Distribution of Thallium in Sediments of the Fiora River Catchment, Central Italy: Implications for Its Sources
Abstract
1. Introduction
2. Background Information
2.1. Thallium Geochemistry and Toxicology
2.2. The Monte Amiata Mining District
3. Study Area: The Fiora River Catchment
3.1. Geology
3.2. Geomorphology and Hydrology
3.3. Mining in the Fiora River Catchment
4. Materials and Methods
5. Results
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MAMD | Monte Amiata Mining District |
ASSM | Abbadia San Salvatore mine |
ASRS | Abetina-Solforate-Rosselli-Schwarzenberg mines |
FR | Fiora River |
VcD | Vulci Dam |
CSC | Italian concentration threshold for public soils of an element |
References
- Macklin, M.G.; Brewer, P.A.; Hudson-Edwards, K.A.; Bird, G.; Coulthard, T.J.; Dennis, I.A.; Lechler, P.J.; Miller, J.R.; Turner, J.N. A geomorphological approach to the management of rivers contaminated by metal mining. Geomorphology 2006, 79, 423–447. [Google Scholar] [CrossRef]
- Costagliola, P.; Benvenuti, M.M.; Benvenuti, M.G.; Di Benedetto, F.; Lattanzi, P. Quaternary sediment geochemistry as a proxy for toxic element source: A case study of arsenic in the Pecora Valley (southern Tuscany, Italy). Chem. Geol. 2010, 270, 80–89. [Google Scholar] [CrossRef]
- Milačič, R.; Ščančar, J.; Murko, S.; Kocman, D.; Horvat, M. A complex investigation of the extent of pollution in sediments of the Sava River. Part 1: Selected elements. Environ. Monit. Assess. 2010, 163, 263–275. [Google Scholar] [CrossRef]
- Salomons, W. Environmental impact of metals derived from mining activities: Processes, predictions, prevention. J. Geochem. Explor. 1995, 52, 5–23. [Google Scholar] [CrossRef]
- Ashley, P.M.; Graham, B.P.; Tighe, M.K.; Wolfenden, B.J. Antimony and arsenic dispersion in the Macleay River catchment, New South Wales: A study of the environmental geochemical consequences. Aust. J. Earth Sci. 2007, 54, 83–103. [Google Scholar] [CrossRef]
- Bird, G.; Brewer, P.A.; Macklin, M.G.; Nikolova, M.; Kotsev, T.; Mollov, M.; Swain, C. Dispersal of contaminant metals in the mining-affected Danube and Maritsa drainage basins, Bulgaria, Eastern Europe. Water Air Soil Pollut. 2010, 206, 105–127. [Google Scholar] [CrossRef]
- Byrne, P.; Reid, I.; Wood, P.J. Sediment geochemistry of streams draining abandoned lead/zinc mines in central Wales: The Afon Twymyn. J. Soils Sediments 2010, 10, 683–697. [Google Scholar] [CrossRef]
- Möller, S.; Einax, J.W. Metals in sediments—Spatial investigation of Saale River applying chemometric tools. Microchem. J. 2013, 110, 233–238. [Google Scholar] [CrossRef]
- Lecce, S.A.; Pavlowsky, R.T. Floodplain storage of sediment contaminated by mercury and copper from historic gold mining at Gold Hill, North Carolina, USA. Geomorphology 2014, 206, 122–132. [Google Scholar] [CrossRef]
- Resongles, E.; Casiot, C.; Freydier, R.; Dezileau, L.; Viers, J.; Elbaz-Poulichet, F. Persisting impact of historical mining activity to metal (Pb, Zn, Cd, Tl, Hg) and metalloid (As, Sb) enrichment in sediments of the Gardon River, Southern France. Sci. Total Environ. 2014, 481, 509–521. [Google Scholar] [CrossRef]
- Wohl, E. Legacy effects on sediments in river corridors. Earth Sci. Rev. 2015, 147, 30–53. [Google Scholar] [CrossRef]
- Lynch, S.F.L.; Batty, L.C.; Byrne, P. Environmental risk of severely Pb-contaminated riverbank sediment as a consequence of hydrometeorological perturbation. Sci. Total Environ. 2018, 636, 1428–1441. [Google Scholar] [CrossRef] [PubMed]
- Ghezzi, L.; Buccianti, A.; Giannecchini, R.; Guidi, M.; Petrini, R. Geochemistry of mine Stream sediments and the control on potentially toxic element migration: A case study from the Baccatoio Basin (Tuscany, Italy). Mine Water Environ. 2021, 40, 722–735. [Google Scholar] [CrossRef]
- Ponting, J.; Kelly, T.J.; Verhoef, A.; Watts, M.J.; Sizmur, T. The impact of increased flooding occurrence on the mobility of potentially toxic elements in floodplain soil–A review. Sci. Total Environ. 2021, 754, 142040. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, Z.; Wang, Q.; Guo, F.; Song, Y.; Han, W.; Peng, M.; Liu, F.; Li, K.; Cheng, H. Temporal and spatial accumulation of potentially toxic elements (PTEs) in stream sediments from a large lead–zinc mine concentration area of Baoshan, Southwest China. J. Soils Sediments 2022, 22, 2290–2308. [Google Scholar] [CrossRef]
- Onnis, P.; Byrne, P.; Hudson-Edwards, K.A.; Stott, T.; Hunt, C.O. Fluvial Morphology as a Driver of Lead and Zinc Geochemical Dispersion at a Catchment Scale. Minerals 2023, 13, 790. [Google Scholar] [CrossRef]
- Nriagu, J.O.; Pacyna, J.M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 1988, 333, 134–139. [Google Scholar] [CrossRef]
- Barbieri, M.; Sappa, G.; Nigro, A. Soil pollution: Anthropogenic versus geogenic contributions over large areas of the Lazio region. J. Geochem. Explor. 2018, 195, 78–86. [Google Scholar] [CrossRef]
- Barghigiani, C.; Ristori, T. Preliminary Results on the Role of Rivers in Total Hg Concentrations in Marine Sediments and Benthic Organisms of a Coastal Area of Italy. In Mercury as a Global Pollutant; Porcella, D.B., Huckabee, J.W., Wheatley, B., Eds.; Springer: Dordrecht, The Netherlands, 1995; pp. 111–120. [Google Scholar] [CrossRef]
- Gray, J.E.; Rimondi, V.; Costagliola, P.; Vaselli, O.; Lattanzi, P. Long-distance transport of Hg, Sb, and As from a mined area, conversion of Hg to methyl-Hg, and uptake of Hg by fish on the Tiber River basin, west-central Italy. Environ. Geochem. Health 2014, 36, 145–157. [Google Scholar] [CrossRef]
- Montuori, P.; Aurino, S.; Garzonio, F.; Nardone, A.; Triassi, M. Estimation of heavy metal loads from Tiber River to the Tyrrhenian Sea and environmental quality assessment. Environ. Sci. Pollut. Res. 2016, 23, 23694–23713. [Google Scholar] [CrossRef]
- Chiarantini, L.; Benvenuti, M.; Beutel, M.; Costagliola, P.; Covelli, S.; Gabbani, G.; Lattanzi, P.; Pandeli, E.; Paolieri, M.; Petranich, E.; et al. Mercury and arsenic in stream sediments and surface waters of the Orcia River basin, southern Tuscany, Italy. Water Air Soil Pollut. 2016, 227, 408. [Google Scholar] [CrossRef]
- Scanu, S.; Piazzolla, D.; Frattarelli, F.M.; Mancini, E.; Tiralongo, F.; Brundo, M.V.; Tibullo, D.; Pecoraro, R.; Copat, C.; Ferrante, M.; et al. Mercury enrichment in sediments of the coastal area of northern Latium, Italy. Bull. Environ. Contam. Toxicol. 2016, 96, 630–637. [Google Scholar] [CrossRef]
- Rimondi, V.; Costagliola, P.; Lattanzi, P.; Morelli, G.; Cara, G.; Cencetti, C.; Fagotti, C.; Fredduzzi, A.; Marchetti, G.; Sconocchia, A.; et al. A 200 km-long mercury contamination of the Paglia and Tiber floodplain: Monitoring results and implications for environmental management. Environ. Pollut. 2019, 255, 113191. [Google Scholar] [CrossRef]
- Colica, A.; Benvenuti, M.; Chiarantini, L.; Costagliola, P.; Lattanzi, P.; Rimondi, V.; Rinaldi, M. From point source to diffuse source of contaminants: The example of mercury dispersion in the Paglia River (Central Italy). Catena 2019, 172, 488–500. [Google Scholar] [CrossRef]
- Fornasaro, S.; Morelli, G.; Rimondi, V.; Fagotti, C.; Friani, R.; Lattanzi, P.; Costagliola, P. The extensive mercury contamination in soil and legacy sediments of the Paglia River basin (Tuscany, Italy): Interplay between Hg-mining waste discharge along rivers, 1960s economic boom, and ongoing climate change. J. Soils Sedim. 2022, 22, 656–671. [Google Scholar] [CrossRef]
- Fornasaro, S.; Morelli, G.; Costagliola, P.; Rimondi, V.; Lattanzi, P.; Fagotti, C. Total Mercury Mass Load from the Paglia–Tiber River System: The Contribution to Mediterranean Sea Hg Budget. Toxics 2022, 10, 395. [Google Scholar] [CrossRef]
- Meloni, F.; Montegrossi, G.; Lazzaroni, M.; Rappuoli, D.; Nisi, B.; Vaselli, O. Total and leached arsenic, mercury and antimony in the mining waste dumping area of Abbadia San Salvatore (Mt. Amiata, Central Italy). Appl. Sci. 2021, 11, 7893. [Google Scholar] [CrossRef]
- Meloni, F.; Nisi, B.; Gozzi, C.; Rimondi, V.; Cabassi, J.; Montegrossi, G.; Rappuoli, D.; Vaselli, O. Background and geochemical baseline values of chalcophile and siderophile elements in soils around the former mining area of Abbadia San Salvatore (Mt. Amiata, southern Tuscany, Italy). J. Geochem. Explor. 2023, 255, 107324. [Google Scholar] [CrossRef]
- Nannoni, A.; Morelli, G.; Lattanzi, P.; Fagotti, C.; Friani, R.; Fornasaro, S.; Ciani, F.; Manca, R.; Monnanni, A.; Rimondi, V.; et al. Toxic trace elements transport in stream sediments from the world-class Monte Amiata Hg mining district: Potential impact to the Mediterranean Sea. Environ. Pollut. 2025, 372, 126088. [Google Scholar] [CrossRef]
- D’Orazio, M.; Biagioni, C.; Dini, A.; Vezzoni, S. Thallium-rich pyrite ores from the Apuan Alps, Tuscany, Italy: Constraints for their origin and environmental concerns. Miner. Depos. 2017, 52, 687–707. [Google Scholar] [CrossRef]
- Pisani, A.; Protano, G.; Riccobono, F. Contenuti e distribuzione del tallio in suoli e piante spontanee della Toscana meridionale. In Codice Armonico 2008; Edizioni ETS: Pisa, Italy, 2008; Volume 1, pp. 122–129. (In Italian) [Google Scholar]
- Wedepohl, K.H. The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. In The Crust-Treatise on Geochemistry; Rudnick, R.L., Ed.; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Karbowska, B.; Zembrzuski, W.; Jakubowska, M.; Wojtkowiak, T.; Pasieczna, A.; Lukaszewski, Z. Translocation and mobility of thallium from zinc–lead ores. J. Geochem. Explor. 2014, 143, 127–135. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Chen, Y.; Shen, C.-C.; Jiang, X.; Xie, X.; Chen, D.; Lippold, H.; Wang, C. Thallium dispersal and contamination in surface sediments from South China and its source identification. Environ. Pollut. 2016, 213, 878–887. [Google Scholar] [CrossRef]
- Belzile, N.; Chen, Y.W. Thallium in the environment: A critical review focused on natural waters, soils, sediments and airborne particles. Appl. Geochem. 2017, 84, 218–243. [Google Scholar] [CrossRef]
- Liu, J.; Ren, S.; Zhou, Y.; Tsang, D.C.W.; Lippold, H.; Wang, J.; Yin, M.; Xiao, T.; Luo, X.; Chen, Y. High contamination risks of thallium and associated metal(loid)s in fluvial sediments from a steel-making area and implications for environmental management. J. Environ. Manag. 2019, 250, 109513. [Google Scholar] [CrossRef]
- Migaszewski, Z.M.; Gałuszka, A. Abundance and fate of thallium and its stable isotopes in the environment. Rev. Environ. Sci. Biotechnol. 2021, 20, 5–30. [Google Scholar] [CrossRef]
- Gómez-González, M.A.; García-Guinea, J.; Laborda, F.; Garrido, F. Thallium occurrence and partitioning in soils and sediments affected by mining activities in Madrid province (Spain). Sci. Total Environ. 2015, 536, 268–278. [Google Scholar] [CrossRef] [PubMed]
- Karbowska, B. Presence of thallium in the environment: Sources of contaminations, distribution and monitoring methods. Environ. Monit. Assess. 2016, 188, 640. [Google Scholar] [CrossRef]
- Li, N.; Zhou, Y.; Liu, J.; Tsang, D.C.W.; Wang, J.; She, J.; Zhou, Y.; Yin, M.; Chen, Z.; Chen, D. Persistent thallium contamination in river sediments, source apportionment and environmental implications. Ecotoxicol. Environ. Saf. 2020, 202, 110874. [Google Scholar] [CrossRef]
- Sun, F.; Tao, Y.; Liao, H.; Wu, F.; Giesy, J.P.; Yang, J. Pollution levels and risk assessment of thallium in Chinese surface water and sediments. Sci. Total Environ. 2022, 851, 158363. [Google Scholar] [CrossRef]
- Galván-Arzate, S.; Santamaría, A. Thallium toxicity. Toxicol. Lett. 1998, 99, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Martin, F.; Garcia, I.; Dorronsoro, C.; Simón, M.; Aguilar, J.; Fernández, E.; Irabien, A.; Fernández, J. Thallium behavior in soils polluted by pyrite tailings (Aznalcollar, Spain). Soil Sediment Contam. 2004, 13, 25–36. [Google Scholar] [CrossRef]
- Tatsi, K.; Turner, A. Distributions and concentrations of thallium in surface waters of a region impacted by historical metal mining (Cornwall, UK). Sci. Total Environ. 2014, 473, 139–146. [Google Scholar] [CrossRef]
- Casiot, C.; Egal, M.; Bruneel, O.; Verma, N.; Parmentier, M.; Elbaz-Poulichet, F. Predominance of aqueous Tl (I) species in the river system downstream from the abandoned Carnoulès mine (Southern France). Environ. Sci. Technol. 2011, 45, 2056–2064. [Google Scholar] [CrossRef]
- Xiao, T.; Yang, F.; Li, S.; Zheng, B.; Ning, Z. Thallium pollution in China: A geo-environmental perspective. Sci. Total Environ. 2012, 421, 51–58. [Google Scholar] [CrossRef]
- Campanella, B.; Onor, M.; D’Ulivo, A.; Giannecchini, R.; D’Orazio, M.; Petrini, R.; Bramanti, E. Human exposure to thallium through tap water: A study from Valdicastello Carducci and Pietrasanta (northern Tuscany, Italy). Sci. Total Environ. 2016, 548, 33–42. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Off. J. Eur. Commun. 2000. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02000L0060-20140101 (accessed on 21 June 2025).
- Willner, J.; Fornalczyk, A.; Jablonska-Czapla, M.; Grygoyc, K.; Rachwal, M. Studies on the Content of Selected Technology Critical Elements (Germanium, Tellurium and Thallium) in Electronic Waste. Materials 2021, 14, 3722. [Google Scholar] [CrossRef]
- Strappa, O. Storia delle miniere di mercurio del M. Amiata. Ind. Mineraria 1977, 28, 252–259. (In Italian) [Google Scholar]
- Rimondi, V.; Chiarantini, L.; Lattanzi, P.; Benvenuti, M.; Beutel, M.; Colica, A.; Costagliola, P.; Di Benedetto, F.; Gabbani, G.; Gray, J.E.; et al. Metallogeny, exploitation and environmental impact of the Mt. Amiata mercury ore district (Southern Tuscany, Italy). Ital. J. Geosci. 2015, 134, 323–336. [Google Scholar] [CrossRef]
- Nannoni, A.; Meloni, F.; Benvenuti, M.; Cabassi, J.; Ciani, F.; Costagliola, P.; Fornasaro, S.; Lattanzi, P.; Lazzaroni, M.; Nisi, B.; et al. Environmental impact of past Hg mining activities in the Monte Amiata district, Italy: A summary of recent studies. AIMS Geosci. 2022, 8, 525–551. [Google Scholar] [CrossRef]
- Dini, A. Miniere e minerali del Distretto mercurifero del Monte Amiata. In Il Vulcano di Monte Amiata; Principe, C., Lavorini, G., Vezzoli, L., Eds.; Pacini Editore: Pisa, Italy, 2017; pp. 343–369. (In Italian) [Google Scholar]
- Tanelli, G.; Lattanzi, P. Pyritic ores of southern Tuscany, Italy. Ita. Geol. Soc. S. Afr. Spec. Publ. 1983, 7, 315–323. [Google Scholar]
- Lattanzi, P.; Benvenuti, M.; Costagliola, P.; Tanelli, G. An overview on recent research on the metallogeny of Tuscany, with special reference to the Apuane Alps. Mem. Soc. Geol. Ital. 1994, 48, 613–625. [Google Scholar]
- Molli, G. Northern Apennine–Corsica orogenic system: An updated overview. Geol. Soc. Lond. Spec. Publ. 2008, 298, 413–442. [Google Scholar] [CrossRef]
- Cadoux, A.; Pinti, D.L. Hybrid character and pre-eruptive events of Mt Amiata volcano (Italy) inferred from geochronological, petro-geochemical and isotopic data. J. Volcanol. Geotherm. Res. 2009, 179, 169–190. [Google Scholar] [CrossRef]
- Marroni, M.; Moratti, G.; Costantini, A.; Conticelli, S.; Benvenuti, M.G.; Pandolfi, L.; Bonini, M.; Cornamusini, G.; Laurenzi, M.A. Geology of the Monte Amiata region, southern Tuscany, central Italy. Ital. J. Geosci. 2015, 134, 171–199. [Google Scholar] [CrossRef]
- Tanelli, G. Mineralizzazioni metallifere e minerogenesi della Toscana. Mem. Soc. Geol. Ital. 1983, 25, 91–109. (In Italian) [Google Scholar]
- Brogi, A.; Fabbrini, L. Extensional and strike-slip tectonics across the Monte Amiata–Monte Cetona transect (Northern Apennines, Italy) and seismotectonic implications. Tectonophysics 2009, 476, 195–209. [Google Scholar] [CrossRef]
- Brogi, A.; Fabbrini, L.; Liotta, D. Sb–Hg ore deposit distribution controlled by brittle structures: The case of the Selvena mining district (Monte Amiata, Tuscany, Italy). Ore Geol. Rev. 2011, 41, 35–48. [Google Scholar] [CrossRef]
- Peccerillo, A. The Roman Province. In Cenozoic Volcanism in the Tyrrhenian Sea Region; Advances in Volcanology; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Autorità di Bacino Interregionale del Fiume Fiora. UoM Fiora ITADBI014: Piano di Gestione del Rischio Alluvioni. Relazione di Piano; Autorità di Bacino Interregionale del Fiume Fiora: Grosseto, Italy, 2015; 108 pp. (In Italian) [Google Scholar]
- Geoportale Nazionale. Carta Geolitologica d’Italia; Italian Ministry of the Environment: Rome, Italy, 2016. Available online: https://gn.mase.gov.it/portale/home (accessed on 20 January 2025). (In Italian)
- Scanu, S.; De Mendoza, F.P.; Piazzolla, D.; Marcelli, M. Anthropogenic impact on river basins: Temporal evolution of sediment classes and accumulation rates in the northern Tyrrhenian Sea, Italy. Oceanol. Hydrobiol. Stud. 2015, 44, 74–86. [Google Scholar] [CrossRef]
- ENEL. Relazioni Tecniche SIPAD n. 1938658—Impianto Idroelettrico di Vulci—Diga di Vulci—Rinnovamento delle Caratteristiche Funzionali e Prestazionali dello Sbarramento di Vulci. Prescrizione g); Technical report for the Evaluation of Environmental Impact (VIA), code prot. DVA/2014/37301; Italian Ministry of the Environment: Rome, Italy, 2016. (In Italian) [Google Scholar]
- Dessau, G. Antimony deposits of Tuscany. Econ. Geol. 1952, 47, 397–413. [Google Scholar] [CrossRef]
- Dehm, R.M.; Klemm, D.D.; Müller, C.; Wagner, J.; Weber-Diefenbach, K. Exploration for antimony deposits in southern Tuscany, Italy. Miner. Depos. 1983, 18, 423–434. [Google Scholar] [CrossRef]
- Klemm, D.D.; Neumann, N. Ore-controlling factors in the Hg-Sb province of southern Tuscany, Italy. In Syngenesis and Epigenesis in the Formation of Mineral Deposits; Wauschkuhn, A., Kluth, C., Zimmermann, R.A., Eds.; Springer: Berlin/Heidelberg, Germany, 1984; pp. 482–503. [Google Scholar] [CrossRef]
- D. Lgs 152/06-Legislative Decree. Norme in Materia Ambientale Gazzetta Ufficiale No. 88; Italian Ministry of the Environment: Rome, Italy, 2006. (In Italian) [Google Scholar]
- U.S. EPA. Method 3051A (SW-846): Microwave Assisted Acid Digestion of Sediments, Sludges, and Oils, Revision 1; U.S. Environmental Protection Agency: Washington, DC, USA, 2007. [Google Scholar]
- U.S. EPA. Method 6020B (SW-846): Inductively Coupled Plasma-Mass Spectrometry; U.S. Environmental Protection Agency: Washington, DC, USA, 2014. [Google Scholar]
- ISO/IEC 17025:2017; General Requirements for the Competence of Testing and Calibration Laboratories. International Organization for Standardization: Geneva, Switzerland, 2017.
- Barbieri, M. The Importance of Enrichment Factor (EF) and Geoaccumulation Index (Igeo) to Evaluate the Soil Contamination. J. Geol. Geophys. 2016, 5, 1–4. [Google Scholar] [CrossRef]
- Looi, L.J.; Aris, A.Z.; Yusoff, F.M.; Isa, N.M.; Haris, H. Application of Enrichment Factor, Geoaccumulation Index, and Ecological Risk Index in Assessing the Elemental Pollution Status of Surface Sediments. Environ. Geochem. Health 2019, 41, 27–42. [Google Scholar] [CrossRef]
- Salminen, R.; Batista, M.J.; Bidovec, M.; Demetriades, A.; De Vivo, B.; De Vos, W.; Duris, M.; Gilucis, A.; Gregorauskiene, V.; Halamic, J.; et al. Geochemical Atlas of Europe. Part 1—Background Information, Methodology and Maps; Geological Survey of Finland: Espoo, Finland, 2005. [Google Scholar]
- Sparks, R.S.J. Stratigraphy and geology of the ignimbrites of Vulsini Volcano, central Italy. Geol. Rundsch. 1975, 64, 497–523. [Google Scholar] [CrossRef]
- Nappi, G.; Antonelli, F.; Coltorti, M.; Milani, L.; Renzulli, A.; Siena, F. Volcanological and petrological evolution of the eastern Vulsini district, central Italy. J. Volcanol. Geotherm. Res. 1998, 87, 211–232. [Google Scholar] [CrossRef]
- Conticelli, S.; Perini, G.; Boari, E.; Avanzinelli, R.; Melluso, L. Petrologic and Isotopic characteristics of potassic and ultrapotassic alkalic magmatism in Central-Southern Italy: Inferences on its genesis and on the nature of its mantle source. Period. Mineral. 2004, 73, 136–164. [Google Scholar]
- Regione Toscana. Banca Dati Risorse Minerarie (BD_RIMI). Available online: https://www502.regione.toscana.it/geonetwork/srv/ita/catalog.search#/home (accessed on 5 March 2025).
- Aguilar-Carrillo, J.; Herrera, L.; Gutiérrez, E.J.; Reyes-Domínguez, I.A. Solid-Phase Distribution and Mobility of Thallium in Mining-Metallurgical Residues: Environmental Hazard Implications. Environ. Pollut. 2018, 243, 1833–1845. [Google Scholar] [CrossRef]
- Cruz-Hernández, Y.; Ruiz-García, M.; Villalobos, M.; Romero, F.M.; Meza-Figueroa, D.; Garrido, F.; Pi-Puig, T. Fractionation and Mobility of Thallium in Areas Impacted by Mining-Metallurgical Activities: Identification of a Water-Soluble Tl(I) Fraction. Environ. Pollut. 2018, 237, 154–165. [Google Scholar] [CrossRef]
- Alderton, D.H.M.; Serafimovski, T.; Mullen, B.; Fairall, K.; James, S. The Chemistry of Waters Associated with Metal Mining in Macedonia. Mine Water Environ. 2005, 24, 139–149. [Google Scholar] [CrossRef]
- Rader, S.T.; Mazdab, F.K.; Barton, M.D. Mineralogical Thallium Geochemistry and Isotope Variations from Igneous, Metamorphic, and Metasomatic Systems. Geochim. Cosmochim. Acta 2018, 243, 42–65. [Google Scholar] [CrossRef]
- Hettmann, K.; Marks, M.A.; Kreissig, K.; Zack, T.; Wenzel, T.; Rehkämper, M.; Markl, G. The Geochemistry of Tl and Its Isotopes During Magmatic and Hydrothermal Processes: The Peralkaline Ilimaussaq Complex, Southwest Greenland. Chem. Geol. 2014, 366, 1–13. [Google Scholar] [CrossRef]
- Calderoni, G.; Giannetti, B.; Masi, U. Abundance and Behavior of Thallium in the K-Alkaline Rocks from the Roccamonfina Volcano (Campania, Southern Italy). Chem. Geol. 1983, 38, 239–253. [Google Scholar] [CrossRef]
- Calderoni, G.; Ferrini, V.; Masi, U. Distribution and significance of Pb and Tl in the sulfides and host rocks from the hydrothermal mineralization of the Tolfa Mountains (Latium, Central Italy). Chem. Geol. 1985, 51, 29–39. [Google Scholar] [CrossRef]
- Spadoni, M.; Voltaggio, M.; Cavarretta, G. Recognition of areas of anomalous concentration of potentially hazardous elements by means of a subcatchment-based discriminant analysis of stream sediments. J. Geochem. Explor. 2005, 87, 83–91. [Google Scholar] [CrossRef]
- Barago, N.; Pavoni, E.; Floreani, F.; Crosera, M.; Adami, G.; Lenaz, D.; Covelli, S. Environmental impact and mobility of thallium and other metal(oid)s in soils and tailings near a decommissioned Zn-Pb mine (Raibl, NE Italian Alps). Environ. Geochem. Health 2025, 47, 89. [Google Scholar] [CrossRef]
- Bačeva, K.; Stafilov, T.; Šajn, R.; Tănăselia, C.; Makreski, P. Distribution of Chemical Elements in Soils and Stream Sediments in the Area of Abandoned Sb–As–Tl Allchar Mine, Republic of Macedonia. Environ. Res. 2014, 133, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Rasool, A.; Xiao, T. Distribution and Potential Ecological Risk Assessment of Trace Elements in the Stream Water and Sediments from Lanmuchang Area, Southwest Guizhou, China. Environ. Sci. Pollut. Res. 2019, 26, 3706–3722. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Chen, Y.; Lippold, H.; Lippmann-Pipke, J. Comparative Characterization of Two Natural Humic Acids in the Pearl River Basin, China and Their Environmental Implications. J. Environ. Sci. 2010, 22, 1695–1702. [Google Scholar] [CrossRef]
- Anagboso, M.U.; Turner, A.; Braungardt, C. Fractionation of Thallium in the Tamar Estuary, Southwest England. J. Geochem. Explor. 2013, 125, 1–7. [Google Scholar] [CrossRef]
- Genchi, G.; Carocci, A.; Lauria, G.; Sinicropi, M.S.; Catalano, A. Thallium use, toxicity, and detoxification therapy: An overview. Appl. Sci. 2021, 11, 8322. [Google Scholar] [CrossRef]
- Guabloche, A.; Alvariño, L.; Acioly, T.M.D.S.; Viana, D.C.; Iannacone, J. Assessment of Essential and Potentially Toxic Elements in Water and Sediment and the Tissues of Sciaena deliciosa (Tschudi, 1846) from the Coast of Callao Bay, Peru. Toxics 2024, 12, 68. [Google Scholar] [CrossRef] [PubMed]
- Xiao, T.; Guha, J.; Boyle, D.; Liu, C.Q.; Chen, J. Environmental concerns related to high thallium levels in soils and thallium uptake by plants in southwest Guizhou, China. Sci. Total Environ. 2004, 318, 223–244. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Yin, M.; Wang, J.; Liu, J.; Tsang, D.C.W.; Wang, Y.; Lin, M.; Li, H.; Zhou, Y.; Song, G.; et al. Geochemical fractionation of thallium in contaminated soils near a large-scale Hg-Tl mineralised area. Chemosphere 2020, 239, 124775. [Google Scholar] [CrossRef] [PubMed]
- Cánovas, C.R.; Basallote, M.D.; Macías, F.; Olías, M.; Pérez-López, R.; Ayora, C.; Nieto, J.M. Geochemical Behaviour and Transport of Technology Critical Metals (TCMs) by the Tinto River (SW Spain) to the Atlantic Ocean. Sci. Total Environ. 2021, 764, 143796. [Google Scholar] [CrossRef]
- Duan, L.; Song, J.; Li, X.; Yuan, H.; Li, N.; Xu, Y. Thallium Concentrations and Sources in the Surface Sediments of Bohai Bay. Mar. Environ. Res. 2012, 73, 25–31. [Google Scholar] [CrossRef]
Tributary Label | Tributary Name | Sub-Catchment | Mine/Mineralization in the Sub-Basin | Mine Site (Mine Code) | Ore | Samples |
---|---|---|---|---|---|---|
a | Ontani creek | Ontani | Yes | Bagnore (1) | Hg | 1 |
b | Famelico cr. | Ontani | No | - | - | 1 |
c | Putrido cr. | Ontani | Yes | Antee tunnel (2) | Hg | 1 |
d | Formica cr. | Formica | Yes | Mt. Labro (3) | Hg | 1 |
e | Cadone cr. | Cadone | No | - | - | - |
f | Scabbia cr. | Scabbia | Yes | ASRS (4,5) | Hg | 2 |
g | Abetoso cr. | Scabbia | No | - | - | 1 |
h | Rico secco cr. | Scabbia | Yes (mineralization) | - | - | 1 |
i | Solforate cr. | Scabbia | Yes | ASRS (4,5) | Hg | 3 |
j | Salto cr. | Scabbia | No | - | - | 1 |
k | Lascone cr. | Lascone | No | - | - | - |
l | La Solfarata cr. | La Carminata | Yes (mineralization) | - | - | 1 |
m | La Carminata cr. | La Carminata | Yes (mineralization) | - | - | 2 |
n | La Canala cr. | La Canala | Yes | Morone (6) | Hg | 3 |
o | Maestrino cr. | Maestrino | Yes | Cortevecchia (7) | Hg | 2 |
p | Reto cr. | Reto | Yes | Reto (8) | Hg | 3 |
q | Rigo cr. | Rigo | Yes | Cortevecchia (7) | Hg | 2 |
r | Monticchio cr. | Monticchio | Yes | S. Martino sul Fiora (10) | Sb | 1 |
s | Segno cr. | Segno | No | - | - | 1 |
t | Calesina cr. | Calesina | No | - | - | 1 |
u | Fuliggine cr. | Fuliggine | Yes | Catabbio (9) | Hg | 2 |
v | Lente stream | Lente | No | - | - | 1 |
w | Procchio cr. | Lente | No | - | - | 1 |
x | La Nova cr. | La Nova | No | - | - | - |
y | Gamberaio cr. | Gamberaio | Yes (mineralization) | Podere Pietricci (10) | Sb | - |
z | Olpeta stream | Olpeta | No | - | - | 1 |
α | Gricciano cr. | Gricciano | Yes (mineralization) | - | - | - |
β | Pozzatelli cr. | Pozzatelli | Yes | Montauto (12) | Sb | - |
δ | Timone stream | Timone | No | - | - | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nannoni, A.; Lattanzi, P.; Morelli, G.; Fagotti, C.; Friani, R.; Rimondi, V.; Costagliola, P. Distribution of Thallium in Sediments of the Fiora River Catchment, Central Italy: Implications for Its Sources. Minerals 2025, 15, 678. https://doi.org/10.3390/min15070678
Nannoni A, Lattanzi P, Morelli G, Fagotti C, Friani R, Rimondi V, Costagliola P. Distribution of Thallium in Sediments of the Fiora River Catchment, Central Italy: Implications for Its Sources. Minerals. 2025; 15(7):678. https://doi.org/10.3390/min15070678
Chicago/Turabian StyleNannoni, Alessia, Pierfranco Lattanzi, Guia Morelli, Cesare Fagotti, Rossella Friani, Valentina Rimondi, and Pilario Costagliola. 2025. "Distribution of Thallium in Sediments of the Fiora River Catchment, Central Italy: Implications for Its Sources" Minerals 15, no. 7: 678. https://doi.org/10.3390/min15070678
APA StyleNannoni, A., Lattanzi, P., Morelli, G., Fagotti, C., Friani, R., Rimondi, V., & Costagliola, P. (2025). Distribution of Thallium in Sediments of the Fiora River Catchment, Central Italy: Implications for Its Sources. Minerals, 15(7), 678. https://doi.org/10.3390/min15070678