Mineralogy and Fluid Inclusion Constraints on the Genesis of the Recently Discovered Ag-(Ni-Co-Sb-As-Hg ± Bi) Vein Ore Shoot Mineralization in the Aouli Pb-Zn District (Upper Moulouya, Morocco)
Abstract
:1. Introduction
2. Regional and District-Scale Geological Settings
3. Sampling and Analytical Methods
3.1. Optical and Cathodoluminescence Microscopy
3.2. Electron Probe Microanalysis (EPMA)
3.3. Laser Ablation (LA)-ICP-MS Analysis
3.4. Fluid Inclusion Microthermometry
4. Results
4.1. Vein Ore Shoot Distribution, Geometry, Ore Textures, Alteration, and Paragenesis
4.2. Vein Ore Shoot Mineralogy and Mineral Chemistry
4.2.1. Arsenides
4.2.2. Pb-Sb-As-Ag-Sulfosalts
4.2.3. Sulfides
4.2.4. Ore-Related Gangue Minerals
Apatite
Rutile
Adularia
Sericite
4.3. Fluid Inclusion Analysis
4.3.1. Petrography
4.3.2. Microthermometry
5. Discussion
5.1. Physicochemical Evolution, P-T Conditions, and Sources of the Ore Fluids
5.2. Origin(s) and Fluid Evolution from the Trace Element Compositions of Syn-Ore Apatite and Rutile
5.3. Fluid Mixing and Subsequent Fluid-Rock Interactions as Effective Depositional Processes
5.4. Timing of Mineralization
6. Metallogenic Model and Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burisch, M.; Gerdes, A.; Walter, B.F.; Neumann, U.; Fettel, M.; Markl, G. Methane and the Origin of Five-Element Veins: Mineralogy, Age, Fluid Inclusion Chemistry and Ore Forming Processes in the Odenwald, SW Germany. Ore Geol. Rev. 2017, 81, 42–61. [Google Scholar] [CrossRef]
- Walter, B.F.; Kortenbruck, P.; Scharrer, M.; Zeitvogel, C.; Wälle, M.; Mertz-Kraus, R.; Markl, G. Chemical Evolution of Ore-Forming Brines–Basement Leaching, Metal Provenance, and the Redox Link between Barren and Ore-Bearing Hydrothermal Veins. A Case Study from the Schwarzwald Mining District in SW-Germany. Chem. Geol. 2019, 506, 126–148. [Google Scholar] [CrossRef]
- Bouabdellah, M.; Slack, J.F. Geologic and Metallogenic Framework of North Africa. In Mineral Deposits of North Africa; Bouabdellah, M., Slack, J.F., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 3–81. ISBN 978-3-319-31733-5. [Google Scholar]
- Boushaba, A.; Aabi, A.; Mouttaqi, A.; Nguidi, M.A.; Lamrani, O.; Samaoui, S.; Sadéqui, M.; Azza, A.; Ajamay, H.; Mbarki-Kadiri, B. El The Pb-Zn-Ag±Au-W-Sn Vein System in Variscan (Hercynian) Belts in North Africa. In The Geology of North Africa; Springer: Berlin/Heidelberg, Germany, 2024; pp. 393–470. [Google Scholar]
- Harrison, R.W. Primary structural control of epithermal mineralized shoots in southeastern Chloride mining district, New Mexico. New Mex. Geol. 1988, 10, 80–81. [Google Scholar] [CrossRef]
- Markl, G.; Burisch, M.; Neumann, U. Natural Fracking and the Genesis of Five-Element Veins. Miner. Depos. 2016, 51, 703–712. [Google Scholar] [CrossRef]
- Guilcher, M.; Schmaucks, A.; Krause, J.; Markl, G.; Gutzmer, J.; Burisch, M. Vertical Zoning in Hydrothermal U-Ag-Bi-Co-Ni-As Systems: A Case Study from the Annaberg-Buchholz District, Erzgebirge (Germany). Econ. Geol. 2021, 116, 1893–1915. [Google Scholar] [CrossRef]
- Scharrer, M.; Reich, R.; Fusswinkel, T.; Walter, B.F.; Markl, G. Basement Aquifer Evolution and the Formation of Unconformity-Related Hydrothermal Vein Deposits: LA-ICP-MS Analyses of Single Fluid Inclusions in Fluorite from SW Germany. Chem. Geol. 2021, 575, 120260. [Google Scholar] [CrossRef]
- Éric, M.; Khadija, N.; Yannick, B.; Claire, R.; Gilles, R.; Jean-Jacques, P.; Ross, S.; Michel, J. Late-Hercynian Intrusion-Related Gold Deposits: An Integrated Model on the Tighza Polymetallic District, Central Morocco. J. Afr. Earth Sci. 2015, 107, 65–88. [Google Scholar] [CrossRef]
- Rossi, M.; Gasquet, D.; Cheilletz, A.; Tarrieu, L.; Bounajma, H.; Mantoy, T.; Reisberg, L.; Deloule, E.; Boulvais, P.; Burnard, P. Isotopic and Geochemical Constraints on Lead and Fluid Sources of the PbZnAg Mineralization in the Polymetallic Tighza-Jbel Aouam District (Central Morocco), and Relationships with the Geodynamic Context. J. Afr. Earth Sci. 2017, 127, 194–210. [Google Scholar] [CrossRef]
- Rossi, M.; Tarrieu, L.; Cheilletz, A.; Gasquet, D.; Deloule, E.; Paquette, J.-L.; Bounajma, H.; Mantoy, T.; Ouazzani, L.; Ouchtouban, L. The Polymetallic (W–Au and Pb–Zn–Ag) Tighza District (Central Morocco): Ages of Magmatic and Hydrothermal Events. In Mineral Deposits of North Africa; Bouabdellah, M., Slack, J.F., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 107–131. ISBN 978-3-319-31733-5. [Google Scholar]
- El Arbaoui, A.; Bouabdellah, M.; Wafik, A.; Klügel, A.; Jébrak, M.; Castorina, F.; Lowry, D.; Lecumberri-Sanchez, P.; Essaifi, A.; Maacha, L. The Roc Blanc Orogenic Pb-Zn-Ag-Au Deposit (Morocco): A Product of Metamorphic Dehydration and CO2 Devolatilization during Exhumation of the Variscan Jebilet Massif. Miner. Depos. 2019, 54, 437–458. [Google Scholar] [CrossRef]
- Bouabdellah, M.; Talbi, F.; Benalla, M.; Boudchiche, L.; Torbi, A.; Grandia, F.; Cardellach, E.; Corbella, M. Contexte Géologique et Caractérisation Physico-Chimique Des Fluides Associés Aux Minéralisations Pb-Zn-Ag Du District de Sidi Lahcen (Maroc Nord Oriental). In Proceedings of the Deuxièmes Journées De Launay, Marrakech, Moroccan, 7–9 June 2006. [Google Scholar]
- Naji, M. Les Minéralisations Plombo-Barytiques Du District de La Haute Moulouya. Contexte Géologique, Contrôle Tectonique et Modèle de Mise En Place: Gisements d’Aouli-Mibladen-Zeida. Ph.D. Thesis, Mohamed V University, Rabat, Morocco, 2004. Unpublished Thesis. [Google Scholar]
- Bouabdellah, M.; Margoum, D. Geology, Fluid Inclusions, and Geochemistry of the Aouli Sulphide ± Fluorite ± Barite Vein Deposit (Upper Moulouya District, Morocco) and Its Relationships to Pangean Rifting and Opening of the Tethys and Central Atlantic Oceans. In Mineral Deposits of North Africa; Springer: Cham, Switzerland, 2016; pp. 291–305. [Google Scholar]
- Margoum, D.; Bouabdellah, M.; Klügel, A.; Banks, D.A.; Castorina, F.; Cuney, M.; Jébrak, M.; Bozkaya, G. Pangea Rifting and Onward Pre-Central Atlantic Opening as the Main Ore-Forming Processes for the Genesis of the Aouli REE-Rich Fluorite-Barite Vein System, Upper Moulouya District, Morocco. J. Afr. Earth Sci. 2015, 108, 22–39. [Google Scholar] [CrossRef]
- Emberger, A. Introduction à l’étude Des Minéralisations Plombifères de La Haute Moulouya. Notes Mémoires Géologique 1965, 181, 167–180.m. [Google Scholar]
- Gimeno-Vives, O.; Mohn, G.; Bosse, V.; Haissen, F.; Zaghloul, M.N.; Atouabat, A.; Frizon de Lamotte, D. The Mesozoic Margin of the Maghrebian Tethys in the Rif Belt (Morocco): Evidence for Polyphase Rifting and Related Magmatic Activity. Tectonics 2019, 38, 2894–2918. [Google Scholar] [CrossRef]
- Michard, A.; Saddiqi, O.; Chalouan, A.; Chabou, M.C.; Lach, P.; Rossi, P.; Bertrand, H.; Youbi, N. Comment on “The Mesozoic Margin of the Maghrebian Tethys in the Rif Belt (Morocco): Evidence for Polyphase Rifting and Related Magmatic Activity” by Gimeno-Vives et Al. Tectonics 2020, 39, e2020TC006165. [Google Scholar] [CrossRef]
- Frizon de Lamotte, D.; Saint Bezar, B.; Bracène, R.; Mercier, E. The Two Main Steps of the Atlas Building and Geodynamics of the Western Mediterranean. Tectonics 2000, 19, 740–761. [Google Scholar] [CrossRef]
- Beauchamp, W.; Allmendinger, R.W.; Barazangi, M.; Demnati, A.; El Alji, M.; Dahmani, M. Inversion Tectonics and the Evolution of the High Atlas Mountains, Morocco, Based on a Geological-Geophysical Transect. Tectonics 1999, 18, 163–184. [Google Scholar] [CrossRef]
- Ziegler, P.A. Geological Atlas of Western and Central Europe. Geol. Mag. 1982, 121, 371–372. [Google Scholar] [CrossRef]
- Frizon De Lamotte, D.; Zizi, M.; Missenard, Y.; Hafid, M.; El Azzouzi, M.; Maury, R.C.; Charrière, A.; Taki, Z.; Benammi, M.; Michard, A. The Atlas System. Lect. Notes Earth Sci. 2008, 116, 133–202. [Google Scholar] [CrossRef]
- Escosa, F.O.; Leprêtre, R.; Spina, V.; Gimeno-Vives, O.; Kergaravat, C.; Mohn, G.; Frizon de Lamotte, D. Polyphased Mesozoic Rifting from the Atlas to the North-West Africa Paleomargin. Earth Sci. Rev. 2021, 220, 103732. [Google Scholar] [CrossRef]
- Dresnay, R. du Extension et Développement Des Phénomènes Récifaux Jurassiques Dans Le Domaine Atlasique Marocain, Particulièrement Au Lias Moyen. Bull. Société Géologique Fr. 1971, 7, 46–56. [Google Scholar] [CrossRef]
- Morel, J.-L.; Zouine, E.M.; Poisson, A. Relations between the Moulouya Basins Subsidence and the Atlasic Uplift, Morocco: An Example of Tectonic Reversal since Neogene Time Relations Entre La Subsidence Des Bassins Moulouyens et La Creation Des Reliefs Atlasiques (Maroc): Un Exemple d’inversi. Bull.-Soc. Geol. Fr. 1993, 164, 79–91. [Google Scholar]
- Zouine, E.M. Géodynamique Récente Du Haut Atlas. Evolution de Sa Bordure Septentrionale et Du Moyen Atlas Sud-Occidental Au Cours Du Cénozoïque. Ph.D. Thesis, Mohamed V University, Rabat, Morocco, 1993. Unpublished Thesis. [Google Scholar]
- Emberger, A. Eléments Pour Une Synthèse Métallogénique Du District Plombifère de La Haute Moulouya. Notes Mém. Serv. Géol. Maroc. 1965, 181, 205–244. [Google Scholar]
- Hoepffner, C.; Houari, M.R.; Bouabdelli, M. Tectonics of the North African Variscides (Morocco, Western Algeria): An Outline. Comptes. Rendus-Geosci. 2006, 338, 25–40. [Google Scholar] [CrossRef]
- Hoepffner, C.; Soulaimani, A.; Piqué, A. The Moroccan Hercynides. J. Afr. Earth Sci. 2005, 43, 144–165. [Google Scholar] [CrossRef]
- Raddi, Y.; Aarar, M.; Michard, A. Notice Explicative de La Carte Géologique Du Maroc Au 1/50.000 (Feuille de Mibladen). Notes Mémoires Serv. Géologique Maroc. 2013, 576, 24–59. [Google Scholar]
- Chopin, F.; Leprêtre, R.; El Houicha, M.; Tabaud, A.-S.; Schulmann, K.; Míková, J.; Barbarand, J.; Chebli, R. U–Pb Geochronology of Variscan Granitoids from the Moroccan Meseta (Northwest Africa): Tectonic Implications. Gondwana Res. 2023, 117, 274–294. [Google Scholar] [CrossRef]
- Michard, A.; Soulaimani, A.; Hoepffner, C.; Ouanaimi, H.; Baidder, L.; Rjimati, E.C.; Saddiqi, O. The South-Western Branch of the Variscan Belt: Evidence from Morocco. Tectonophysics 2010, 492, 1–24. [Google Scholar] [CrossRef]
- Accotto, C.; Martínez Poyatos, D.; Azor, A.; Jabaloy-Sánchez, A.; Talavera, C.; Evans, N.J.; Azdimousa, A. Tectonic Evolution of the Eastern Moroccan Meseta: From Late Devonian Forearc Sedimentation to Early Carboniferous Collision of an Avalonian Promontory. Tectonics 2020, 39, e2019TC005976. [Google Scholar] [CrossRef]
- Dahire, M. Le Complexe Plutonique de La Haute Moulouya (Meseta Orientale, Maroc): Evolution Pétrologique et Structurale. Ph.D. Thesis, Faculty of Sciences Dhar El Mahraz, Fes, Morocco, 2004. [Google Scholar]
- Elabouyi, M.; Dahire, M.; Driouch, Y.; Duchêne, S.; Kriegsman, L.M.; Ntarmouchant, A.; Kahou, Z.S.; Severac, J.L.; Belkasmi, M.; Debat, P. Crustal Anatexis in the Aouli-Mibladen Granitic Complex: A Window into the Middle Crust below the Moroccan Eastern Variscan Meseta. J. Afr. Earth Sci. 2019, 154, 136–163. [Google Scholar] [CrossRef]
- Filali, F. Etude Pétro-Structurale de l’encaissant Métamorphique de La Boutonnière d’Aouli-Mibladen (Haute Moulouya, Maroc): Conséquences Sur La Géodynamique Hercynienne Au Maroc. Ph.D. Thesis, Muséum national d’histoire naturelle, Paris, France, 1996. [Google Scholar]
- Yaagoub, D.; Hinaje, S.; El Ouaragli, B.; El Fartati, M.; Gharmane, Y.; Amrani, S.; Ouhssaine, A.; Elabouyi, M. Reconstruction of Mesozoic Paleostress Associated with the Tectono-Sedimentary Evolution of the Basins Bordering the Aouli Inlier (Upper Moulouya, Morocco). Arab. J. Geosci. 2021, 14, 706. [Google Scholar] [CrossRef]
- Abdullin, F.; Solé, J.; de Jesús Meneses-Rocha, J.; Solari, L.; Shchepetilnikova, V.; Ortega-Obregón, C. LA-ICP-MS-Based Apatite Fission Track Dating of the Todos Santos Formation Sandstones from the Sierra de Chiapas (SE Mexico) and Its Tectonic Significance. Int. Geol. Rev. 2016, 58, 32–48. [Google Scholar] [CrossRef]
- Solari, L.A.; Gómez-Tuena, A.; Bernal, J.P.; Pérez-Arvizu, O.; Tanner, M. U-Pb Zircon Geochronology with an Integrated LA-ICP-MS Microanalytical Workstation: Achievements in Precision and Accuracy. Geostand. Geoanal Res. 2010, 34, 5–18. [Google Scholar] [CrossRef]
- Ortega-Obregón, C.; Abdullin, F.; Solari, L.; Schaaf, P.; Solís-Pichardo, G. Apatite U-Pb Dating at UNAM Laboratories: Analytical Protocols and Examples of Its Application. Rev. Mex. Cienc. Geol. 2019, 36, 27–37. [Google Scholar] [CrossRef]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the Visualisation and Processing of Mass Spectrometric Data. J. Anal. At. Spectrom. 2011, 26, 2508–2518. [Google Scholar] [CrossRef]
- Paton, C.; Woodhead, J.D.; Hellstrom, J.C.; Hergt, J.M.; Greig, A.; Maas, R. Improved Laser Ablation U-Pb Zircon Geochronology through Robust Downhole Fractionation Correction. Geochem. Geophys. Geosystems 2010, 11, 3. [Google Scholar] [CrossRef]
- Solari, L.A.; González-León, C.M.; Ortega-Obregón, C.; Valencia-Moreno, M.; Rascón-Heimpel, M.A. The Proterozoic of NW Mexico Revisited: U–Pb Geochronology and Hf Isotopes of Sonoran Rocks and Their Tectonic Implications. Int. J. Earth Sci. 2018, 107, 845–861. [Google Scholar] [CrossRef]
- Jochum, K.P.; Weis, U.; Stoll, B.; Kuzmin, D.; Yang, Q.; Raczek, I.; Jacob, D.E.; Stracke, A.; Birbaum, K.; Frick, D.A.; et al. Determination of Reference Values for NIST SRM 610–617 Glasses Following ISO Guidelines. Geostand. Geoanal Res. 2011, 35, 397–429. [Google Scholar] [CrossRef]
- Luvizotto, G.L.; Zack, T.; Meyer, H.P.; Ludwig, T.; Triebold, S.; Kronz, A.; Münker, C.; Stockli, D.F.; Prowatke, S.; Klemme, S.; et al. Rutile Crystals as Potential Trace Element and Isotope Mineral Standards for Microanalysis. Chem. Geol. 2009, 261, 346–369. [Google Scholar] [CrossRef]
- Zack, T.; Stockli, D.F.; Luvizotto, G.L.; Barth, M.G.; Belousova, E.; Wolfe, M.R.; Hinton, R.W. In Situ U–Pb Rutile Dating by LA-ICP-MS: 208Pb Correction and Prospects for Geological Applications. Contrib. Mineral. Petrol. 2011, 162, 515–530. [Google Scholar] [CrossRef]
- Zaid, K.; Bouabdellah, M.; Frenzel, M.; van Schijndel, V.; Levresse, G.; Idbaroud, M.; Yans, J. Laser Ablation Inductively Coupled Plasma Mass Spectrometry Trace Element Chemistry of Sulfides from the Aouli Ag–Pb–Zn–(Cu) Vein System (Upper Moulouya District, Morocco). GFZ Data Serv. 2025. [Google Scholar]
- Neuser, R.D.; Reinecke, T.; Schertl, H.-P. Low Temperature Cathodoluminescence of Selected Minerals from High Pressure Metamorphic Rocks. Boch. Geol. Geotech. Arb. 1995, 44, 119–123. [Google Scholar]
- Steele-MacInnis, M.; Lecumberri-Sanchez, P.; Bodnar, R.J. HokieFlincs_H2O-NaCl: A Microsoft Excel Spreadsheet for Interpreting Microthermometric Data from Fluid Inclusions Based on the PVTX Properties of H2O–NaCl. Comput. Geosci. 2012, 49, 334–337. [Google Scholar] [CrossRef]
- Guilcher, M.; Albert, R.; Gerdes, A.; Gutzmer, J.; Burisch, M. Timing of Native Metal-Arsenide (Ag-Bi-Co-Ni-As±U) Veins in Continental Rift Zones–In Situ U-Pb Geochronology of Carbonates from the Erzgebirge/Krušné Hory Province. Chem. Geol. 2021, 584, 120476. [Google Scholar] [CrossRef]
- Burisch, M.; Frenzel, M.; Seibel, H.; Gruber, A.; Oelze, M.; Pfänder, J.A.; Sanchez-Garrido, C.; Gutzmer, J. Li-Co–Ni-Mn-(REE) Veins of the Western Erzgebirge, Germany—A Potential Source of Battery Raw Materials. Miner. Depos. 2021, 56, 1223–1238. [Google Scholar] [CrossRef]
- Ferguson, D.; Chi, G.; Normand, C.; Mercadier, J.; Wang, Y.; McKee, K.; Anderson, M.; Robbins, J. Relationship between U and Ni-Co-As Mineralization in the Midwest Polymetallic U Deposit, Athabasca Basin (Canada)–Constraints from Mineralogical, Geochemical, and Fluid Inclusion Studies. Miner. Depos. 2025, 60, 63–83. [Google Scholar] [CrossRef]
- Diallo, M.; Bouabdellah, M.; Levresse, G.; Yans, J.; Castorina, F.; Klügel, A.; Mouhagir, M.; El Mouden, S.; Maacha, L. Mineralogy, Fluid Inclusion, and CO-Sr Isotope Geochemistry to Unravel the Evolution of the Magmatic-Hydrothermal System at the Igoudrane Silver-Rich Deposit (Imiter District, Eastern Anti-Atlas, Morocco). Minerals 2021, 11, 997. [Google Scholar] [CrossRef]
- Bouabdellah, M.; Maacha, L.; Levresse, G.; Saddiqi, O. The Bou Azzer Co–Ni–Fe–As (±Au ±Ag) District of Central Anti-Atlas (Morocco): A Long-Lived Late Hercynian to Triassic Magmatic-Hydrothermal to Low-Sulphidation Epithermal System. In Mineral Deposits of North Africa; Springer: Cham, Switzerland, 2016; pp. 229–247. [Google Scholar]
- Levresse, G.; Bouabdellah, M.; Cheilletz, A.; Gasquet, D.; Maacha, L.; Tritlla, J.; Banks, D.; Moulay Rachid, A.S. Degassing as the Main Ore-Forming Process at the Giant Imiter Ag–Hg Vein Deposit in the Anti-Atlas Mountains, Morocco. In Mineral Deposits of North Africa; Springer: Cham, Switzerland, 2016; pp. 85–106. [Google Scholar]
- McDonough, W.F.; Sun, S.-S. The Composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Adlakha, E.E.; Hattori, K.; Kerr, M.J.; Boucher, B.M. The Origin of Ti-Oxide Minerals below and within the Eastern Athabasca Basin, Canada. Am. Mineral. 2020, 105, 1875–1888. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, C.; Bagas, L.; Du, B.; Shi, K.; Zhu, J. Hydrothermal Fluid Signatures of the Yulong Porphyry Cu-Mo Deposit: Clues from the Composition and U-Pb Dating of W-Bearing Rutile. Am. Mineral. 2023, 108, 1092–1108. [Google Scholar] [CrossRef]
- Scott, K.M. Rutile Geochemistry as a Guide to Porphyry Cu–Au Mineralization, Northparkes, New South Wales, Australia. Geochem. Explor. Environ. Anal. 2005, 5, 247–253. [Google Scholar] [CrossRef]
- Urban, A.J.; Hoskins, B.F.; Grey, I.E. Characterization of V-Sb-W-Bearing Rutile from the Hemlo Gold Deposit, Ontario. Can. Mineral. 1992, 30, 319–326. [Google Scholar]
- Goldstein, R.H.; Reynolds, T.J. Systematics of Fluid Inclusions in Diagenetic Minerals; SEPM Society for Sedimentary Geology: Claremore, OK, USA, 1994; ISBN 9781565760981. [Google Scholar]
- Chi, G.; Diamond, L.W.; Lu, H.; Lai, J.; Chu, H. Common Problems and Pitfalls in Fluid Inclusion Study: A Review and Discussion. Minerals 2020, 11, 7. [Google Scholar] [CrossRef]
- Roedder, E. Fluid Inclusions: An Introduction to Studies of All Types of Fluid Inclusions, Gas, Liquid, or Melt, Trapped in Materials from Earth and Space, and Their Application to the Understanding of Geologic Processes; Reviews in Mineralogy; Mineral in North of America: Washington, DC, USA, 1984; ISBN 978-0-939950-16-4. [Google Scholar]
- Goldstein, R.H. Petrographic Analysis of Fluid Inclusions. In Fluid Inclusions: Analysis and Interpretation; Mineralogical Association of Canada: Québec, QC, Canada, 2003; pp. 9–53. [Google Scholar]
- Diamond, L.W. Review of the Systematics of CO2-H2O Fluid Inclusions. Lithos 2001, 55, 69–99. [Google Scholar] [CrossRef]
- Staude, S.; Wagner, T.; Markl, G. Mineralogy, Mineral Compositions and Fluid Evolution at the Wenzel Hydrothermal Deposit, Southern Germany: Implications for the Formation of Kongsberg-Type Silver Deposits. Can. Miner. 2007, 45, 1147–1176. [Google Scholar] [CrossRef]
- Staude, S.; Werner, W.; Mordhorst, T.; Wemmer, K.; Jacob, D.E.; Markl, G. Multi-Stage Ag-Bi-Co-Ni-U and Cu-Bi Vein Mineralization at Wittichen, Schwarzwald, SW Germany: Geological Setting, Ore Mineralogy, and Fluid Evolution. Miner. Depos. 2012, 47, 251–276. [Google Scholar] [CrossRef]
- En-Naciri, A.; Barbanson, L.; Touray, J.-C. Brine Inclusions from the Co-As(Au) Bou Azzer District, Anti-Atlas Mountains, Morocco. Econ. Geol. 1997, 92, 360–367. [Google Scholar] [CrossRef]
- Ahmed, A.H.; Arai, S.; Ikenne, M. Mineralogy and Paragenesis of the Co-Ni Arsenide Ores of Bou Azzer, Anti-Atlas, Morocco. Econ. Geol. 2009, 104, 249–266. [Google Scholar] [CrossRef]
- Saintilan, N.J.; Selby, D.; Creaser, R.A.; Dewaele, S. Sulphide Re-Os Geochronology Links Orogenesis, Salt and Cu-Co Ores in the Central African Copperbelt. Sci. Rep. 2018, 8, 14946. [Google Scholar] [CrossRef]
- Essarraj, S.; Boiron, M.-C.; Cathelineau, M.; Banks, D.A.; Benharref, M. Penetration of Surface-Evaporated Brines into the Proterozoic Basement and Deposition of Co and Ag at Bou Azzer (Morocco): Evidence from Fluid Inclusions. J. Afr. Earth Sci. 2005, 41, 25–39. [Google Scholar] [CrossRef]
- Changkakoti, A.; Morton, R.D.; Gray, J. Hydrothermal Environments during the Genesis of Silver Deposits in the Northwest Territories of Canada: Evidence from Fluid Inclusions. Miner. Depos. 1986, 21, 63–69. [Google Scholar] [CrossRef]
- Kerrich, R.; Strong, D.F.; Andrews, A.J.; Owsiacki, L. The Silver Deposits at Cobalt and Gowganda, Ontario. III: Hydrothermal Regimes and Source Reservoirs-Evidence from H, O, C, and Sr Isotopes and Fluid Inclusions. Can. J. Earth Sci. 1986, 23, 1519–1550. [Google Scholar] [CrossRef]
- Marshall, D.D.; Diamond, L.W.; Skippen, G.B. Silver Transport and Deposition at Cobalt, Ontario, Canada; Fluid Inclusion Evidence. Econ. Geol. 1993, 88, 837–854. [Google Scholar] [CrossRef]
- Frenzel, M.; Woodcock, N.H. Cockade Breccia: Product of Mineralisation along Dilational Faults. J. Struct. Geol. 2014, 68, 194–206. [Google Scholar] [CrossRef]
- Moncada, D.; Mutchler, S.; Nieto, A.; Reynolds, T.J.; Rimstidt, J.D.; Bodnar, R.J. Mineral Textures and Fluid Inclusion Petrography of the Epithermal Ag-Au Deposits at Guanajuato, Mexico: Application to Exploration. J. Geochem. Explor. 2012, 114, 20–35. [Google Scholar] [CrossRef]
- Rimi, A. Geothermal Gradients and Heat Flow Trends in Morocco. Geothermics 1990, 19, 443–454. [Google Scholar] [CrossRef]
- Sibson, R.H. Fluid Involvement in Normal Faulting. J. Geodyn. 2000, 29, 469–499. [Google Scholar] [CrossRef]
- Bakker, R.J. Package FLUIDS 1. Computer Programs for Analysis of Fluid Inclusion Data and for Modelling Bulk Fluid Properties. Chem. Geol. 2003, 194, 3–23. [Google Scholar] [CrossRef]
- Zhang, Y.-G.; Frantz, J.D. Determination of the Homogenization Temperatures and Densities of Supercritical Fluids in the System NaClKClCaCl2H2O Using Synthetic Fluid Inclusions. Chem. Geol. 1987, 64, 335–350. [Google Scholar] [CrossRef]
- Amade, E. Les Gisements Pb-Zn de Zeida et de Bou Mia. Notes Mem. Géol Maroc Rabat 1965, 181, 175–184. [Google Scholar]
- Schandl, E.S.; Davis, D.W.; Krogh, T.E. Are the Alteration Halos of Massive Sulfide Deposits Syngenetic? Evidence from U-Pb Dating of Hydrothermal Rutile at the Kidd Volcanic Center, Abitibi Subprovince, Canada. Geology 1990, 18, 505–508. [Google Scholar] [CrossRef]
- Vry, J.K.; Baker, J.A. LA-MC-ICPMS Pb–Pb Dating of Rutile from Slowly Cooled Granulites: Confirmation of the High Closure Temperature for Pb Diffusion in Rutile. Geochim. Cosmochim. Acta 2006, 70, 1807–1820. [Google Scholar] [CrossRef]
- Belousova, E.A.; Griffin, W.L.; O’Reilly, S.Y.; Fisher, N.I. Apatite as an Indicator Mineral for Mineral Exploration: Trace-Element Compositions and Their Relationship to Host Rock Type. J. Geochem. Explor. 2002, 76, 45–69. [Google Scholar] [CrossRef]
- Bauer, M.E.; Seifert, T.; Burisch, M.; Krause, J.; Richter, N.; Gutzmer, J. Indium-Bearing Sulfides from the Hämmerlein Skarn Deposit, Erzgebirge, Germany: Evidence for Late-Stage Diffusion of Indium into Sphalerite. Miner. Depos. 2019, 54, 175–192. [Google Scholar] [CrossRef]
- Zack, T.; Kronz, A.; Foley, S.F.; Rivers, T. Trace Element Abundances in Rutiles from Eclogites and Associated Garnet Mica Schists. Chem. Geol. 2002, 184, 97–122. [Google Scholar] [CrossRef]
- Majzlan, J.; Bolanz, R.; Göttlicher, J.; Mikuš, T.; Milovská, S.; Čaplovičová, M.; Števko, M.; Rössler, C.; Matthes, C. Incorporation Mechanism of Tungsten in W-Fe-Cr-V-Bearing Rutile. Am. Mineral. 2021, 106, 609–619. [Google Scholar] [CrossRef]
- Zack, T.; von Eynatten, H.; Kronz, A. Rutile Geochemistry and Its Potential Use in Quantitative Provenance Studies. Sediment. Geol. 2004, 171, 37–58. [Google Scholar] [CrossRef]
- Czamanske, G.K.; Force, E.R.; Moore, W.J. Some Geologic and Potential Resource Aspects of Rutile in Porphyry Copper Deposits. Econ. Geol. 1981, 76, 2240–2246. [Google Scholar] [CrossRef]
- Rabbia, O.M.; Hernández, L.B.; French, D.H.; King, R.W.; Ayers, J.C. The El Teniente Porphyry Cu–Mo Deposit from a Hydrothermal Rutile Perspective. Miner. Depos. 2009, 44, 849–866. [Google Scholar] [CrossRef]
- Plavsa, D.; Reddy, S.M.; Agangi, A.; Clark, C.; Kylander-Clark, A.; Tiddy, C.J. Microstructural, Trace Element and Geochronological Characterization of TiO2 Polymorphs and Implications for Mineral Exploration. Chem. Geol. 2018, 476, 130–149. [Google Scholar] [CrossRef]
- Cao, G.; Chen, H.; Zhang, Y.; Sun, W.; Zhao, J.; Zhao, H.; Wang, H. Primary Controlling Factors of Apatite Trace Element Composition and Implications for Exploration in Orogenic Gold Deposits. Geochem. Geophys. Geosystems 2024, 25, e2024GC011574. [Google Scholar] [CrossRef]
- Salvi, S.; Fontan, F.; Monchoux, P.; Williams-Jones, A.E.; Moine, B. Hydrothermal Mobilization of High Field Strength Elements in Alkaline Igneous Systems: Evidence from the Tamazeght Complex (Morocco). Econ. Geol. 2000, 95, 559–576. [Google Scholar] [CrossRef]
- Samson, I.M.; Wood, S.A. The Rare Earth Elements: Behaviour in Hydrothermal Fluids and Concentration in Hydrothermal Mineral Deposits, Exclusive of Alkaline Settings. Rare-Elem. Geochem. Miner. Depos. Geol. Assoc. Can. GAC Short Course Notes 2005, 17, 269–297. [Google Scholar]
- Chang, Z.; Meinert, L.; Lawrence, D.; Mrozek, S.; Zhang, L. Skarns Replacing Igneous Rocks. In Proceedings of the 15th Quadrennial International Association on the Genesis of Ore Deposits, Symposium, Salta, Argentina, 28–31 August 2018; pp. 207–208. [Google Scholar]
- Sciuba, M.; Beaudoin, G. Texture and Trace Element Composition of Rutile in Orogenic Gold Deposits. Econ. Geol. 2021, 116, 1865–1892. [Google Scholar] [CrossRef]
- Kissin, S.A. Five-Element (Ni-Co-As-Ag-Bi) Veins. Geosci. Can. 1992, 19, 113–124. [Google Scholar]
- Scharrer, M.; Kreissl, S.; Markl, G. The Mineralogical Variability of Hydrothermal Native Element-Arsenide (Five-Element) Associations and the Role of Physicochemical and Kinetic Factors Concerning Sulfur and Arsenic. Ore Geol. Rev. 2019, 113, 103025. [Google Scholar] [CrossRef]
- Burke, J.S. The Origin of Polymetallic Ni-Co-As-Bi-Sb (-Ag-U) Veins in the East Arm Basin and Southern Slave Province, Northwest Territories. Master’s Thesis, Saint Mary’s University, Halifax, NS, Canada, 2019. [Google Scholar]
- Lecumberri-Sanchez, P.; Bouabdellah, M.; Zemri, O. Transport of Rare Earth Elements by Hydrocarbon-Bearing Brines: Implications for Ore Deposition and the Use of REEs as Fluid Source Tracers. Chem. Geol. 2018, 479, 204–215. [Google Scholar] [CrossRef]
- Velasco, F.; Herrero, J.M.; Suárez, S.; Yusta, I.; Alvaro, A.; Tornos, F. Supergene Features and Evolution of Gossans Capping Massive Sulphide Deposits in the Iberian Pyrite Belt. Ore Geol. Rev. 2013, 53, 181–203. [Google Scholar] [CrossRef]
- Charles, N.; Choulet, F.; Sizaret, S.; Chen, Y.; Barbanson, L.; Ennaciri, A.; Badra, L.; Branquet, Y. Internal Structures and Dating of Non-Sulphide Zn Deposits Using Rock Magnetism: Insights from the Moroccan High Atlas. Miner. Depos. 2016, 51, 151–175. [Google Scholar] [CrossRef]
- Verhaert, M.; Bernard, A.; Dekoninck, A.; Lafforgue, L.; Saddiqi, O.; Yans, J. Mineralogical and Geochemical Characterization of Supergene Cu–Pb–Zn–V Ores in the Oriental High Atlas, Morocco. Miner. Depos. 2017, 52, 1049–1068. [Google Scholar] [CrossRef]
- Verhaert, M.; Gautheron, C.; Dekoninck, A.; Vennemann, T.; Pinna-Jamme, R.; Mouttaqi, A.; Yans, J. Unravelling the Temporal and Chemical Evolution of a Mineralizing Fluid in Karst-Hosted Deposits: A Record from Goethite in the High Atlas Foreland (Morocco). Minerals 2022, 12, 1151. [Google Scholar] [CrossRef]
- Lanari, R.; Faccenna, C.; Fellin, M.G.; Essaifi, A.; Nahid, A.; Medina, F.; Youbi, N. Tectonic Evolution of the Western High Atlas of Morocco: Oblique Convergence, Reactivation, and Transpression. Tectonics 2020, 39, e2019TC005563. [Google Scholar] [CrossRef]
- Staude, S.; Göb, S.; Pfaff, K.; Ströbele, F.; Premo, W.R.; Markl, G. Deciphering Fluid Sources of Hydrothermal Systems: A Combined Sr-and S-Isotope Study on Barite (Schwarzwald, SW Germany). Chem. Geol. 2011, 286, 1–20. [Google Scholar] [CrossRef]
- Bouabdellah, M.; Levresse, G.; Boukirou, W.; Potra, A.; Samuelsen, J.R.; Caracausi, A.; Italiano, L.; Klügel, A.; Yans, J.; Castorina, F. Basin Inversion, Drifting and Hyper-Extension in the Central Atlantic Ocean and Maghrebian Tethys as Fluid Driving Mechanisms for the Superimposed Base Metal Mineralization Events in the Jbel Bou Dahar Carbonate-Hosted Pb-Zn-Ba Deposits (High Atlas, Moroc). Chem. Geol. 2024, 670, 122451. [Google Scholar] [CrossRef]
- Jébrak, M.; Marcoux, É. Géologie Des Ressources Minérales; Ministère des ressources naturelles et de la faune: Avenue Ouest, QC, Canada, 2008; ISBN 2551237378.
- Beauchamp, W.; Barazangi, M.; Demnati, A.; El Alji, M. Intracontinental Rifting and Inversion: Missour Basin and Atlas Mountains, Morocco. Am. Assoc. Pet. Geol. Bull. 1996, 80, 1459–1482. [Google Scholar]
- Leprêtre, R.; Missenard, Y.; Barbarand, J.; Gautheron, C.; Jouvie, I.; Saddiqi, O. Polyphased Inversions of an Intracontinental Rift: Case Study of the Marrakech High Atlas, Morocco. Tectonics 2018, 37, 818–841. [Google Scholar] [CrossRef]
- Stampfli, G.M.; Borel, G.D. The Transmed Transects in Space and Time: Constraints on the Paleotectonic Evolution of the Mediterranean Domain. In The Transmed Atlas. The Mediterranean Region from Crust to Mantle; Cavazza, W., Roure, F., Spakman, W., Stampfli, G.M., Ziegler, P.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 53–80. ISBN 978-3-642-18919-7. [Google Scholar]
- Frizon de Lamotte, D.; Leturmy, P.; Missenard, Y.; Khomsi, S.; Ruiz, G.; Saddiqi, O.; Guillocheau, F.; Michard, A. Mesozoic and Cenozoic Vertical Movements in the Atlas System (Algeria, Morocco, Tunisia): An Overview. Tectonophysics 2009, 475, 9–28. [Google Scholar] [CrossRef]
- Leprêtre, R.; Missenard, Y.; Barbarand, J.; Gautheron, C.; Saddiqi, O.; Pinna-Jamme, R. Postrift History of the Eastern Central Atlantic Passive Margin: Insights from the Saharan Region of South Morocco. J. Geophys. Res. Solid Earth 2015, 120, 4645–4666. [Google Scholar] [CrossRef]
- Ziegler, P.A.; Dèzes, P. Crustal Evolution of Western and Central Europe. Memoirs 2006, 32, 43–56. [Google Scholar] [CrossRef]
- Bensalah, M.K.; Youbi, N.; Mata, J.; Madeira, J.; Martins, L.; El Hachimi, H.; Bertrand, H.; Marzoli, A.; Bellieni, G.; Doblas, M.; et al. The Jurassic-Cretaceous Basaltic Magmatism of the Oued El-Abid Syncline (High Atlas, Morocco): Physical Volcanology, Geochemistry and Geodynamic Implications. J. Afr. Earth Sci. 2013, 81, 60–81. [Google Scholar] [CrossRef]
- Moratti, G.; Benvenuti, M.; Santo, A.P.; Laurenzi, M.A.; Braschi, E.; Tommasini, S. New 40Ar–39Ar Dating of Lower Cretaceous Basalts at the Southern Front of the Central High Atlas, Morocco: Insights on Late Mesozoic Tectonics, Sedimentation and Magmatism. Int. J. Earth Sci. 2018, 107, 2491–2515. [Google Scholar] [CrossRef]
- Bouzekraoui, M.; Saadi, M.; Essalhi, M.; Karaoui, B.; Hilali, M.; Jayadi, S.; Bahaj, T. Extensional Tectonics, Structural Architecture Modeling and Geodynamic Evolution in the Cretaceous Tinghir-Errachidia-Boudenib Basin (Pre-African Trough, Morocco). J. Afr. Earth Sci. 2023, 203, 104957. [Google Scholar] [CrossRef]
Sphalerite | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample ID. | n | Mn | Fe | Co | Cu | Ga | Ge | As | Ag | Cd | In | Sn | Sb | Hg | Pb | |
S47 | 22 | Min | 0.13 | 7.46 | <0.01 | 165.85 | 0.21 | <0.06 | 24.89 | 66.86 | 987.34 | 0.00 | 0.02 | 90.62 | 9.98 | 32.80 |
Max | 4.39 | 3486.00 | 22.96 | 7934.87 | 13.62 | 90.24 | 976.46 | 8322.06 | 8749.17 | 16.05 | 2.09 | 8084.06 | 3683.78 | 2680.84 | ||
Mean | 1.57 | 1489.74 | - | 3048.48 | 2.67 | - | 393.26 | 2009.41 | 3227.92 | 1.59 | 0.30 | 2895.02 | 250.71 | 974.94 | ||
Std. Dev. | 1.55 | 1136.90 | - | 2503.15 | 3.46 | - | 326.74 | 1948.30 | 2329.35 | 3.61 | 0.43 | 2591.99 | 771.53 | 803.73 | ||
S38.1 | 57 | Min | 0.18 | 65.95 | 0.02 | 93.08 | 0.60 | <0.03 | 19.28 | 183.32 | 91.54 | <0.001 | <0.01 | 75.36 | 23.88 | 584.60 |
Max | 3480.34 | 2452.99 | 7.94 | 2054.43 | 43.22 | 43.35 | 1791.00 | 43,790.03 | 1495.93 | 0.86 | 57.93 | 4078.82 | 1311.91 | 12,988.14 | ||
Mean | 126.72 | 1024.70 | 2.76 | 953.68 | 9.39 | - | 201.61 | 4129.06 | 718.03 | - | - | 1615.84 | 406.88 | 3239.50 | ||
Std. Dev. | 507.72 | 695.01 | 1.80 | 399.15 | 10.21 | - | 247.04 | 6709.34 | 287.01 | - | - | 975.99 | 332.22 | 2543.81 | ||
Pyrite | ||||||||||||||||
Co | Ni | Cu | Zn | As | Se | Ag | Cd | Sn | Sb | Hg | Tl | Pb | Bi | |||
S38.1 | 24 | Min | 110.77 | 88.39 | 390.92 | 1.79 | 2318.10 | <0.16 | 5297.30 | 0.11 | <0.01 | 65.56 | 75.85 | 8.96 | 932.11 | <0.001 |
Max | 204.05 | 200.81 | 954.22 | 62.06 | 9769.39 | 0.55 | 19,954.92 | 0.83 | 0.18 | 184.29 | 171.48 | 91.97 | 6251.46 | 0.01 | ||
Mean | 144.23 | 136.70 | 703.78 | 13.63 | 6305.85 | - | 11,661.36 | 0.35 | - | 139.54 | 108.12 | 21.69 | 1558.19 | - | ||
Std. Dev. | 22.56 | 30.80 | 121.91 | 13.70 | 2461.34 | - | 4608.32 | 0.17 | - | 29.92 | 27.39 | 23.64 | 1149.65 | - | ||
Chalcopyrite | ||||||||||||||||
Co | Ni | Zn | As | Se | Ag | Cd | Sn | Sb | Te | Hg | Tl | Pb | Bi | |||
S9 | 24 | Min | <0.02 | <0.07 | 9.48 | 25.00 | <0.52 | 16.95 | 0.24 | 2.94 | 40.81 | <0.07 | 4.16 | 0.86 | 41.98 | <0.01 |
Max | 0.31 | 0.31 | 34.30 | 158.92 | 1.45 | 92.92 | 1.44 | 31.39 | 190.44 | 0.19 | 117.95 | 6.79 | 246.28 | 0.14 | ||
Mean | - | - | 17.54 | 74.24 | - | 43.77 | 0.73 | 11.69 | 96.13 | - | 23.97 | 3.16 | 140.64 | - | ||
Std. Dev. | - | - | 5.87 | 37.82 | - | 15.96 | 0.29 | 6.80 | 37.04 | - | 22.61 | 1.41 | 56.17 | - |
Mineral | Apatite (n = 53) | |||
---|---|---|---|---|
Min | Max | Avg. | Std. Dev. | |
Cl | 39.96 | 656.58 | 215.98 | 94.34 |
Mn | 262.96 | 618.09 | 417.60 | 94.46 |
Sr | 367.91 | 899.79 | 525.56 | 122.93 |
Y | 930.05 | 1605.61 | 1229.51 | 158.76 |
La | 89.05 | 259.22 | 166.80 | 37.30 |
Ce | 320.83 | 820.37 | 560.43 | 125.10 |
Pr | 62.74 | 149.37 | 103.47 | 21.04 |
Nd | 416.86 | 874.28 | 624.34 | 100.41 |
Sm | 145.48 | 276.18 | 203.07 | 25.02 |
Eu | 37.09 | 64.79 | 50.05 | 5.32 |
Gd | 191.97 | 338.40 | 262.19 | 25.17 |
Tb | 29.00 | 50.17 | 39.70 | 4.16 |
Dy | 177.24 | 298.96 | 237.01 | 27.73 |
Ho | 34.66 | 60.06 | 46.06 | 5.82 |
Er | 88.75 | 152.69 | 115.42 | 15.52 |
Tm | 9.96 | 17.28 | 13.24 | 1.82 |
Yb | 55.39 | 94.81 | 74.19 | 10.17 |
Lu | 7.25 | 12.39 | 9.52 | 1.30 |
∑REE | 1718.49 | 3440.16 | 2505.49 | 339.80 |
∑REY | 2648.54 | 4908.39 | 3735.00 | 404.05 |
∑LREE | 928.04 | 2103.23 | 1455.04 | 279.24 |
∑MREE | 615.43 | 1079.51 | 838.09 | 81.25 |
∑HREE | 161.57 | 277.05 | 212.36 | 28.69 |
Pb | 1.84 | 873.97 | 53.60 | 141.43 |
Th | 1.04 | 4.26 | 1.73 | 0.50 |
U | 0.62 | 3.55 | 1.08 | 0.54 |
Y/Ho | 25.63 | 27.77 | 26.69 | 0.51 |
Sr/Y | 0.28 | 0.94 | 0.44 | 0.14 |
Ce/Ce*Chondrite | 0.92 | 1.05 | 1.00 | 0.03 |
Eu/Eu*Chondrite | 0.58 | 0.71 | 0.66 | 0.03 |
Y/Y*Chondrite | 0.83 | 0.91 | 0.87 | 0.02 |
Mineral | Rutile (n = 17) | |||
---|---|---|---|---|
Min | Max | Avg | Std. Dev. | |
Sc | 64.60 | 240.15 | 144.89 | 53.92 |
V | 181.32 | 1360.42 | 552.31 | 316.47 |
Cr | <2 | 6.96 | - | - |
Fe | 2029.75 | 75,592.55 | 9227.63 | 17,586.14 |
Sr | 10.57 | 1236.32 | 167.73 | 301.95 |
Y | 5.43 | 314.28 | 72.99 | 83.44 |
Zr | 13.03 | 4600.56 | 680.22 | 1084.11 |
Nb | 207.44 | 514.80 | 343.05 | 91.97 |
Mo | 2.51 | 663.64 | 73.10 | 171.76 |
Sn | 104.25 | 654.02 | 354.39 | 163.87 |
Sb | 5.77 | 1091.10 | 169.62 | 315.94 |
Ba | 21.65 | 586.37 | 169.85 | 171.71 |
La | 0.72 | 154.80 | 29.26 | 43.97 |
Ce | 2.44 | 426.56 | 79.43 | 120.64 |
Pr | 0.36 | 54.79 | 10.07 | 15.41 |
Nd | 1.72 | 211.69 | 39.98 | 59.91 |
Sm | 0.60 | 44.44 | 9.21 | 12.71 |
Eu | 0.21 | 22.76 | 4.42 | 6.21 |
Gd | 0.94 | 43.92 | 9.72 | 12.29 |
Tb | 0.19 | 9.56 | 2.06 | 2.61 |
Dy | 1.20 | 83.63 | 17.36 | 22.54 |
Ho | 0.23 | 22.32 | 4.46 | 6.03 |
Er | 0.78 | 89.20 | 17.68 | 23.67 |
Tm | 0.12 | 14.64 | 2.92 | 3.91 |
Yb | 0.87 | 109.85 | 22.47 | 29.31 |
Lu | 0.12 | 15.85 | 3.40 | 4.30 |
∑REE | 10.90 | 1303.99 | 252.46 | 361.57 |
∑REY | 16.33 | 1618.28 | 325.45 | 443.51 |
∑LREE | 5.24 | 847.84 | 158.75 | 239.85 |
∑MREE | 3.75 | 226.62 | 47.24 | 62.27 |
∑HREE | 1.90 | 229.53 | 46.47 | 60.99 |
Hf | 3.79 | 93.52 | 25.83 | 20.77 |
Ta | 4.02 | 97.41 | 26.90 | 21.75 |
W | 821.37 | 10,247.18 | 4664.37 | 2414.41 |
Pb | 101.12 | 42,974.23 | 7694.61 | 14,082.39 |
Th | <0.001 | 3.27 | - | - |
U | 0.30 | 199.18 | 31.80 | 53.66 |
Nb/Ta | 4.41 | 90.36 | 20.77 | 19.58 |
Zr/Hf | 0.88 | 49.19 | 19.95 | 12.40 |
Y/Nb | 0.02 | 1.06 | 0.23 | 0.28 |
Fe/V | 4.09 | 113.17 | 15.55 | 25.49 |
Y/Ho | 14.08 | 30.37 | 19.86 | 5.13 |
Nb/V | 0.20 | 1.70 | 0.83 | 0.50 |
Ce/Ce*Chondrite | 1.06 | 1.16 | 1.12 | 0.03 |
Eu/Eu*Chondrite | 0.84 | 2.01 | 1.32 | 0.26 |
Y/Y*Chondrite | 0.53 | 1.32 | 0.72 | 0.22 |
Mineral | Microthermometry | Calculated Salinity | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Th (°C) | Tice-melting (°C) | Tm(HH) (°C) | Salinity | NaCl/(NaCl + CaCl2) | |||||||||||||||||||||
n | Min | Max | Avg. | Std. Dev. | n | Min | Max | Avg. | Std. Dev. | n | Min | Max | Avg. | Std. Dev. | n | Min | Max | Mean | Std. Dev. | n | Min | Max | Avg. | Std. Dev. | |
Ore-related quartz | 27 | 48.7 | 168.1 | 128.5 | 29.8 | 32 | −20.6 | −10.5 | −14.8 | 2.0 | 22 | −26.2 | −21.7 | −23.8 | 1.3 | 32 | 14.5 | 22.8 | 18.4 | 1.6 | 22 | 0.6 | 1.0 | 0.8 | 0.1 |
Ore-related fluorite | 174 | 90.9 | 141.1 | 122.1 | 8.4 | 174 | −22.0 | −8.2 | −16.0 | 3.2 | 151 | −32.1 | −18.6 | −23.6 | 1.8 | 174 | 12.0 | 23.7 | 19.3 | 2.6 | 146 | 0.4 | 1.0 | 0.8 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaid, K.; Bouabdellah, M.; Levresse, G.; Idbaroud, M.; Melchiorre, E.; Mathur, R.; Jébrak, M.; Potra, A.; Yans, J.; Frenzel, M.; et al. Mineralogy and Fluid Inclusion Constraints on the Genesis of the Recently Discovered Ag-(Ni-Co-Sb-As-Hg ± Bi) Vein Ore Shoot Mineralization in the Aouli Pb-Zn District (Upper Moulouya, Morocco). Minerals 2025, 15, 669. https://doi.org/10.3390/min15070669
Zaid K, Bouabdellah M, Levresse G, Idbaroud M, Melchiorre E, Mathur R, Jébrak M, Potra A, Yans J, Frenzel M, et al. Mineralogy and Fluid Inclusion Constraints on the Genesis of the Recently Discovered Ag-(Ni-Co-Sb-As-Hg ± Bi) Vein Ore Shoot Mineralization in the Aouli Pb-Zn District (Upper Moulouya, Morocco). Minerals. 2025; 15(7):669. https://doi.org/10.3390/min15070669
Chicago/Turabian StyleZaid, Khadra, Mohammed Bouabdellah, Gilles Levresse, Mohamed Idbaroud, Erik Melchiorre, Ryan Mathur, Michel Jébrak, Adriana Potra, Johan Yans, Max Frenzel, and et al. 2025. "Mineralogy and Fluid Inclusion Constraints on the Genesis of the Recently Discovered Ag-(Ni-Co-Sb-As-Hg ± Bi) Vein Ore Shoot Mineralization in the Aouli Pb-Zn District (Upper Moulouya, Morocco)" Minerals 15, no. 7: 669. https://doi.org/10.3390/min15070669
APA StyleZaid, K., Bouabdellah, M., Levresse, G., Idbaroud, M., Melchiorre, E., Mathur, R., Jébrak, M., Potra, A., Yans, J., Frenzel, M., Schijndel, V. v., Benaissi, L., & Belkacim, S. (2025). Mineralogy and Fluid Inclusion Constraints on the Genesis of the Recently Discovered Ag-(Ni-Co-Sb-As-Hg ± Bi) Vein Ore Shoot Mineralization in the Aouli Pb-Zn District (Upper Moulouya, Morocco). Minerals, 15(7), 669. https://doi.org/10.3390/min15070669