometric reviews. PLoS ONE 2019, 14, 0223994. [Google Scholar] [CrossRef]
- Dai, C.L.; Wu, X.C.; Wang, Q.; Bai, Y.C.; Zhao, D.; Fu, J.F.; Fu, B.F.; Ding, H. Layered double hydroxides for efficient treatment of heavy metals and organic pollutants: Recent progress and future perspectives. Sep. Purif. Technol. 2025, 352, 128227. [Google Scholar] [CrossRef]
- Juan, M.G.; Juan, U.T.; José, L.R.R.; Jaime, P.V. Sustainable Local Development: An Overview of the State of Knowledge. Resources 2019, 8, 31. [Google Scholar] [CrossRef]
- Danuta, S.; Antonio, T.G.; Felix, J.N.; Agnieszka, R.; Angelika, R. Waste Management in the Smart City: Current Practices and Future Directions. Resources 2023, 12, 115. [Google Scholar] [CrossRef]
- Cai, P.J.; Yang, J.S.; Lian, D.Y.; Wu, W.W.; Yang, Y.; Rui, H.C. Knowledge Structure and Frontier Evolution of Research on Chromitite: A Scientometric Review. Minerals 2022, 12, 12101211. [Google Scholar] [CrossRef]
- Li, J.; Xue, Y. Research evaluation and academic culture in China: The pressure to publish. High. Educ. Policy 2021, 34, 123–145. [Google Scholar]
- Quan, W.; Chen, B.; Shu, F. Publish or impoverish: An investigation of the monetary reward system of science in China. J. Assoc. Inf. Sci. Technol. 2017, 68, 507–522. [Google Scholar]
- Zhou, P.; Leydesdorff, L. The emergence of China as a leading nation in science. Res. Policy 2006, 35, 83–104. [Google Scholar] [CrossRef]
- Hirsch, J.E. An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. USA 2005, 102, 16569–16572. [Google Scholar] [CrossRef] [PubMed]
- Glanzel, W.; Moed, H.F. Journal impact measures in bibliometric research. Scientometrics 2002, 53, 171–193. [Google Scholar] [CrossRef]
- Zhang, L.; Glänzel, W. Proceeding papers in journals versus the “regular” journal publications. J. Informetr. 2012, 6, 88–96. [Google Scholar] [CrossRef]
- Rochon, P.A.; Bero, L.A.; Bay, A.M.; Gold, J.L.; Dergal, J.M.; Binns, M.A.; Streiner, D.L.; Gurwitz, J.H. Comparison of review articles published in peer-reviewed and throwaway journals. J. Am. Med. Assoc. 2002, 287, 2853–2856. [Google Scholar] [CrossRef]
- Balon, R. What Is a Review Article and What Are Its Purpose, Attributes, and Goal(s). Psychother. Psychosom. 2022, 91, 152–155. [Google Scholar] [CrossRef]
- Chen, K.; Kenney, M. Universities/research institutes and regional innovation systems: The cases of Beijing and Shenzhen. World Dev. 2007, 35, 1056–1074. [Google Scholar] [CrossRef]
- Tang, L.; Shapira, P. China-US scientific collaboration in nanotechnology: Patterns and dynamics. Scientometrics 2011, 88, 1–16. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, L. Fluorite resource utilization and environmental impact: A global perspective. Environ. Sci. Pollut. Res. 2017, 24, 13258–13270. [Google Scholar]
- Wang, J.; Chen, Z.; Liu, H. Advances in fluorite flotation technology: A review. Miner. Eng. 2019, 131, 1–10. [Google Scholar]
- Zhang, Y.; Li, X. Fluorite resources in China: Current status and future prospects. Resour. Conserv. Recycl. 2020, 158, 104785. [Google Scholar]
- Abramo, G.; D’Angelo, C.A.; Di Costa, F. The role of high-impact journals in national research performance evaluation. J. Informetr. 2019, 13, 593–606. [Google Scholar]
- Huang, D.W. Positive correlation between quality and quantity in academic journals. J. Informetr. 2016, 10, 329–335. [Google Scholar] [CrossRef]
- Franceschini, F.; Maisano, D. Quality & Quantity journal: A bibliometric snapshot. Qual. Quant. 2012, 46, 573–580. [Google Scholar]
- Zhou, Y.P. Factors, components and dynamics: Investigation of journal self-citation and citation by equal opportunity model. Heliyon 2022, 8, e10292. [Google Scholar] [CrossRef]
- Garfield, E. The history and meaning of the journal impact factor. J. Am. Med. Assoc. 2006, 295, 90–93. [Google Scholar] [CrossRef]
- Saha, S.; Saint, S.; Christakis, D.A. Impact factor: A valid measure of journal quality? J. Med. Libr. Assoc. 2003, 91, 42–46. [Google Scholar]
- Zhang, X.; Wang, S.; Liu, X.P. Opportunities, challenges, and countermeasures for China to develop world-class science and technology journals. Chin. Sci. Bull.-Chin. 2020, 65, 771–779. [Google Scholar] [CrossRef]
- Shrand, B.; Ronnie, L. Commitment and identification in the Ivory Tower: Academics’ perceptions of organisational support and reputation. Stud. High. Educ. 2021, 46, 1630810. [Google Scholar] [CrossRef]
- Lei, F.; Du, L.; Dong, M.; Liu, X.M. Comparative bibliometric analysis of leading Open Access journals: A focus on Chinese and non-Chinese journals in science, technology, and medicine. Malays. J. Libr. Inf. Sci. 2023, 28, 61–79. [Google Scholar] [CrossRef]
- Fan, W.Y.; Tong, Y.Y.; Pan, Y.L.; Shang, W.L.; Shen, J.Y.; Li, W.; Li, L.J. Traditional Chinese Medical journals currently published in mainland China. J. Altern. Complement. Med. 2008, 14, 595–609. [Google Scholar] [CrossRef] [PubMed]
- Bonnevie-Nebelong, E. Methods for journal evaluation: Journal Citation Identity, Journal Citation Image and Internationalisation. Scientometrics 2006, 66, 411–424. [Google Scholar] [CrossRef]
- Frederickson, R.M.; Brenner, M.K. Assessing Journal Influence: Impacted Wisdom. Mol. Ther. 2012, 20, 1481–1482. [Google Scholar] [CrossRef] [PubMed]
- Putirka, K.; Kunz, M.; Swainson, I.; Thomson, J. Journal Impact Factors: Their relevance and their influence on society-published scientific journals. Am. Mineral. 2013, 98, 1055–1065. [Google Scholar] [CrossRef]
- Nerur, S.P.; Rasheed, A.A.; Natarajan, V. The intellectual structure of the strategic management field: An author co-citation analysis. Strateg. Manag. J. 2008, 29, 319–336. [Google Scholar] [CrossRef]
- Ding, Y.; Yan, E.J.; Frazho, A.; Caverlee, J. PageRank for Ranking Authors in Co-citation Networks. J. Am. Soc. Inf. Sci. Technol. 2009, 60, 2229–2243. [Google Scholar] [CrossRef]
- Smith, M.P.; Henderson, P.; Zhang, P. Fluorite as a precursor to rare earth element mineralization. Science 2000, 290, 335–337. [Google Scholar]
- Yang, Z.G.; Gao, F.; Zhang, C.T. Comparison of Journal Self-Citation Rates between Some Chinese and Non-Chinese International Journals. PLoS ONE 2012, 7, e49001. [Google Scholar] [CrossRef]
- Zhou, P.; Leydesdorff, L. A comparison between the China Scientific and Technical Papers and Citations Database and the Science Citation Index in terms of journal hierarchies and interjournal citation relations. J. Am. Soc. Inf. Sci. Technol. 2007, 58, 223–236. [Google Scholar] [CrossRef]
- Zuo, R.G.; Cheng, Q.M.; Xu, Y.; Yang, F.F.; Xiong, Y.H.; Wang, Z.Y.; Kreuzer, O.P. Explainable artificial intelligence models for mineral prospectivity mapping. Sci. China-Earth Sci. 2024, 67, 2864–2875. [Google Scholar] [CrossRef]
- Shi, J.Y.; Lv, J.; Wang, J.L.; Cao, Z.; Lu, W.D.; Cao, Y.D.; Wu, X.; Wang, X.P.; Tang, J.Y.; Zhang, Z.Y.; et al. Flotation separation of parisite from calcium-bearing gangue minerals using polyaspartic acid as a depressant. Miner. Eng. 2025, 224, 109198. [Google Scholar] [CrossRef]
- Bornmann, L.; Mutz, R. Growth rates of modern science: A bibliometric analysis based on the number of publications and cited references. J. Assoc. Inf. Sci. Technol. 2015, 66, 2215–2222. [Google Scholar] [CrossRef]
- Wang, J.; Shapira, P. Funding acknowledgement analysis: An enhanced tool to investigate research sponsorship impacts. Res. Policy 2015, 44, 1723–1738. [Google Scholar] [CrossRef]
- Gui, Q.C.; Liu, C.L.; Du, D.B. The Structure and Dynamic of Scientific Collaboration Network among Countries along the Belt and Road. Sustainability 2019, 11, 5187. [Google Scholar] [CrossRef]
- Ye, X.T.; Liu, Y.; Porter, A.L. International collaborative patterns in China’s nanotechnology publications. Int. J. Technol. Manag. 2012, 59, 047246. [Google Scholar] [CrossRef]
- Gao, Z.Y.; Wang, C.; Sun, W.; Gao, Y.S.; Kowalczuk, P.B. Froth flotation of fluorite: A review. Adv. Colloid Interface Sci. 2021, 290, 102382. [Google Scholar] [CrossRef]
- Gao, Z.Y.; Bai, D.; Sun, W.; Cao, X.F.; Hu, Y.H. Selective flotation of scheelite from calcite and fluorite using a collector mixture. Miner. Eng. 2015, 72, 23–26. [Google Scholar] [CrossRef]
- Feng, B.; Luo, X.P.; Wang, J.Q.; Wang, P.C. The flotation separation of scheelite from calcite using acidified sodium silicate as depressant. Miner. Eng. 2015, 80, 45–49. [Google Scholar]
- Kupka, N.; Rudolph, M. Froth flotation of scheelite-A review. Int. J. Min. Sci. Technol. 2018, 28, 373–384. [Google Scholar] [CrossRef]
- Foucaud, Y.; Filippova, I.V.; Filippov, L.O. Investigation of the depressants involved in the selective flotation of scheelite from apatite, fluorite, and calcium silicates: Focus on the sodium silicate/sodium carbonate system. Powder Technol. 2019, 352, 501–512. [Google Scholar] [CrossRef]
- Shamblin, J.; Feygenson, M.; Neuefeind, J.; Tracy, C.L.; Zhang, F.X.; Finkeldei, S.; Bosbach, D.; Zhou, H.D.; Ewing, R.C.; Lang, M. Probing disorder in isometric pyrochlore and related complex oxides. Nat. Mater. 2016, 15, 507–511. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.L.; Qin, W.Q.; Chen, C.; Chai, L.Y.; Jiao, F.; Jia, W.H. Flotation separation of fluorite from calcite using polyaspartate as depressant. Miner. Eng. 2018, 120, 80–86. [Google Scholar] [CrossRef]
- Yang, X.S. Beneficiation studies of tungsten ores—A review. Miner. Eng. 2018, 125, 111–119. [Google Scholar] [CrossRef]
- Oses, C.; Toher, C.; Curtarolo, S. High-entropy ceramics. Nat. Rev. Mater. 2020, 5, 295–309. [Google Scholar] [CrossRef]
- Li, D.N.; Gao, X.B.; Wang, Y.X.; Luo, W.T. Diverse mechanisms drive fluoride enrichment in groundwater in two neighboring sites in northern China. Environ. Pollut. 2018, 237, 430–441. [Google Scholar] [CrossRef]
- Ewing, R.C.; Weber, W.J.; Lian, J. Nuclear waste disposal-pyrochlore (A2B2O7): Nu-clear waste form for the immobilization of pluto-nium and “minor” actinides. J. Appl. Phys. 2004, 95, 5949–5971. [Google Scholar] [CrossRef]
- Haschke, S.; Gutzmer, J.; Wohlgemuth-Ueberwasser, C.C.; Kraemer, D.; Burisch, M. The Niederschlag fluorite-(barite) deposit, Erzgebirge/Germany-a fluid inclusion and trace element study. Miner. Depos. 2021, 56, 1071–1086. [Google Scholar] [CrossRef]
- Gao, Y.S.; Gao, Z.Y.; Sun, W.; Hu, Y.H. Selective flotation of scheelite from calcite: A novel reagent scheme. Int. J. Miner. Process. 2016, 153, 10–15. [Google Scholar] [CrossRef]
- Deng, L.Q.; Zhao, G.; Zhong, H.; Wang, S.; Liu, G.Y. Investigation on the selectivity of N-((hydroxyamino)-alkyl) alkylamide surfactants for scheelite/calcite flotation separation. J. Ind. Eng. Chem. 2016, 33, 131–141. [Google Scholar] [CrossRef]
- Tian, J.; Xu, L.H.; Sun, W.; Zeng, X.B.; Fang, S.; Han, H.S.; Hong, K.; Hu, Y.H. Use of Al2(SO4)3 and acidified water glass as mixture depressants in flotation separation of fluorite from calcite and celestite. Miner. Eng. 2019, 137, 160–170. [Google Scholar] [CrossRef]
- Gao, Y.S.; Gao, Z.Y.; Sun, W.; Yin, Z.G.; Wang, J.J.; Hu, Y.H. Adsorption of a novel reagent scheme on scheelite and calcite causing an effective flotation separation. J. Colloid Interface Sci. 2018, 512, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Feng, Q.M.; Zhang, G.F.; Chen, W.; Chen, Y.F. Effect of depressants in the selective flotation of scheelite and calcite using oxidized paraffin soap as collector. Int. J. Miner. Process. 2016, 157, 210–215. [Google Scholar] [CrossRef]
- Klemm, L.M.; Pettke, T.; Heinrich, C.A. Fluid and source magma evolution of the Questa porphyry Mo deposit, New Mexico, USA. Miner. Depos. 2008, 43, 533–552. [Google Scholar] [CrossRef]
- Korges, M.; Weis, P.; Lüders, V.; Laurent, O. Depressurization and boiling of a single magmatic fluid as a mechanism for tin-tungsten deposit formation. Geology 2018, 46, 75–78. [Google Scholar] [CrossRef]
- Li, N.; Chen, Y.J.; Ni, Z.Y.; Hu, H.Z. Characteristics of ore-forming fluids of the Yuchiling porphyry Mo deposit, Songxian county, Henan province, and its geological significance. Acta Petrol. Sinica. 2009, 25, 2509–2522. [Google Scholar]
- Li, P.Y.; He, X.D.; Li, Y.; Xiang, G. Occurrence and Health Implication of Fluoride in Groundwater of Loess Aquifer in the Chinese Loess Plateau: A Case Study of Tongchuan, Northwest China. Expos. Health. 2019, 11, 95–107. [Google Scholar] [CrossRef]
- Li, F.; Zhou, L.; Liu, J.X.; Liang, Y.C.; Zhang, G. High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials. J. Adv. Ceram. 2019, 8, 576–582. [Google Scholar] [CrossRef]
- Zhang, R.Z.; Reece, M.J. Review of high entropy ceramics: Design, synthesis, structure and properties. J. Mater. Chem. A 2019, 7, 22148–22162. [Google Scholar] [CrossRef]
- Burisch, M.; Gerdes, A.; Walter, B.F.; Neumann, U.; Fettel, M.; Markl, G. Methane and the origin of five-element veins: Mineralogy, age, fluid inclusion chemistry and ore forming processes in the Odenwald, SW Germany. Ore Geol. Rev. 2017, 81, 42–61. [Google Scholar] [CrossRef]
- Walter, B.F.; Gerdes, A.; Kleinhanns, I.C.; Dunkl, I.; von Eynatten, H.; Kreissl, S.; Markl, G. The connection between hydrothermal fluids, mineralization, tectonics and magmatism in a continental rift setting: Fluorite Sm-Nd and hematite and carbonates U-Pb geochronology from the Rhinegraben in SW Germany. GCA. 2018, 249, 11–42. [Google Scholar] [CrossRef]
- Pei, Q.M.; Zhang, S.T.; Santosh, M.; Cao, H.W.; Zhang, W.; Hu, X.K.; Wang, L. Geochronology, geochemistry, fluid inclusion and C, O and Hf isotope compositions of the Shuitou fluorite deposit, Inner Mongolia, China. Ore Geol. Rev. 2017, 83, 174–190. [Google Scholar] [CrossRef]
- Burisch, M.; Walter, B.F.; Wälle, M.; Markl, G. Tracing fluid migration pathways in the root zone below unconformity-related hydrothermal veins: Insights from trace element systematics of individual fluid inclusions. Chem. Geol. 2016, 429, 44–50. [Google Scholar] [CrossRef]
- Larivière, V.; Gingras, Y. On the relationship between interdisciplinarity and scientific impact. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 126–131. [Google Scholar] [CrossRef]
- Hicks, D.; Wouters, P.; Waltman, L.; de Rijcke, S.; Rafols, I. Bibliometrics: The Leiden Manifesto for research metrics. Nature 2015, 520, 429–431. [Google Scholar] [CrossRef] [PubMed]
- Kawabata, T. Network analysis on energy transition cooperation between countries. Energy Sustain. Dev. 2024, 81, 101503. [Google Scholar] [CrossRef]
- Yuan, X.J.; Ma, Z.; Wang, A.J.; Li, T.J.; Zhong, W.Q.; Li, B.J.; Li, P.Y.; Wei, J.Q.; Hao, H.C. Structural analysis of global mineral governance system from the perspective of country. Heliyon 2023, 10, e23793. [Google Scholar] [CrossRef]
- Chen, C.M.; Hu, Z.G.; Liu, S.B.; Tseng, H. Emerging trends in regenerative medicine: A scientometric analysis in CiteSpace. Expert Opin. Biol. Ther. 2012, 12, 593–608. [Google Scholar] [CrossRef]
- Erjia, Y.; Raf, G. Predicting and recommending collaborations: An author-, institution-, and country-level analysis. J. Informetr. 2014, 8, 295–309. [Google Scholar]
- Ayora, C.; Macías, F.; Torres, E.; Lozano, A.; Carrero, S.; Nieto, J.M.; Pérez-López, R.; Fernández-Martínez, A.; Castillo-Michel, H. Recovery of Rare Earth Elements and Yttrium from Passive-Remediation Systems of Acid Mine Drainage. Environ. Sci. Technol. 2016, 50, 8255–8262. [Google Scholar] [CrossRef]
- Liu, X.C.; Zhao, S.; Tan, L.L.; Tan, Y.; Wang, Y.; Ye, Z.Y.; Hou, C.J.; Xu, Y.; Liu, S.; Wang, G.X. Frontier and hot topics in electrochemiluminescence sensing technology based on CiteSpace bibliometric analysis. Biosens. Bioelectron. 2022, 201, 113932. [Google Scholar] [CrossRef]
- Wagner, C.S.; Park, H.W.; Leydesdorff, L. The Continuing Growth of Global Cooperation Networks in Research: A Conundrum for National Governments. PLoS ONE 2015, 10, e0131816. [Google Scholar] [CrossRef] [PubMed]
- Barabási, A.L.; Jeong, H.; Néda, Z.; Ravasz, E.; Schubert, A.; Vicsek, T. Evolution of the Social Network of Scientific Collaborations. Phys. A Stat. Mech. Its Appl. 2002, 311, 590–614. [Google Scholar] [CrossRef]
- Chen, C.M.; Dubin, R.; Kim, M.C. Emerging trends and new developments in regenerative medicine: A scientometric update (2000–2014). Expert Opin. Biol. Ther. 2014, 14, 1295–1317. [Google Scholar] [CrossRef]
- Uribe-Toril, J.; Ruiz-Real, J.L.; Valenciano, J.D. The Embeddedness of Social Sciences and Economics in Research on Resources. Resources 2020, 9, 15. [Google Scholar] [CrossRef]
- Francisco, S.; Julia, O.L.; Julia, H.O. Information Resources: Differential Characteristics between Ibero-American and Dutch JCR Psychology Journals from 1998 to 2017. Resources 2019, 8, 111. [Google Scholar] [CrossRef]
- Luo, H.F.; Cai, Z.L.; Huang, Y.Y.; Song, J.T.; Ma, Q.; Yang, X.W.; Song, Y. Study on Pain Catastrophizing From 2010 to 2020: A Bibliometric Analysis via CiteSpace. Front. Psychol. 2022, 12, 759347. [Google Scholar] [CrossRef]
- Chen, P.; Wang, J.G.; Sun, Y.M.; Cheng, S.Y.; Gao, H.Z.; Wang, H.B.; Cao, J. α-amino phosphonic acid as the oxidized ore collector: Flexible intra-molecular proton transfer providing an improved flotation efficiency. Minerals 2022, 12, 918. [Google Scholar] [CrossRef]
- Kienko, L.A.; Voronova, O.V. Assessment of Specificity of Calcite Flotation Kinetics in Secondary Processing of Fluorite-Bearing Materials. J. Min. Sci. 2024, 60, 854–860. [Google Scholar] [CrossRef]
- Park, M.H.; Lee, Y.H.; Mikolajick, T.; Schroeder, U.; Hwang, C.S. Thermodynamic and Kinetic Origins of Ferroelectricity in Fluorite Structure Oxides. Adv. Electron. Mater. 2019, 5, 1800522. [Google Scholar] [CrossRef]
- Ito, M.; Goutaudier, C.; Guyot, Y.; Lebbou, K.; Fukuda, T.; Boulon, G. Crystal growth, Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1-xYbxF2+x. J. Phys.-Condens. Matter 2004, 16, 1501–1521. [Google Scholar] [CrossRef]
- Hamlaoui, Y.; Pedraza, F.; Remazeilles, C.; Cohendoz, S.; Rébéré, C.; Tifouti, L.; Creus, J. Cathodic electrodeposition of cerium-based oxides on carbon steel from concentrated cerium nitrate solutions Part I. Electrochemical and analytical characterization. Mater. Chem. Phys. 2009, 113, 650–657. [Google Scholar] [CrossRef]
- Singh, C.K.; Kumar, A.; Shashtri, S.; Kumar, A.; Kumar, P.; Mallick, J. Multivariate statistical analysis and geochemical modeling for geochemical assessment of groundwater of Delhi, India. J. Geochem. Explor. 2017, 175, 59–71. [Google Scholar] [CrossRef]
- Gnanam, S.; Rajendran, V. Synthesis of CeO2 or α-Mn2O3 nanoparticles via sol-gel process and their optical properties. J. Sol-Gel Sci. Technol. 2011, 58, 62–69. [Google Scholar] [CrossRef]
- Ghosh, A.; Mukherjee, K.; Ghosh, S.K.; Saha, B. Sources and toxicity of fluoride in the environment. Res. Chem. Intermed. 2013, 39, 2881–2915. [Google Scholar] [CrossRef]
- Lee, S.; Bozeman, B. The Impact of Research Collaboration on Scientific Productivity. Soc. Stud. Sci. 2005, 35, 673–702. [Google Scholar] [CrossRef]
- King, D.A. The Scientific Impact of Nations. Nature 2004, 430, 311–316. [Google Scholar] [CrossRef]
- Schwinn, G.; Markl, G. REE systematics in hydrothermal fluorite. Chem. Geol. 2005, 216, 225–248. [Google Scholar] [CrossRef]
- Popov, V.V.; Menushenkov, A.P.; Yaroslavtsev, A.A.; Zubavichus, Y.V.; Gaynanov, B.R.; Yastrebtsev, A.A.; Leshchev, D.S.; Chernikov, R.V. Fluorite-pyrochlore phase transition in nanostructured Ln2Hf2O7 (Ln = La−Lu). J. Alloys Compd. 2016, 689, 669–679. [Google Scholar] [CrossRef]
- Barabási, A.L.; Albert, R.; Jeong, H. Scale-free characteristics of random networks: The topology of the World-Wide Web. Phys. A Stat. Mech. Its Appl. 2000, 281, 69–77. [Google Scholar] [CrossRef]
- Milojević, S. Modes of Collaboration in Modern Science: Beyond Power Laws and referential Attachment. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 1410–1423. [Google Scholar] [CrossRef]
- Elidrissi, B.; Addou, M.; Regragui, M.; Monty, C.; Bougrine, A.; Kachouane, A. Structural and optical properties of CeO2 thin films prepared by spray pyrolysis. Thin Solid Film. 2000, 379, 23–27. [Google Scholar] [CrossRef]
- Salvi, S.; Williams-Jones, A.E. Alteration, HFSE mineralisation and hydrocarbon formation in peralkaline igneous systems: Insights from the Strange Lake Pluton, Canada. Lithos 2006, 91, 19–34. [Google Scholar] [CrossRef]
- Khatib, R.; Backus, E.H.G.; Bonn, M.; Perez-Haro, M.J.; Gaigeot, M.P.; Sulpizi, M. Water orientation and hydrogen-bond structure at the fluorite/water interface. Sci. Rep. 2016, 6, 24287. [Google Scholar] [CrossRef]
- Borner, K.; Dall’Asta, L.; Ke, W.M.; Vespignani, A. Studying the emerging global brain: Analyzing and visualizing the impact of co-authorship teams. Complexity 2005, 10, 57–67. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Strezov, V.E. A review on Environmental Kuznets Curve hypothesis using bibliometric and meta-analysis. Sci. Total Environ. 2019, 649, 128–145. [Google Scholar] [CrossRef]
- Li, L.B.; Yin, G.J.; Wen, X.D.; Miao, L.; Zuo, X.B.; Gao, X.J. A bibliometric review on research progress, interest evolution and future trend in the field of recycled concrete by using CiteSpace (2004–2023). J. Co2 Util. 2024, 83, 102826. [Google Scholar]
- Phelps, C.; Heidl, R.; Wadhwa, A. Knowledge, Networks, and Knowledge Networks: A Review and Research Agenda. J. Manag. 2012, 38, 1115–1166. [Google Scholar] [CrossRef]
- Liu, S.G.; Huang, W.M.; Jansa, L.F.; Wang, G.Z.; Song, G.Y.; Zhang, C.J.; Sun, W.; Ma, W.X. Hydrothermal Dolomite in the Upper Sinian (Upper Proterozoic) Dengying Formation, East Sichuan Basin, China. Acta Geol. Sin.-Engl. Ed. 2014, 88, 1466–1487. [Google Scholar] [CrossRef]
- Zou, H.; Zhang, S.T.; Chen, A.Q.; Fang, Y.; Zeng, Z.F. Hydrothermal Fluid Sources of the Fengjia Barite-fluorite Deposit in Southeast Sichuan, China: Evidence from Fluid Inclusions and Hydrogen and Oxygen Isotopes. Resour. Geol. 2016, 66, 24–36. [Google Scholar] [CrossRef]
- Yang, Y.F.; Li, N.; Chen, Y.J. Fluid inclusion study of the Nannihu giant porphyry Mo-W deposit, Henan Province, China: Implications for the nature of porphyry ore-fluid systems formed in a continental collision setting. Ore Geol. Rev. 2012, 46, 83–94. [Google Scholar] [CrossRef]
- Peng, J.T.; Hu, R.Z.; Burnard, P.G. Samarium-neodymium isotope systematics of hydrothermal calcites from the Xikuangshan antimony deposit (Hunan, China): The potential of calcite as a geochronometer. Chem. Geol. 2003, 200, 129–136. [Google Scholar] [CrossRef]
- Gingras, Y.; Larivière, V.; Macaluso, B.; Robitaille, J.P. The Effects of Aging on Researchers’ Publication and Citation Patterns. PLoS ONE 2008, 3, e4048. [Google Scholar] [CrossRef] [PubMed]
- Parish, A.J.; Boyack, K.W.; Ioannidis, J.P.A. Dynamics of co-authorship and productivity across different fields of scientific research. PLoS ONE 2018, 13, e0189742. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.M. h-index sequence and h-index matrix: Constructions and applications. Scientometrics 2006, 69, 153–159. [Google Scholar] [CrossRef]
- Wu, J.; Lozano, S.; Helbing, D. Empirical study of the growth dynamics in real career h-index sequences. J. Informetr. 2011, 5, 489–497. [Google Scholar] [CrossRef]
- Nair, G.M.; Turlach, B.A. The stochastic h-index. J. Informetr. 2012, 6, 80–87. [Google Scholar] [CrossRef]
- Zhang, C.H.; Wei, S.; Hu, Y.H.; Tang, H.H.; Gao, J.D.; Yin, Z.G.; Guan, Q.J. Selective adsorption of tannic acid on calcite and implications for separation of fluorite minerals. J. Colloid Interface Sci. 2018, 512, 55–63. [Google Scholar] [CrossRef]
- Gao, Z.Y.; Gao, Y.S.; Zhu, Y.Y.; Hu, Y.H.; Sun, W. Selective Flotation of Calcite from Fluorite: A Novel Reagent Schedule. Minerals 2016, 6, 114. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Sun, N.; Sun, W.; Hu, Y.H.; Tang, H.H. Precipitation Methods Using Calcium-Containing Ores for Fluoride Removal in Wastewater. Minerals 2019, 9, 511. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, R.; Chen, Z.L.; Cao, P.P.; Zhou, Q.L.; Wu, Q. A global bibliometric and visualized analysis of bacterial biofilm eradication from 2012 to 2022. Front. Microbiol. 2023, 14, 1287964. [Google Scholar] [CrossRef]
- Edwards, P.N.; Mayernik, M.S.; Batcheller, A.L.; Bowker, G.C.; Borgman, C.L. Science friction: Data, metadata, and collaboration. Soc. Stud. Sci. 2011, 41, 667–690. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, M.A.; Bollen, J.; De Sompel, H.V. Automatic Metadata Generation Using Associative Networks. Acm Trans. Inf. Syst. 2009, 27, 1462199. [Google Scholar] [CrossRef]
- Lüders, V.; Romer, R.L.; Gilg, H.A.; Bodnar, R.J.; Pettke, T.; Misantoni, D. A geochemical study of the Sweet Home Mine, Colorado Mineral Belt, USA: Hydrothermal fluid evolution above a hypothesized granite cupola. Miner. Depos. 2009, 44, 415–434. [Google Scholar] [CrossRef]
- Pelch, M.A.; Appold, M.S.; Emsbo, P.; Bodnar, R.J. Constraints from Fluid Inclusion Compositions on the Origin of Mississippi Valley-Type Mineralization in the Illinois-Kentucky District. Econ. Geol. 2015, 110, 787–808. [Google Scholar] [CrossRef]
- Zhang, D.H.; Xu, G.J.; Zhang, W.H.; Golding, S.D. High salinity fluid inclusions in the Yinshan polymetallic deposit from the Le-De metallogenic belt in Jiangxi Province, China: Their origin and implications for ore genesis. Ore Geol. Rev. 2007, 31, 247–260. [Google Scholar] [CrossRef]
- Lecumberri-Sanchez, P.; Steele-MacInnis, M.; Bodnar, R.J. A numerical model to estimate trapping conditions of fluid inclusions that homogenize by halite disappearance. Geochim. Cosmochim. Acta 2012, 92, 14–22. [Google Scholar] [CrossRef]
- Steele, B.C.H.; Heinzel, A. Materials for fuel-cell technologies. Nature 2001, 414, 345–352. [Google Scholar] [CrossRef]
- Steele, B.C.H. Material science and engineering: The enabling technology for the commercialisation of fuel cell systems. J. Mater. Sci. 2001, 36, 1053–1068. [Google Scholar] [CrossRef]
- Sunarso, J.; Baumann, S.; Serra, J.M.; Meulenberg, W.A.; Liu, S.; Lin, Y.S.; da Costa, J.C.D. Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation. J. Membr. Sci. 2008, 320, 13–41. [Google Scholar] [CrossRef]
- Cheema, S.S.; Kwon, D.; Shanker, N.; dos Reis, R.; Hsu, S.L.; Xiao, J.; Zhang, H.G.; Wagner, R.; Datar, A.; McCarter, M.R.; et al. Enhanced ferroelectricity in ultrathin films grown directly on silicon. Nature 2020, 580, 478–482. [Google Scholar] [CrossRef]
- Phoka, S.; Laokul, P.; Swatsitang, E.; Promarak, V.; Seraphin, S.; Maensiri, S. Synthesis, structural and optical properties of CeO2 nanoparticles synthesized by a simple polyvinyl pyrrolidone (PVP) solution route. Mater. Chem. Phys. 2009, 115, 423–428. [Google Scholar] [CrossRef]
- Marrocchelli, D.; Bishop, S.R.; Tuller, H.L.; Yildiz, B. Understanding Chemical Expansion in Non-Stoichiometric Oxides: Ceria and Zirconia Case Studies. Adv. Funct. Mater. 2012, 22, 1958–1965. [Google Scholar] [CrossRef]
- Chae, G.T.; Yun, S.T.; Mayer, B.; Kim, K.H.; Kim, S.Y.; Kwon, J.S.; Kim, K.; Koh, Y.K. Fluorine geochemistry in bedrock groundwater of South Korea. Sci. Total Environ. 2007, 385, 272–283. [Google Scholar] [CrossRef]
- Monecke, T.; Kempf, U.; Monecke, J.; Sala, M.; Wolf, D. Tetrad effect in rare earth element distribution patterns: A method of quantification with application to rock and mineral samples from granite-related rare metal deposits. Geochim. Cosmochim. Acta 2002, 66, 1185–1196. [Google Scholar] [CrossRef]
- Bakan, E.; Vassen, R. Ceramic Top Coats of Plasma-Sprayed Thermal Barrier Coatings: Materials, Processes, and Properties. J. Therm. Spray Technol. 2017, 26, 992–1010. [Google Scholar] [CrossRef]
- Yang, P.; Yang, S.S.; Shi, Z.N.; Meng, Z.H.; Zhou, R.X. Deep oxidation of chlorinated VOCs over CeO2-based transition metal mixed oxide catalysts. Appl. Catal. B-Environ. 2015, 162, 227–235. [Google Scholar] [CrossRef]
- De Souza, R.A.; Kilner, J.A. Oxygen transport in La1−xSrxMn1−yCoyO3 ± δ perov-skites part II.: Oxygen surface exchange. Solid State Ion. 1999, 126, 153–161. [Google Scholar] [CrossRef]
- Waltman, L. A review of the literature on citation impact indicators. J. Informetr. 2016, 10, 365–391. [Google Scholar] [CrossRef]
- Cobo, M.J.; Lopez-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the fuzzy sets theory field. J. Informetr. 2011, 5, 146–166. [Google Scholar] [CrossRef]
- Norouzi, M.; Chàfer, M.; Cabeza, L.F.; Jiménez, L.; Boer, D. Circular economy in the building and construction sector: A scientific evolution analysis. J. Build. Eng. 2021, 44, 102704. [Google Scholar] [CrossRef]
- Xie, H.L.; Zhang, Y.W.; Zeng, X.J.; He, Y.F. Sustainable land use and management research: A scientometric review. Landsc. Ecol. 2020, 35, 2381–2411. [Google Scholar] [CrossRef]
- Rajeev, A.; Pati, R.K.; Padhi, S.S.; Govindan, K. Evolution of sustainability in supply chain management: A literature review. J. Clean. Prod. 2017, 162, 299–314. [Google Scholar] [CrossRef]
- Chen, Y.X.; Lin, M.W.; Zhuang, D. Wastewater treatment and emerging contaminants: Bibliometric analysis. Chemosphere 2022, 297, 133932. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Deng, J.H.; Sun, P.Z.; Liu, J.S.; Ji, Y.; Nakada, N.; Qiao, Z.; Tanaka, H.; Yang, Y.K. Nanomaterials for treating emerging contaminants in water by adsorption and photocatalysis: Systematic review and bibliometric analysis. Sci. Total Environ. 2018, 627, 1253–1263. [Google Scholar] [CrossRef]
- de Leeuw, N.H.; Cooper, T.G. A computational study of the surface structure and reactivity of calcium fluoride. J. Mater. Chem. 2003, 13, 93–101. [Google Scholar] [CrossRef]
- Machida, M.; Uto, M.; Kurogi, D.; Kijima, T. Solid-gas interaction of nitrogen oxide adsorbed on MnOx-CeO2: A DRIFTS study. J. Mater. Chem. 2001, 13, 900–904. [Google Scholar] [CrossRef]
- Petrunic, B.M.; Al, T.A. Mineral/water interactions in tailings from a tungsten mine, Mount Pleasant, New Brunswick. Geochim. Cosmochim. Acta 2005, 69, 2469–2483. [Google Scholar] [CrossRef]
- Foucaud, Y.; Filippov, L.; Filippova, I.; Badawi, M. The Challenge of Tungsten Skarn Processing by Froth Flotation: A Review. Front. Chem. 2020, 8, 230. [Google Scholar] [CrossRef]
- Han, H.S.; Hu, Y.H.; Sun, W.; Li, X.D.; Cao, C.G.; Liu, R.Q.; Yue, T.; Meng, X.S.; Guo, Y.Z.; Wang, J.J.; et al. Fatty acid flotation versus BHA flotation of tungsten minerals and their performance in flotation practice. Int. J. Miner. Process. 2017, 159, 22–29. [Google Scholar] [CrossRef]
- Li, R.X.; Yabe, S.; Yamashita, M.; Momose, S.; Yoshida, S.; Yin, S.; Sato, T. Synthesis and UV-shielding properties of ZnO- and CaO-doped CeO2 via soft solution chemical process. Solid State Ion. 2002, 151, 235–241. [Google Scholar] [CrossRef]
- Rashid, A.; Farooqi, A.; Gao, X.B.; Zahir, S.; Noor, S.; Khattak, J.A. Geochemical modeling, source apportionment, health risk exposure and control of higher fluoride in groundwater of sub-district Dargai, Pakistan. Chemosphere 2020, 243, 125409. [Google Scholar] [CrossRef] [PubMed]
- Marghade, D.; Malpe, D.B.; Rao, N.S. Applications of geochemical and multivariate statistical approaches for the evaluation of groundwater quality and human health risks in a semi-arid region of eastern Maharashtra, India. Environ. Geochem. Health 2021, 43, 683–703. [Google Scholar] [CrossRef] [PubMed]
- Teng, Z.; Tan, Y.Q.; Zeng, S.F.; Meng, Y.; Chen, C.; Han, X.C.; Zhang, H.B. Preparation and phase evolution of high-entropy oxides A2B2O7 with multiple elements at A and B sites. J. Eur. Ceram. Soc. 2021, 41, 3614–3620. [Google Scholar] [CrossRef]
- Yu, D.J.; Xu, Z.S.; Pedrycz, W. Bibliometric analysis of rough sets research. Appl. Soft Comput. 2020, 94, 106467. [Google Scholar] [CrossRef]
- Moral-Muñoz, J.A.; Herrera-Viedma, E.; Santisteban-Espejo, A.; Cobo, M.J. Software tools for conducting bibliometric analysis in science: An up-to-date review. Prof. De La Inf. 2020, 29, e290103. [Google Scholar] [CrossRef]
- Williams-Jones, A.E. The genesis of hydrothermal fluorite-REE deposits in the Gallinas Mountains, New Mexico. Econ. Geol. Bull. Soc. Econ. Geol. 2000, 95, 327–341. [Google Scholar] [CrossRef]
- Yang, W.B.; Niu, H.C.; Shan, Q.; Sun, W.D.; Zhang, H.; Li, N.B.; Jiang, Y.H.; Yu, X.A. Geochemistry of magmatic and hydrothermal zircon from the highly evolved Baerzhe alkaline granite: Implications for Zr-REE-Nb mineralization. Miner. Depos. 2014, 49, 451–470. [Google Scholar] [CrossRef]
- Liu, Y.; Hou, Z.Q. A synthesis of mineralization styles with an integrated genetic model of carbonatite-syenite-hosted REE deposits in the Cenozoic Mianning-Dechang REE metallogenic belt, the eastern Tibetan Plateau, southwestern China. J. Asian Earth Sci. 2017, 137, 35–79. [Google Scholar] [CrossRef]
- Salvi, S.; Fontan, F.; Monchoux, P.; Williams-Jones, A.E. Hydrothermal mobilization of high field strength elements in alkaline igneous systems: Evidence from the Tamazeght complex (Morocco). Econ. Geol. Bull. Soc. Econ. Geol. 2000, 95, 559–575. [Google Scholar] [CrossRef]
- Varotsos, P. Point defect parameters in β-PbF2 revisited. Solid State Ion. 2008, 179, 438–441. [Google Scholar] [CrossRef]
- Xie, Y.L.; Hou, Z.Q.; Yin, S.P.; Dominy, S.C.; Xu, J.H.; Tian, S.H.; Xu, W.Y. Continuous carbonatitic melt-fluid evolution of a REE mineralization system: Evidence from inclusions in the Maoniuping REE Deposit, Western Sichuan, China. Ore Geol. Rev. 2009, 36, 90–105. [Google Scholar] [CrossRef]
- Jacks, G.; Bhattacharya, P.; Chaudhary, V.; Singh, K.P. Controls on the genesis of some high-fluoride groundwaters in India. Appl. Geochem. 2005, 20, 221–228. [Google Scholar] [CrossRef]
- Reardon, E.J.; Wang, Y.X. A limestone reactor for fluoride removal from wastewaters. Environ. Sci. Technol. 2000, 35, 3247–3253. [Google Scholar] [CrossRef]
- Yu, Y.X.; Ma, L.Q.; Cao, M.L.; Liu, Q. Slime coatings in froth flotation: A review. Miner. Eng. 2017, 114, 26–36. [Google Scholar] [CrossRef]
- Chen, W.; Feng, Q.M.; Zhang, G.F.; Yang, Q.; Zhang, C. The effect of sodium alginate on the flotation separation of scheelite from calcite and fluorite. Miner. Eng. 2017, 113, 1–7. [Google Scholar] [CrossRef]
- Watanabe, S.; Ma, X.L. Characterization of Structural and Surface Properties of Nanocrystalline TiO2-CeO2 Mixed Oxides by XRD, XPS, TPR, and TPD. J. Phys. Chem. C 2009, 113, 14249–14257. [Google Scholar] [CrossRef]
- Bühn, B.; Rankin, A.H. Composition of natural, volatile-rich Na-Ca-REE-Sr carbonatitic fluids trapped in fluid inclusions. Geochim. Cosmochim. Acta 1999, 63, 3781–3797. [Google Scholar] [CrossRef]
- Chesley, J.T.; Halliday, A.N.; Scrivener, R.C. Samarium-neodymium direct dating of fluorite mineralization. Science 1991, 252, 949–951. [Google Scholar] [CrossRef]
- Cao, J.F.; Lim, Y.; Sengoku, S.; Guo, X.T.; Kodama, K. Exploring the Shift in International Trends in Mobile Health Research From 2000 to 2020: Bibliometric Analysis. JMIR Mhealth uHealth 2021, 9, e31097. [Google Scholar] [CrossRef]
- Liang, J.J.; Liu, J.L.; Wang, H.L.; Li, Z.Y.; Cao, G.H.; Zeng, Z.Y.; Liu, S.; Guo, Y.Z.; Zeng, M.Q.; Fu, L. Synthesis of Ultrathin High-Entropy Oxides with Phase Controllability. J. Am. Chem. Soc. 2024, 146, 7118–7123. [Google Scholar] [CrossRef]
- Shen, C.X.; Yang, X.M.; Li, Z.P.; Wu, D.; Cao, Y.J.; Zhang, Y.S.; Chai, W.C. Efficient flotation separation mechanism of scheelite from calcite and fluorite using carboxymethyl sulfonated lignin as environmentally friendly depressant. Colloids Surf. A-Physicochem. Eng. Asp. 2025, 771, 136311. [Google Scholar] [CrossRef]
- Kim, W.; Khan, G.F.; Wood, J.; Mahmood, M.T. Employee Engagement for Sustainable Organizations: Keyword Analysis Using Social Network Analysis and Burst Detection Approach. Sustainability 2016, 8, 631. [Google Scholar] [CrossRef]
- Li, C.; Li, W.P.; Chew, J.J.; Liu, S.M.; Zhu, X.F.; Sunarso, J. Rate determining step in SDC-SSAF dual-phase oxygen permeation membrane. J. Membr. Sci. 2019, 573, 628–638. [Google Scholar] [CrossRef]
- Gao, X.B.; Wang, Y.X.; Li, Y.L.; Guo, Q.H. Enrichment of fluoride in groundwater under the impact of saline water intrusion at the salt lake area of Yuncheng basin, northern China. EG 2007, 53, 795–803. [Google Scholar] [CrossRef]
- Yang, Y.F.; Chen, Y.J.; Li, N.; Mi, M.; Xu, Y.L.; Li, F.L.; Wan, S.Q. Fluid inclusion and isotope geochemistry of the Qian’echong giant porphyry Mo deposit, Dabie Shan, China: A case of NaCl-poor, CO2-rich fluid systems. J. Geochem. Explor. 2013, 124, 1–13. [Google Scholar] [CrossRef]
- Wang, Y.W.; Wang, X.L.; Wang, X.Y.; Yang, Y.; Zhang, C.; Sun, W.W.; Ma, Y.D.; Cui, Y.H.; Wang, L.; Dong, Y.C. Effect of CeO2on the Microstructure and Properties of Plasma-Sprayed Al2O3-ZrO2Ceramic Coatings. J. Mater. Eng. Perform. 2020, 29, 6390–6401. [Google Scholar] [CrossRef]
- Puts, G.J.; Crouse, P.; Ameduri, B.M. Polytetrafluoroethylene: Synthesis and Characterization of the Original Extreme Polymer. Chem. Rev. 2019, 119, 1763–1805. [Google Scholar] [CrossRef]
- Gellings, P.J.; Bouwmeester, H.J.M. Solid state aspects of oxidation catalysis. Catal. Today 2000, 58, 1–53. [Google Scholar] [CrossRef]
- Sheard, E.R.; Williams-Jones, A.E.; Heiligmann, M.; Pederson, C.; Trueman, D.L. Controls on the Concentration of Zirconium, Niobium, and the Rare Earth Elements in the Thor Lake Rare Metal Deposit, Northwest Territories, Canada. Econ. Geol. 2012, 107, 81–104. [Google Scholar] [CrossRef]
- Huang, C.J.; Liu, J.C. Precipitate flotation of fluoride-containing wastewater from a semiconductor manufacturer. Water Res. 1999, 33, 3403–3412. [Google Scholar] [CrossRef]
- Park, M.H.; Lee, Y.H.; Kim, H.J.; Kim, Y.J.; Moon, T.; Do Kim, K.; Hyun, S.D.; Mikolajick, T.; Schroeder, U.; Hwang, C.S. Understanding the formation of the metastable ferroelectric phase in hafnia-zirconia solid solution thin films. Nanoscale 2018, 10, 716–725. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Liu, K.; Hao, Q.C.; Li, Y.S.; Xiao, D.; Zhang, Y.J. Occurrence, Controlling Factors and Health Hazards of Fluoride-Enriched Groundwater in the Lower Flood Plain of Yellow River, Northern China. Expo. Health 2022, 14, 345–358. [Google Scholar] [CrossRef]
- Yu, Y.; Shah, M.Y.; Wang, H.; Cheng, X.M.; Guo, L.J.; Huang, J.B.; Lund, P.; Zhu, B. Synergistic Proton and Oxygen Ion Transport in Fluorite Oxide-Ion Conductor. Energy Mater. Adv. 2024, 5, 0081. [Google Scholar] [CrossRef]
- Guo, Z.H.; Khoso, S.A.; Tian, M.J.; Sun, W. Utilizing N-hydroxy-9-octadecenamide as a collector in flotation separation of bastnaesite and fluorite. J. Rare Earths 2024, 42, 1620–1628. [Google Scholar] [CrossRef]
- Cui, J.M.; Ni, P.; Pan, J.Y.; Li, W.S. Fluid inclusion constraint on sulfide precipitation in wolframite-quartz veins: A case study of the giant Dajishan W polymetallic deposit, South China. J. Geochem. Explor. 2024, 259, 107423. [Google Scholar] [CrossRef]
- Dong, L.Y.; Wei, Q.; Qin, W.Q.; Jiao, F. Selective adsorption of sodium polyacrylate on calcite surface: Implications for flotation separation of apatite from calcite. Sep. Purif. Technol. 2020, 241, 116415. [Google Scholar] [CrossRef]
- Liu, J.; Tao, Y.Y.; Chang, T.J.; Ge, W.C.; Jiang, K.; Lv, L.; Zhu, M.; Yuan, S. Study on flotation separation of barite fluorite by citric acid under new collector system. Colloids Surf. A-Physicochem. Eng. Asp. 2024, 692, 134058. [Google Scholar] [CrossRef]
- Dong, L.Y.; Jiao, F.; Qin, W.Q.; Liu, W. Selective flotation of scheelite from calcite using xanthan gum as depressant. Miner. Eng. 2019, 138, 14–23. [Google Scholar] [CrossRef]
- Wang, X.C.; Zhang, Q. Role of surface roughness in the wettability, surface energy and flotation kinetics of calcite. Powder Technol. 2020, 371, 55–63. [Google Scholar] [CrossRef]
- Lai, Y.Q.; Lu, B.; Wang, M. Optical properties and Faraday magneto-optical effects of highly transparent novel Tb2Zr2O7 fluorite ceramics. Scr. Mater. 2023, 227, 115282. [Google Scholar] [CrossRef]
- Wang, Z.J.; Wu, H.Q.; Xu, Y.B.; Shu, K.Q.; Yang, J.; Luo, L.P.; Xu, L.H. Effect of dissolved fluorite and barite species on the flotation and adsorption behavior of bastnaesite. Sep. Purif. Technol. 2020, 237, 116387. [Google Scholar] [CrossRef]
- Guan, Z.W.; Jiao, F.; Wang, X.; Qin, W.Q.; Fu, L.W.; Zhang, Z.Q.; Li, W. New insights of inorganic phosphate inhibitors for flotation separation of calcium-bearing minerals. J. Cent. South Univ. 2024, 31, 796–812. [Google Scholar] [CrossRef]
- Liao, H.C.; Tang, M.; Luo, L.; Li, C.Y.; Chiclana, F.; Zeng, X.J. A Bibliometric Analysis and Visualization of Medical Big Data Research. Sustainability 2018, 10, 166. [Google Scholar] [CrossRef]
- Li, Q.W.; Long, R.Y.; Chen, H.; Chen, F.Y.; Wang, J.Q. Visualized analysis of global green buildings: Development, barriers and future directions. J. Clean. Prod. 2020, 245, 118775. [Google Scholar] [CrossRef]
- Pi, T.; Sole, J.; Taran, Y. (U-Th)/He dating of fluorite: Application to the La Azul fluorspar deposit in the Taxco mining district, Mexico. Miner. Depos. 2005, 39, 976–982. [Google Scholar] [CrossRef]
- Andargoli, M.B.E.; Moshrefi, S.; Mortazavi, M. Separation of Fluorite Mineral from Its Ore by Flotation Method and Optimal Use of Chemical Reagents. J. Min. Sci. 2022, 58, 300–308. [Google Scholar] [CrossRef]
- Chu, S.X.; Zeng, Q.D.; Liu, J.M.; Zhang, W.O.; Zhang, Z.L.; Zhang, S.; Wang, Z.C. Characteristics and its geological significance of fluid inclusions in Chehugou porphyry Mo-Cu deposit, Xilamulun molybdenummetallogenic belt. Acta Petrol. Sin. 2010, 26, 2465–2481. [Google Scholar]
- Brunckova, H.; Mudra, E.; Medvecky, L.; Kovalcikova, A.; Durisin, J.; Sebek, M.; Girman, V. Effect of lanthanides on phase transformation and structural properties of LnNbO4 and LnTaO4 thin films. Mater. Des. 2017, 134, 455–468. [Google Scholar] [CrossRef]
- Liu, Z.G.; Ouyang, J.H.; Zhou, Y.; Xi, X.L. Electrical conductivity of defect fluorite-type (Gd1−xYbx)2Zr2O7 solid solutions. J. Alloys Compd. 2010, 490, 277–281. [Google Scholar] [CrossRef]
- Leea, Y.H.; Sheub, H.S.; Denga, J.P.; Kaoa, H.-C.I. Preparation and fluorite–pyrochlore phase transformation in Gd2Zr2O7. J. Alloys Compd. 2009, 487, 595–598. [Google Scholar] [CrossRef]
- Sattonnaya, G.; Mollb, S.; Thoméb, L.; Legrosa, C.; Calvoa, A.; Herbst-Ghysela, M.; Decorsec, C.; Monnet, I. Effect of composition on the behavior of pyrochlores irradiated with swift heavy ions. Nucl. Instrum. Methods Phys. Res. B 2012, 272, 261–265. [Google Scholar] [CrossRef]
- Corpas-Martínez, J.R.; Caleroa, M.; Péreza, A.; Martín-Laraa, M.A.; Amor-Castillo, C.; Navarro-Domínguez, R. Influence of physical and chemical parameters on ultrafine fluorspar froth flotation. Powder Technol. 2020, 373, 26–38. [Google Scholar] [CrossRef]
- Sattonnaya, G.; Grygielb, C.; Monnetb, I.; Legrosa, C.; Herbst-Ghysela, M.; Thome’c, L. Phenomenological model for the formation of heterogeneous tracks in pyrochlores irradiated with swift heavy ions. Acta Mater. 2012, 60, 22–34. [Google Scholar] [CrossRef]
- Liu, D.; Xu, H.H.; Shen, J.N.; Wang, X.; Qiu, C.W.; Lin, H.X.; Long, J.L.; Wang, Y.; Dai, W.X.; Fang, Y.X.; et al. Decoupling H2 and O2 Release in Particulate Photocatalytic Overall Water Splitting Using a Reversible O2 Binder. Angew. Chem.-Int. Ed. 2025, 64, e202420913. [Google Scholar] [CrossRef]
- Rao, N.S.; Marghade, D.; Dinakar, A.; Chandana, I.; Sunitha, B.; Ravindra, B.; Balaji, T. Geochemical characteristics and controlling factors of chemical composition of groundwater in a part of Guntur district, Andhra Pradesh, India. Environ. Earth Sci. 2017, 76, 747. [Google Scholar]
- Rena, V.; Vishwakarma, C.A.; Singh, P.; Roy, N.; Asthana, H.; Kamal, V.; Kumar, P.; Mukherjee, S. Hydrogeological investigation of fluoride ion in groundwater of Ruparail and Banganga basins, Bharatpur district, Rajasthan, India. Environ. Earth Sci. 2022, 81, 430. [Google Scholar] [CrossRef]
- Wei, C.; Guo, H.M.; Zhang, D.; Wu, Y.; Han, S.B.; An, Y.H.; Zhang, F.C. Occurrence and hydrogeochemical characteristics of high-fluoride groundwater in Xiji County, southern part of Ningxia Province, China. Environ. Geochem. Health 2016, 38, 275–290. [Google Scholar] [CrossRef]
- Zhang, C.H.; Sun, W.; Hu, Y.H.; Tang, H.H.; Yin, Z.G.; Guan, Q.J.; Gao, J.D. Investigation of two-stage depressing by using hydrophilic polymer to improve the process of fluorite flotation. J. Clean. Prod. 2018, 193, 228–235. [Google Scholar] [CrossRef]
- Guo, C.L.; Hou, S.C.; Wang, W.W.; Jin, H.L. Surface chemistry of xanthan gum interactions with bastnaesite and fluorite during flotation. Miner. Eng. 2022, 189, 107891. [Google Scholar] [CrossRef]
- Miao, Y.C.; Wen, S.M.; Guan, Z.H.; Feng, Q.C. Utilization of EDTMPA as an eco-friendly depressant for selective flotation separation of cassiterite from calcite in the oleate system. Colloids Surf. A-Physicochem. Eng. Asp. 2023, 674, 131933. [Google Scholar] [CrossRef]
- Wang, X.; Wang, K.Y.; Ge, W.C.; Sun, Q.F.; Zhang, C.; Quan, H.Y. Fluid evolution and ore genesis of the Weilasituo Li-Sn-Cu-Zn polymetallic deposit in Inner Mongolia: Evidence from fluid inclusion and C-H-O-Li isotopes. Ore Geol. Rev. 2023, 165, 105750. [Google Scholar] [CrossRef]
- Zhu, Z.L.; Zhao, B.H.; Tian, C.C.; Zhang, Y.; Sheng, Q.Y.; Cheng, M.Y.; Zhang, N.N.; Li, Z.; Liu, D. Plasma pretreatment to enhance the sedimentation of ultrafine kaolinite particles: Experiments and mechanisms. J. Water Process Eng. 2024, 59, 105012. [Google Scholar] [CrossRef]
- Rashid, A.; Ayub, M.; Gao, X.B.; Khattak, S.A.; Ali, L.; Li, C.C.; Ahmad, A.; Khan, S.; Rinklebe, J.; Ahmad, P. Hydrogeochemical characteristics, stable isotopes, positive matrix factorization, source apportionment, and health risk of high fluoride groundwater in semiarid region. J. Hazard. Mater. 2024, 469, 134023. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Gong, H.; Chai, S.Q.; Zhu, D.Y.; Chen, K.J.; Liu, Q.P.; Liu, X.G.; Dai, X.H. Fluorine recovery from low-concentration fluorine wastewater by flow-electrode capacitive deionization and fluid bed crystallization (FCDI-FBC): Preconcentration and high-quality fluorite pellets formation. Water Res. 2025, 275, 123228. [Google Scholar] [CrossRef]
- Fu, Q.F.; Zhou, W.; Gao, P.; Dong, H.L.; Chen, S.; Fan, C.L.; Liu, J.L. Carbene-catalyzed synthesis of a fluorophosphate cathode. Energy Environ. Sci. 2024, 17, 5147–5161. [Google Scholar] [CrossRef]
- Domalanta, M.R.B.; Ferdousi, S.; Armas, E.G.D.; Jiang, Y.J.; Caldona, E.B. Interfacially adhesive corrosion protective fluoropolymer coatings modified by soybean extract. Chem. Eng. J. 2024, 493, 152616. [Google Scholar] [CrossRef]
- Pereira, L.; Kupka, N.; Hoang, D.H.; Michaux, B.; Saquran, S.; Ebert, D.; Rudolph, M. On the impact of grinding conditions in the flotation of semi-soluble salt-type mineral-containing ores driven by surface or particle geometry effects? Int. J. Min. Sci. Technol. 2023, 33, 855–872. [Google Scholar] [CrossRef]
- Sheng, Q.Y.; Yin, W.Z.; Ma, Y.Q.; Liu, Y.T.; Wang, L.Y.; Yang, B.; Sun, H.R. Selective depression of talc in azurite sulfidization flotation by tamarind polysaccharide gum: Flotation response and adsorption mechanism. Miner. Eng. 2022, 178, 107393. [Google Scholar] [CrossRef]
- Cao, J.F.; Su, C.; Ji, Y.X.; Yang, G.M.; Shao, Z.P. Recent advances and perspectives of fluorite and perovskite-based dual-ion conducting solid oxide fuel cells. J. Energy Chem. 2021, 57, 406–427. [Google Scholar] [CrossRef]
- Dong, L.Y.; Cui, Y.R.; Qiao, L.D.; Lan, S.Z.; Zheng, Q.F.; Shen, P.L.; Liu, D.W. A critical review on the flotation of calcium-containing minerals. Sep. Purif. Technol. 2025, 360, 131082. [Google Scholar] [CrossRef]
- Gao, P.; Wang, X.; Yuan, S.; Tao, Y.Y.; He, J.H.; Tian, P.C. Mineral Processing Technology of Fluorite: A Review. JOM 2025. [Google Scholar] [CrossRef]
Country | Year | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | |
Argentina | NA | NA | 39 | 14 | 14 | NA | NA | NA | NA | NA |
Brazil | NA | NA | 24 | 24 | 18 | NA | NA | NA | NA | NA |
Burma | NA | NA | NA | NA | 44 | 53 | NA | NA | NA | NA |
Canada | NA | NA | NA | NA | 110 | 100 | 140 | 18 | NA | NA |
China | 3800 | 4200 | 3800 | 3500 | 4000 | 4300 | 5400 | 5700 | 5700 | 5900 |
Germany | 60 | 60 | 50 | 55 | 45 | 50 | 80 | 65 | 60 | 100 |
Iran | 90 | 80 | 40 | 70 | 55 | 55 | 56 | 50 | 120 | 120 |
Kazakhstan | 110 | 110 | 110 | NA | NA | 77 | 77 | 67 | NA | NA |
Kenya | 63 | 20 | 43 | NA | NA | NA | NA | NA | NA | NA |
Mexico | 1100 | 1000 | 990 | 1100 | 1200 | 1200 | 990 | 970 | 1000 | 1200 |
Mongolia | 375 | 230 | 200 | 220 | 670 | 720 | 800 | 350 | 930 | 1200 |
Morocco | 75 | 75 | 70 | 78 | 100 | 88 | 80 | 77 | NA | NA |
Pakistan | NA | NA | NA | NA | NA | 100 | 70 | 65 | 52 | 52 |
Russia | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
South Africa | 200 | 180 | 200 | 260 | 240 | 320 | 420 | 420 | 410 | 380 |
Spain | 95 | 95 | 130 | 170 | 140 | 140 | 130 | 160 | 150 | 160 |
Thailand | NA | 50 | 40 | 30 | 50 | NA | NA | NA | NA | 76 |
United Kingdom | 70 | 40 | 13 | 12 | 21 | NA | NA | NA | NA | NA |
United States | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
Vietnam | NA | 170 | 200 | 220 | 240 | 240 | 220 | 220 | 170 | 110 |
Other countries | 210 | 89 | 33 | 29 | 42 | 110 | 110 | 98 | 170 | 170 |
World total | 6250 | 6400 | 6000 | 5800 | 7000 | 7600 | 8600 | 8300 | 8800 | 9500 |
Descriptions | Results (Global) | Results (Chinese) |
---|---|---|
Main information about documents | ||
Time span | 1999:2024 | 1999:2024 |
Source (journals, books, etc.) | 669 | 251 |
Documents | 2472 | 794 |
Annual growth rate% | −5.29 | 1.57 |
Average citations per document | 23.63 | 20.84 |
References | 86,275 | 29,276 |
Document contents | ||
Authors | 10,094 | 3669 |
Authors of single-authored documents | 98 | 5 |
Collaborations | ||
Co-authors per document | 5.01 | 5.82 |
International co-authorships % | 27.22 | 19.65 |
Journal | Total Publications | Average Citations | IF | JCR | Index-H | Country | |
---|---|---|---|---|---|---|---|
No. | % | ||||||
Ore Geology Reviews | 130 | 5.25 | 21.08 | 3.2 | Q1 | 79 | Germany |
Ceramics International | 69 | 2.79 | 17.14 | 5.1 | Q1 | 89 | England |
Minerals | 56 | 2.27 | 8.8 | 2.2 | Q2 | 21 | England |
Acta Petrologica Sinica | 46 | 1.86 | 11 | 1.7 | Q2 | 78 | China |
Journal of Alloys and Compounds | 43 | 1.74 | 25.44 | 5.8 | Q1 | 145 | Switzerland |
Chemical Geology | 37 | 1.50 | 37.24 | 3.6 | Q1 | 177 | Netherlands |
Journal of Geochemical Exploration | 34 | 1.38 | 29.94 | 3.4 | Q1 | 72 | Netherlands |
Solid State Ionics | 34 | 1.39 | 36.41 | 3 | Q1 | 175 | Netherlands |
Journal of the American Ceramic Society | 30 | 1.21 | 31.2 | 3.5 | Q1 | 174 | United States |
Minerals Engineering | 30 | 1.21 | 34.83 | 4.9 | Q1 | 88 | England |
Co-Cited Journal | Co-Citations | Average Citations | Impact Factor | Index-H | Country |
---|---|---|---|---|---|
Geochimica et Cosmochimica Acta | 729 | 34.7 | 4.5 | 212 | United States |
Chemical Geology | 626 | 16.9 | 3.6 | 177 | Netherlands |
Journal of the American Ceramic Society | 554 | 18.5 | 3.5 | 174 | United States |
Science | 547 | 273.5 | 44.8 | 1058 | United States |
Solid State Ionics | 533 | 15.7 | 3 | 175 | Netherlands |
Journal of Alloys and Compounds | 507 | 11.8 | 5.8 | 145 | Switzerland |
Economic Geology | 484 | 20.2 | 5.5 | 93 | United States |
Nature | 475 | 237.5 | 50.5 | 1096 | England |
Mineralium Deposita | 461 | 16.5 | 4.4 | 80 | Germany |
Ore Geology Reviews | 455 | 3.5 | 3.2 | 79 | Germany |
Rank | Country | Total Publications | Centrality | Initial Year | |
---|---|---|---|---|---|
No. | % | ||||
1 | China | 794 | 32.12 | 0.20 | 1999 |
2 | USA | 276 | 11.27 | 0.14 | 1999 |
3 | Russia | 244 | 9.87 | 0.07 | 1999 |
4 | Germany | 198 | 8.01 | 0.13 | 1999 |
5 | India | 196 | 7.93 | 0.18 | 2000 |
6 | France | 167 | 6.76 | 0.30 | 1999 |
7 | Japan | 121 | 4.89 | 0.08 | 1999 |
8 | Spain | 116 | 4.69 | 0.09 | 1999 |
9 | England | 101 | 4.86 | 0.17 | 1999 |
10 | Canada | 85 | 3.44 | 0.05 | 1999 |
Institution | Total Publications | Institution | Centrality | Institution | Dergee | Institution | Burst Strength | |
---|---|---|---|---|---|---|---|---|
No. | % | |||||||
Russian Acad Sci | 143 | 5.78 | Chinese Acad Sci | 0.24 | Chinese Acad Sci | 70 | Russian Acad Sci | 8.32 |
Chinese Acad Sci | 138 | 5.58 | Russian Acad Sci | 0.13 | China Univ Geosci | 38 | Peking Univ | 6.38 |
China Univ Geosci | 103 | 4.17 | Univ Lorraine | 0.12 | Univ Chinese Acad Sci | 33 | Univ Chinese Acad Sci | 5.51 |
Cent South Univ | 57 | 2.31 | CNRS | 0.11 | Chinese Acad Geol Sci | 28 | Univ Tennessee | 5.46 |
Chinese Acad Geol Sci | 47 | 1.90 | Nanjing Univ | 0.09 | Russian Acad Sci | 25 | Harbin Inst Technol | 5.27 |
Univ Chinese Acad Sci | 45 | 1.82 | Chinese Acad Geol Sci | 0.06 | China Univ Geosci Beijing | 23 | Cent South Univ | 5.06 |
Peking Univ | 42 | 1.70 | Univ Western Australia | 0.06 | Nanjing Univ | 23 | Chengdu Univ Technol | 4.71 |
Univ Sci & Technol China | 25 | 1.02 | China Univ Geosci | 0.05 | Peking Univ | 21 | China Univ Geosci | 4.69 |
Univ Sci & Technol Beijing | 24 | 0.97 | Natl Res Ctr | 0.05 | China Geol Survey | 19 | Univ Michigan | 4.67 |
China Geol Survey | 23 | 0.93 | Univ Aveiro | 0.05 | CNRS | 19 | CNRS | 4.53 |
Author | Institution | Country | Total Publications | Average Citations | H-Index | Initial Year | |
---|---|---|---|---|---|---|---|
No. | % | ||||||
Markl, Gregor | Eberhard Karls University of Tubingen | Germany | 27 | 1.09 | 60 | 0.81 | 2003 |
Liu, Yan | China Geological Survey | China | 24 | 0.97 | 20 | 2.71 | 2006 |
Sun, Wei | Central South University | China | 23 | 0.93 | 50 | 0.30 | 2014 |
Wang, Liang | China University of Geosciences | China | 18 | 0.73 | 12 | 3.56 | 2011 |
Rodney C. Ewing | Stanford University | USA | 16 | 0.65 | 91 | 5.06 | 2004 |
Chen, Yan-Jing | Peking University | China | 15 | 0.65 | 61 | 4.06 | 2009 |
Hu, Yuehua | Central South University | China | 15 | 0.60 | 70 | 2.40 | 2015 |
Chen, Yao | Xi’an University of Architecture & Technology | China | 14 | 0.57 | 5 | 1.21 | 2008 |
Shlyakhtina, A. V. | Russian Academy of Sciences | Russia | 14 | 0.57 | 21 | 1.21 | 2003 |
Zhang, Ye | Central South University | China | 14 | 0.58 | 8 | 7.36 | 2011 |
Co-Cited Authors | Institution | Country | Co-Citations | H-Index | Burst | Burst Begin | Burst End |
---|---|---|---|---|---|---|---|
Unknown - | - | - | 986 | - | - | - | - |
Shannon, Robert D | University of Colorado Boulder | USA | 162 | 56 | 5.13 | 2011 | 2014 |
Robert J Bodnar | Virginia Polytechnic Institute & State University | USA | 147 | 67 | 4.14 | 1999 | 2002 |
Roedder, Edwin | Harvard University | USA | 144 | 33 | 6.25 | 1999 | 2005 |
Zhang, Ye | Central South University, China | China | 103 | 8 | 0 | - | - |
Michael Bau | University of Bremen | Germany | 101 | 55 | 0 | - | - |
Mas A. Subramanian | Oregon State University | USA | 98 | 8 | 8.61 | 2005 | 2012 |
Steele, Barbara C. | Imperial College London | USA | 90 | 52 | 20.54 | 2001 | 2015 |
Ohmoto, Hiroshi | Pennsylvania State University | USA | 86 | 54 | 0 | - | - |
Mao, Jingwen | Chinese Academy of Geological Sciences | China | 85 | 71 | 0 | - | - |
Publication | Type | Journal | Year | Citations |
---|---|---|---|---|
Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation | Review | Journal of Membrane Science | 2008 | 968 |
Nuclear waste disposal-pyrochlore (A2B2O7): Nuclear waste form for the immobilization of plutonium and “minor” actinides | Review | Journal of Applied Physics | 2004 | 954 |
Enhanced ferroelectricity in ultrathin films grown directly on silicon | Article | Nature | 2020 | 602 |
Synthesis, structural and optical properties of CeO2 nanoparticles synthesized by a simple polyvinyl pyrrolidone (PVP) solution route | Article | Materials Chemistry and Physics | 2006 | 362 |
Understanding Chemical Expansion in Non-Stoichiometric Oxides: Ceria and Zirconia Case Studies | Article | Advanced Functional Materials | 2012 | 334 |
Fluorine geochemistry in bedrock groundwater of South Korea | Article | Science of the Total Environment | 2007 | 304 |
Tetrad effect in rare earth element distribution patterns: A method of quantification with application to rock and mineral samples from granite-related rare metal deposits | Article | Geochimica Et Cosmochimica Acta | 2002 | 283 |
Ceramic Top Coats of Plasma-Sprayed Thermal Barrier Coatings: Materials, Processes, and Properties | Article | Journal of thermal Spray Technology | 2017 | 272 |
Deep oxidation of chlorinated VOCs over CeO2-based transition metal mixed oxide catalysts | Article | Applied Catalysis B-Environmental | 2015 | 248 |
Oxygen transport in La1−xSrxMn1−yCoyO3 ± δ perovskites part II.: Oxygen surface exchange | Articl | Solid State Ionics | 1999 | 232 |
Keywords | Year | Strength | Begin | End | 1999–2024 |
---|---|---|---|---|---|
system | 2000 | 6.62 | 2000 | 2010 | ▂ ▃ ▃ ▃ ▃ ▂ ▂ ▂ ▂ ▂ |
impedance spectroscopy | 1999 | 6.52 | 1999 | 2012 | ▃ ▃ ▃ ▃ ▃ ▃ ▂ ▂ ▂ ▂ |
solid solutions | 1999 | 6.08 | 1999 | 2016 | ▃ ▃ ▃ ▃ ▃ ▃ ▃ ▂ ▂ ▂ |
powders | 2001 | 7.44 | 2001 | 2014 | ▂ ▃ ▃ ▃ ▃ ▃ ▂ ▂ ▂ ▂ |
inclusions | 2001 | 5.75 | 2001 | 2014 | ▂ ▃ ▃ ▃ ▃ ▃ ▂ ▂ ▂ ▂ |
age | 2002 | 5.53 | 2002 | 2012 | ▂ ▃ ▃ ▃ ▃ ▃ ▂ ▂ ▂ ▂ |
growth | 2003 | 5.33 | 2003 | 2016 | ▂ ▂ ▃ ▃ ▃ ▃ ▃ ▂ ▂ ▂ |
doped ceria | 2001 | 5.09 | 2003 | 2012 | ▂ ▂ ▃ ▃ ▃ ▃ ▂ ▂ ▂ ▂ |
ceria | 2003 | 4.81 | 2003 | 2012 | ▂ ▂ ▃ ▃ ▃ ▃ ▂ ▂ ▂ ▂ |
plutonium | 2005 | 6.83 | 2005 | 2008 | ▂ ▂ ▃ ▃ ▂ ▂ ▂ ▂ ▂ ▂ |
X-ray diffraction | 2005 | 6.18 | 2005 | 2012 | ▂ ▂ ▃ ▃ ▃ ▃ ▂ ▂ ▂ ▂ |
oxide fuel cells | 2003 | 7.31 | 2007 | 2018 | ▂ ▂ ▃ ▃ ▃ ▃ ▃ ▃ ▂ ▂ |
ionic conductivity | 2000 | 6.72 | 2007 | 2012 | ▂ ▂ ▂ ▃ ▃ ▃ ▂ ▂ ▂ ▂ |
combustion synthesis | 2007 | 4.75 | 2007 | 2012 | ▂ ▂ ▂ ▃ ▃ ▃ ▂ ▂ ▂ ▂ |
electrical conductivity | 2000 | 8.89 | 2009 | 2012 | ▂ ▂ ▂ ▂ ▃ ▃ ▂ ▂ ▂ ▂ |
electrolytes | 2003 | 6.18 | 2009 | 2012 | ▂ ▂ ▂ ▂ ▃ ▃ ▂ ▂ ▂ ▂ |
transport | 1999 | 5.4 | 2011 | 2012 | ▂ ▂ ▂ ▂ ▂ ▃ ▂ ▂ ▂ ▂ |
nanocrystals | 2013 | 6.92 | 2013 | 2018 | ▂ ▂ ▂ ▂ ▂ ▂ ▃ ▃ ▂ ▂ |
selective flotation | 2017 | 9.09 | 2017 | 2024 | ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▃ ▃ ▃ |
scheelite | 2017 | 7.64 | 2017 | 2024 | ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▃ ▃ ▃ |
collector | 2017 | 5.68 | 2017 | 2024 | ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▃ ▃ |
La-icp-ms | 2019 | 7.37 | 2019 | 2024 | ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▃ ▃ |
separation | 2017 | 6.99 | 2019 | 2024 | ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▃ ▃ |
region | 2021 | 6.9 | 2021 | 2024 | ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▃ |
Cluster | Size | Silhouette | Mean (Year) | Key Keywords |
---|---|---|---|---|
#0 | 158 | 0.819 | 2011 | fluid inclusions; geochemistry; evolution; rare earth elements; mineralization; origin; genesis; constraints; oxygen; deposits; rocks; deposit; trace elements; la icp ms; fractionation; crystallization; trace-elements; hydrothermal; alteration; inner Mongolia; south china; zircon u pb; complex; hydrothermal fluids; a type granites; inner-mongolia; etrogenesis; geochronology; u-pb; u pb; stable isotopes; gold deposit; bayan obo; tectonic evolution; inclusions; china; fluorite deposit;; stable isotope; stable-isotope; ree; province; chemical evolution; freezing point depression; age; geochemical characteristics; rare earth element; granite; isotope geochemistry; trace element; mineralogy; aqueous geochemistry; liquid immiscibility; zircon; re-os; polymetallic deposit; fluid evolution; great xingan range; asian orogenic belt; volcanic-rocks; monazite; gold deposits;u pb geochronology; porphyry mo deposit; fluids; belt; hydrothermal activity; continental basement; classification; crystalline basement; pb; quartz; magmatism; fluid; trace-element; geochemical constraints; nb fe deposit; hunan province; a-type granites; strange lake; hydrothermal evolution; diagenesis; a-type granite; magmas; hydrogen isotope; mineral chemistry; systematics; rock; mantle; igneous rocks; hydrothermal processes; Germany; ne china; carbonatite; henan province; ree mineralization; ree deposit; mining district; tungsten; continental collision; southern; great xingan range; ore-deposits; carbonatite complex; sulfur; isotope; nanling range; carbon; melt inclusions; granitic pegmatites; aqueous fluids; exploration; southern margin; dissolution-reprecipitation; bearing; dolomite reservoirs; northern black forest; continental collision regime; complexes; orogenic belt; molybdenum deposit; marine carbonate successions; metallogenic belt; dolomitization; blue john; discrimination; patterns; accessory minerals; crustal fluids; k ar ages; compositional variation; forming fluids; fluorite veins; bohemian massif; amazonian craton; color; fluorine; continental-crust; niger; ore; sediments; europe; isotopic composition; canadian shield brines; japan; batholith; pegmatites; hercynian granites; silica; melt; france; craton; pegmatite; cathodoluminescence; gardar province; field strength elements; aqueous solutions; yttrium; equation; bearing minerals; amba dongar |
#1 | 149 | 0.758 | 2008 | temperature; conductivity; behavior; system; oxide; performance; ionic conductivity; nanoparticles; electrical property; microstructure; oxidation; ceria; ceramics; ceo2; doped ceria; electrical conductivity; gd; thin films; catalysts; growth; oxide fuel cells; powders; electrolytes; phase; fabrication; optical property; particles; cerium oxide; electrolyte; nanocrystals; x ray diffraction; solid solutions; transport; combustion; degradation; reduction; spectroscopy; transition; zirconia; solid-solutions; deposition; raman; solid electrolytes; yttria stabilized zirconia; impedance spectroscopy; size; combustion synthesis; crystal-structure; mixed oxides; fuel cells; hydrothermal synthesis; sm; defect structure; photoluminescence; co; solid oxide fuel cell; anode; low temperature; cathode; electron microscopy; luminescence; methane; ceo2 nanoparticles; co oxidation; morphology; ni; phase transformation; solid oxide fuel cells; chemical synthesis; composite; electrical-conductivity; films; optical properties; sol–gel processes; doped ceo2; electrical properties; electrochemical property; enhancement; layer; luminescence property; rietveld refinement; sol-gel process; atomic layer deposition; catalyst; chemical stability; crystals; fly ash; fuel; nanopowders; nanostructures; sofc; stabilized zirconia; transmission electron microscopy; x ray; ysz; yttria; aids; conversion; cu; decomposition; defect chemistry; energy; film; fluorite phases; la; oxide materials; oxide nanoparticles; permeability; powder; proton conductivity; redox behavior; solid electrolyte; solid state; sr; state; thin-films; up conversion luminescence; alpha; am; anode material; ash; bi2o3; bismuth; capacitors; ce; ceria powders; cerium dioxide; chemical mechanical planarization; composite electrolyte; conductors; coprecipitation; crystal growth; dielectric relaxation; electrochemical impedance spectroscopy; fatigue; ferroelectric property; gd3+; gel; gel syntheses; high-resolution transmission electron microscopy; lanthanide compounds; low temperature crystallization; mixed oxide; monodispersed colloidal particles; nanowires; oxygen storage capacity; sc- or y-doped zirconia; sol-gel chemistry |
#2 | 74 | 0.755 | 2011 | design; parameters; lanthanide; X-ray diffraction; defects; phase transition; disorder; dynamics; emission; stability; thermal barrier coatings; hydration; structural modifications; cement; a(2)b(2)o(7); low thermal conductivity; fuel cell materials; si; diffusion; ion irradiation; gd2zr2o7; induced amorphization; rare earth; oxides; field; pyrochlores; nd; high temperature; thermal conductivity; crystal structures; copper; pyrochlore; chemical solution deposition; ln; hydrogen; scattering; mechanisms; damage; calcium fluoride; ion; defect fluorite; high-entropy ceramics; radiation tolerance; thermophysical property; phase transitions; caf2; buffer layers; bond valence parameters; xps; resistance; pyrochlore structure; order; dy; immobilization; anion excess fluorites; waste form; model; ca; electronic excitation; crystal structure; transformation; plutonium; gd2ti2o7; gadolinium zirconate; diffraction; mechanical property; raman spectroscopy; thermal-conductivity; systems; irradiation; order disorder transition; fluorite structure; kinetics; alloys |
#3 | 53 | 0.85 | 2014 | water; solubility; andhra Pradesh; ordos basin; identification; hydrogeochemical processes; chemical composition; equilibria; waters; heavy metals; datong basin; basin; extraction; northwest; drinking-water; groundwater quality; district; quality; andhra-pradesh; contamination; geochemical processes; nalgonda district; saturation index; elements; aluminum; nitrate; dissolution; seawater intrusion; chemistry; fluorosis; geochemical modeling; enrichment mechanism; aquifers; hydrogeochemistry; hydrogen production; area; mobilization; accumulation; iron; region; environment; water-rock interaction; aqueous solution; drinking water; groundwater; mobility; impact; thermodynamic property; river; enrichment; fluoride; aquifer; health risk assessment |
#4 | 44 | 0.837 | 2013 | crystal; sodium silicate; carbon dioxide; glass; flotation; mechanism; recovery; water glass; beneficiation; oleoyl sarcosine; slags; carbonate; scheelite; depressants; absorption; sulfate; flotation separation; fluorite; ores; calcite; collector; bastnasite; layers; monolayers; sodium oleate; surface; calcium minerals; molecular dynamics; alkyl oxine; centers; water interface; ions; partial oxidation; selective flotation; precipitation; acid; surface complexation; oleate; separation; concentrate;adsorption; apatite |
#5 | 7 | 0.994 | 1999 | distance; substitutional cations; excess solid solutions; extended defects; short range order; electrical-property; ac-conductivity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Z.; Zhang, C.; McFadzean, B. A Bibliometric Analysis of Fluorite Resource Utilization Technology: Global and Chinese Development in the Past 25 Years. Minerals 2025, 15, 679. https://doi.org/10.3390/min15070679
Gao Z, Zhang C, McFadzean B. A Bibliometric Analysis of Fluorite Resource Utilization Technology: Global and Chinese Development in the Past 25 Years. Minerals. 2025; 15(7):679. https://doi.org/10.3390/min15070679
Chicago/Turabian StyleGao, Zhengbo, Chenxu Zhang, and Belinda McFadzean. 2025. "A Bibliometric Analysis of Fluorite Resource Utilization Technology: Global and Chinese Development in the Past 25 Years" Minerals 15, no. 7: 679. https://doi.org/10.3390/min15070679
APA StyleGao, Z., Zhang, C., & McFadzean, B. (2025). A Bibliometric Analysis of Fluorite Resource Utilization Technology: Global and Chinese Development in the Past 25 Years. Minerals, 15(7), 679. https://doi.org/10.3390/min15070679