Hypogene Alteration of Base–Metal Mineralization at the Václav Vein (Březové Hory Deposit, Příbram, Czech Republic): The Result of Recurrent Infiltration of Oxidized Fluids
Abstract
:1. Introduction
2. Geological Setting and Ore Mineralization of the Příbram Area
3. Material and Methods
4. Results
5. Discussion
5.1. Heavy Metal Enrichment of Hematite
5.2. Textural Evolution of the Vein
5.2.1. Gangue
5.2.2. Sulfides
5.3. Paragenetic Sequence of the Vein
5.4. Comparison with Other Příbram Veins
5.5. T-X Formation Conditions
- (1)
- (2)
- The presence of hematite and absence of goethite in the vein defines the formation temperatures above ca. 85–130 °C ([82] and references therein);
- (3)
5.6. Implications for Ore Genesis in the Příbram Area
6. Conclusions
- The Václav vein, representing one of the base–metal ore veins of the Březové Hory deposit, provided an interesting and mineralogically rich mineral assemblage. A total of 31 mineral species was found there, including three unknown sulfide phases.
- The vein is characterized by surprisingly complicated evolution. Early siderite and dolomite-ankerite gangue containing sphalerite and galena were subject to repeated superimposed hypogene alterations, manifested by the strong (i) dissolution of sulfides, (ii) silicification, and (iii) replacement of early Fe-bearing carbonates by assemblages of hematite and Mn-rich Fe-poor carbonates (rhodochrosite or members of the dolomite-kutnohorite series). In addition, the replacement of sphalerite by chalcopyrite and bornite is observed across the vein. Widespread multiple remobilizations of heavy metals are also manifested by unusual compositions of chlorite (Zn-rich chamosite to baileychlore), hematite (Sb-, Zn-, and Pb-enriched), and Mn-enriched carbonates (Zn-enriched). An uncommon Ag-Cu-Hg sulfide mineralization appeared in the late stage of vein evolution.
- The observed disequilibrium textures suggest repeated and significant changes in the chemical composition and/or physico-chemical conditions of the parent fluids. A moderate increase in the redox potential of fluids is inferred from the replacement of early Fe-rich carbonates by assemblages of Mn-rich carbonates and hematite. These findings are compatible with repeated episodic invasion of oxygenated surface waters, likely represented by local meteoric waters and/or basinal waters from contemporaneous (Lower Permian) partly evaporated freshwater Piedmont basins.
- Similar mineralizations are known from the Jerusalem, Vrančice, Milín, and Lešetice deposits in the Příbram ore area. Because the modern detailed studies were mostly not conducted at these localities, they represent suitable sites, at which the origin of the specific “oxygenated ore facies” can be further studied in the future.
- The low-grade ore mineralization is probably not the primary feature of the Václav vein. The amount of ore minerals was diminished by superimposed fluid events, which caused partial dissolution of at least a part of early base–metal sulfide minerals.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Žák, K.; Dobeš, P. Stable isotopes and fluid inclusions in hydrothermal deposits: The Příbram ore region. Rozpr. Českoslov. Akad. Věd 1991, 1–109. [Google Scholar]
- Kutina, J. Genetische Diskussion der Makrotexturen bei der geochemischen Untersuchung des Adalbert-Hauptganges in Příbram. Chem. Erde 1955, 17, 241–323. [Google Scholar]
- Hoffman, V. Geochemical-mineralogical relations of polymetallic veins of the ore district Vrančice near Milín (Bohemia). Sbor. Nár Muz. B 1961, 17, 1–55. [Google Scholar]
- Píša, M. Geologie a Metalogeneze Příbramské Rudní Oblasti; Unpublished Final Report; Czech Geological Survey: Prague, Czech Republic, 1976. (In Czech) [Google Scholar]
- Sejkora, J.; Dolníček, Z.; Škácha, P.; Ulmanová, J.; Vrtiška, L. Unusual mineralization with willemite from the area of the central part of the Příbram uranium and base-metal district (Czech Republic). Bull. Mineral. Petrol. 2022, 30, 224–242. (In Czech) [Google Scholar] [CrossRef]
- Sejkora, J.; Dolníček, Z.; Zachariáš, J.; Ulmanová, J.; Šrein, V.; Škácha, P. Mineralogical and fluid inclusion evidence for reworking of Au mineralization by Ag-Sb-base metal-rich fluids from the Bytíz deposit, Příbram uranium and base-metal ore district, Czech Republic. Minerals 2022, 12, 1539. [Google Scholar] [CrossRef]
- Dolníček, Z.; Ulmanová, J.; Sejkora, J.; Knížek, F.; Škácha, P. Mineralogy and genesis of the Pb-Zn-Sb-Ag vein H32A in the Příbram uranium and base-metal district, Bohemian Massif, Czech Republic. Ore Geol. Rev. 2023, 162, 105695. [Google Scholar] [CrossRef]
- Ulmanová, J.; Dolníček, Z.; Škácha, P.; Sejkora, J. Origin of Zn-Pb mineralization of the vein Bt23C, Bytíz deposit, Příbram uranium and base-metal ore district, Czech Republic: Constraints from occurrence of immiscible aqueous-carbonic fluids. Minerals 2024, 14, 87. [Google Scholar] [CrossRef]
- Bambas, J. Březohorský Rudní Revír; Komitét Symposia Hornická Příbram ve Vědě a Technice: Příbram, Czech Republic, 1990; 198p. (In Czech) [Google Scholar]
- Holub, F.V.; Cocherie, A.; Rossi, P. Radiometric dating of granitic rocks from the Central Bohemian Plutonic Complex (Czech Republic): Constraints on the chronology of the thermal and tectonic events along the Moldanubian-Barrandian boundary. C. R. Acad. Sci. Paris Earth Planet. Sci. 1997, 325, 19–26. [Google Scholar] [CrossRef]
- Žák, J.; Holub, F.V.; Verner, K. Tectonic evolution of a continental magmatic arc from transpression in the upper crust to exhumation of mid-crustal orogenic root recorded by episodically emplaced plutons: The Central Bohemian Plutonic Complex (Bohemian Massif). Int. J. Earth Sci. (Geol. Rundsch.) 2005, 94, 385–400. [Google Scholar] [CrossRef]
- Pešek, J.; Holub, V.; Jaroš, J.; Malý, L.; Martínek, K.; Prouza, V.; Spudil, J.; Tásler, R. Geology and Deposits of the Upper Paleozoic Limnic Basins of the Czech Republic; Czech Geological Survey: Prague, Czech Republic, 2001; 243p. (In Czech) [Google Scholar]
- Martínek, K.; Blecha, M.; Daněk, V.; Franců, J.; Hladíková, J.; Johnová, R.; Uličný, D. Record of palaeoenvironmental changes in a Lower Permian organic-rich lacustrine succession: Integrated sedimentological and geochemical study of the Rudník member, Krkonoše Piedmont Basin, Czech Republic. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 230, 85–128. [Google Scholar] [CrossRef]
- McCann, T. The Geology of Central Europe: Precambrian and Palaeozoic; Geological Society: London, UK, 2008. [Google Scholar]
- Suchý, V.; Zachariáš, J.; Sýkorová, I.; Kořínková, D.; Pešek, J.; Pachnerová Brabcová, K.; Luo, Q.; Filip, J.; Světlík, I. Palaeo-thermal history of the Blanice Graben (the Bohemian Massif, Czech Republic): The origin of anthracite in a late-Variscan strike-slip basin. Int. J. Coal Geol. 2022, 263, 104129. [Google Scholar] [CrossRef]
- Škácha, P.; Plášil, J. Minerály březohorského rudního revíru. Bull. Mineral.-Petrol. Odd Nár Muz (Praha) 2002, 10, 43–77. (In Czech) [Google Scholar]
- Komínek, J. Geologie širšího okolí a vlastního ložiska. In Závěrečná Zpráva Ložiska Příbram, Část I a II; Unpublished Report; DIAMO: Příbram, Czech Republic, 1995; 418p. (In Czech) [Google Scholar]
- Anderson, E.B. Isotopic-Geochronological Investigation of the Uranium Mineralization of Czechoslovakia; Unpublished Report 1962–1987; Czechoslovak Uranium Industry: Příbram, Czech Republic, 1987. [Google Scholar]
- Kříbek, B. K-Ar mica/illite and Rb-Sr sphalerite dating and geotectonic setting of Late Variscan and Post-Variscan sulphide and uranium mineralizations of the Bohemian Massif (Czech Republic). In Proceedings of the 11th SGA Biennial Meeting, Antofagasta, Chile, 26–29 September 2011; pp. 108–110. [Google Scholar]
- Zachariáš, J.; Pudilová, M.; Žák, K.; Morávek, P.; Litochleb, J.; Váňa, T.; Pertold, Z. P-T-X conditions of gold-bearing mineralization within the Central Bohemian Metallogenetic Zone. Acta Univ. Carol. Geol. 1997, 41, 167–178. [Google Scholar]
- Zachariáš, J.; Pertold, Z.; Pudilová, M.; Žák, K.; Pertoldová, J.; Stein, H.; Markey, R. Geology and genesis of Variscan porphyry style gold mineralization, Petráčkova hora deposit, Bohemian Massif, Czech Republic. Miner. Depos. 2001, 36, 517–541. [Google Scholar] [CrossRef]
- Zachariáš, J.; Žák, K.; Pudilová, M.; Snee, L.W. Multiple fluid sources/pathways and severe thermal gradients during formation of the Jílové orogenic gold deposit, Bohemian Massif, Czech Republic. Ore Geol. Rev. 2013, 54, 81–109. [Google Scholar] [CrossRef]
- Babánek, F. Die Gangverhältnisse der Anna-Neuprocopigrube am Birkenberge bei Przibram. Oest. Ztschr. Berg. Hüttenw. 1870, 18, 25–37. [Google Scholar]
- Dolníček, Z.; Ulmanová, J.; Havlíček, J.; Malý, K.; Jačková, I. Fluorite-bearing vein mineralization from Bartoušov near Havlíčkův Brod: A complex fluid history related to post-Variscan uplift of the Moldanubian basement (Bohemian Massif, Czech Republic). J. Geosci. 2023, 68, 261–279. [Google Scholar] [CrossRef]
- Dolníček, Z.; Ulmanová, J.; Vrtiška, L.; Malý, K.; Krejčí Kotlánová, M.; Koutňák, R. Mineralogy and origin of vein wolframite mineralization from the Pohled Quarry, Havlíčkův Brod Ore District, Czech Republic: Interaction of magmatic and basinal fluids. Minerals 2024, 14, 610. [Google Scholar] [CrossRef]
- Lafuente, B.; Downs, R.T.; Yang, H.; Stone, N. The power of databases: The RRUFF project. In Highlights in Mineralogical Crystallography; Armbruster, T., Danisi, R.M., Eds.; W. De Gruyter: Berlin, Germany, 2015; pp. 1–30. [Google Scholar]
- Trdlička, Z.; Hoffman, V. Untersuchungen der chemischen Zusammensetzung der Gangkarbonate von Kutná Hora (ČSSR). Freiberg. Forsch. 1975, 6, 29–81. [Google Scholar]
- Sejkora, J.; Škácha, P.; Dolníček, Z. Ag-Bi-Hg mineralizace z ložiska Brod, příbramský uran-polymetalický revír. Bull. Mineral. Petrol. 2019, 27, 259–268. (In Czech) [Google Scholar]
- Cílek, V.; Prokeš, S.; Škubal, M.; Hladíková, J.; Šmejkal, V.; Žák, K. Geochemie hydrotermálních karbonátů příbramského uranového ložiska. Vlast. Sbor. Podbrdska 1984, 26, 79–102. (In Czech) [Google Scholar]
- Bayliss, P. Nomenclature of the trioctahedral chlorites. Can. Mineral. 1975, 13, 178–180. [Google Scholar]
- Škácha, P.; Sejkora, J.; Dolníček, Z. Ag-Cu-Sb-As mineralizace z ložiska Milín, příbramský uran-polymetalický revír (Česká republika). Bull. Mineral. Petrol. 2019, 27, 419–426. (In Czech) [Google Scholar]
- Kolitsch, U. The crystal structure and compositional range of mckinstryite. Mineral. Mag. 2010, 74, 73–84. [Google Scholar] [CrossRef]
- Nickel, E.H. Danielsite: A new sulfide mineral from Western Australia. Am. Mineral. 1987, 72, 401–403. [Google Scholar]
- Atanassov, V.A.; Kirov, G.N. Balkanite, Cu9Ag5HgS8, a new mineral from the Sedmochislenitsi mine, Bulgaria. Am. Mineral. 1973, 58, 11–15. [Google Scholar]
- Paar, W.H.; Chen, T.T. Zur Mineralogie von Cu-Ni-(Co)-Pb-Ag-Hg-Erzen in Revier Schwarzleo bei Leogang, Salzburg, Österreich. Mitt. Österr. Geol. Ges. 1985, 78, 125–148. [Google Scholar]
- Steiner, M.; Tropper, P.; Vavtar, F.; Kaindl, R.; Krismer, M. Balkanite from the Cu ore deposit Röhrerbühel, Kitzbühel (N-Tyrol, Austria). Neues Jahrb. Mineral.-Abh. 2010, 187, 207–215. [Google Scholar] [CrossRef]
- Biagioni, C.; Bindi, L. Ordered distribution of Cu and Ag in the crystal structure of balkanite, Cu9Ag5HgS8. Eur. J. Mineral. 2017, 29, 279–285. [Google Scholar] [CrossRef]
- Shalaby, I.M.; Stumpfl, E.; Helmy, H.M.; El Mahallawi, M.M.; Kamel, O.A. Silver and silver-bearing minerals at the Um Samiuki volcanogenic massive sulphide deposit, Eastern Desert, Egypt. Miner. Depos. 2004, 39, 608–621. [Google Scholar] [CrossRef]
- Sejkora, J.; Pauliš, P.; Gramblička, R.; Dolníček, Z.; Ulmanová, J.; Pour, O. Měděná mineralizace z Horní Halže u Měděnce v Krušných horách (Česká republika). Bull. Mineral. Petrol. 2021, 29, 351–368. (In Czech) [Google Scholar] [CrossRef]
- Biagioni, C.; George, L.G.; Cook, N.J.; Makovicky, E.; Moëlo, Y.; Pasero, M.; Sejkora, J.; Stanley, C.J.; Welch, M.D.; Bosi, F. The tetrahedrite group: Nomenclature and classification. Am. Mineral. 2020, 105, 109–122. [Google Scholar] [CrossRef]
- Sejkora, J.; Biagioni, C.; Dolníček, Z.; Velebil, D.; Škácha, P. Annivite-(Zn), Cu6(Cu4Zn2)Σ6Bi4S13, from the Jáchymov ore district, Czech Republic: The first Bi-dominant member of the tetrahedrite group. Mineral. Mag. 2024; accepted. [Google Scholar]
- Kieft, K.; Eriksson, G. Regional zoning and metamorphic evolution of the Vindfall Pb-Zn ore, east central Sweden. Geol. Fören. Stockh. Förh. 1984, 106, 305–317. [Google Scholar] [CrossRef]
- Lur’ye, L.M.; Tsepin, A.I.; Vyal’sov, L.N. Properties of composition of fahlores from the Tary-Ekan deposit (Eastern Karamazar, Central Asia). Geol. Rud. Mestorozhd. 1974, 16, 65–70. (In Russian) [Google Scholar]
- Gołębiowska, B.; Pieczka, A.; Parafiniuk, J. Substitution of Bi for Sb and As in minerals of the tetrahedrite series from Rędziny, Lower Silesia, southwestern Poland. Can. Mineral. 2012, 50, 267–279. [Google Scholar] [CrossRef]
- Skinner, B.J.; Jambor, J.L.; Ross, M. Mckinstryite, a new copper-silver sulphide. Econ. Geol. 1966, 61, 1383–1389. [Google Scholar] [CrossRef]
- Mederski, S.; Prsek, S.; Kolodziejczyk, J.; Kluza, K.; Melfos, V.; Adamek, K.; Dimitrova, D. Mineralogical and geochemical studies of Cu-Bi-Ag±W ores from Janjevo (Kosovo): Insights into the Bi sulfosalt mineralogy and the distribution of bismuth in base metal sulfides. J. Geosci. 2023, 68, 139–162. [Google Scholar] [CrossRef]
- Pieczka, A.; Gołębiowska, B.; Parafiniuk, J. Conditions of formation of polymetallic mineralization in the eastern envelope of the Karkonosze granite: The case of Redziny, southwestern Poland. Can. Mineral. 2009, 47, 765–786. [Google Scholar] [CrossRef]
- Boomeri, M.; Biabangard, H.; Nakashima, K.; Gholami, M.J. Mineralography and chemistry of sulfides in Chah Nali Au-bearing silicic veins, north Bazman, southeast of Iran. Petrol. J. 2015, 6, 49–70. [Google Scholar]
- Dolníček, Z.; Profantová, N.; Ulmanová, J. Cu(-Ag) mineralization from Tismice near Český Brod (Permian of the Blanice Furrow, Czech Republic). Bull. Mineral. Petrol. 2021, 29, 197–203. (In Czech) [Google Scholar] [CrossRef]
- Sejkora, J.; Škácha, P.; Kopecký, S.s.; Kopecký, S.j.; Pauliš, P.; Malíková, R.; Velebil, D. Se and Cu mineralization from Bílá Voda near Javorník (Czech Republic). Bull. Mineral.-Petrol. Odd Nár Muz (Praha) 2016, 24, 161–177. (In Czech) [Google Scholar]
- Helios-Rybicka, E.; Calmano, W.; Breeger, A. Heavy metals sorption/desorption on competing clay minerals; an experimental study. Appl. Clay Sci. 1995, 9, 369–381. [Google Scholar] [CrossRef]
- Uddin, M.K. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem. Eng. J. 2017, 308, 438–462. [Google Scholar] [CrossRef]
- Tighe, M.; Lockwood, P.; Wilson, S. Adsorption of antimony(V) by floodplain soils, amorphous iron(III) hydroxide and humic acid. J. Environ. Monit. 2005, 7, 1177–1185. [Google Scholar] [CrossRef]
- Mitsunobu, S.; Takahashi, Y.; Terada, Y.; Sakata, M. Antimony(V) incorporation into synthetic ferrihydrite, goethite, and natural iron oxyhydroxides. Environ. Sci. Technol. 2010, 44, 3712–3718. [Google Scholar] [CrossRef]
- Xi, J.; He, M. Removal of Sb(III) and Sb(V) from aqueous media by goethite. Water Qual. Res. J. 2013, 48, 223–231. [Google Scholar] [CrossRef]
- Guo, X.; Wu, Z.; He, M.; Meng, X.; Jin, X.; Qiu, N.; Zhang, J. Adsorption of antimony onto iron oxyhydroxides: Adsorption behavior and surface structure. J. Hazard. Mater. 2014, 276, 339–345. [Google Scholar] [CrossRef]
- Burton, E.D.; Hockmann, K.; Karimian, N. Antimony sorption to goethite: Effects of Fe(II)-catalyzed recrystallization. ACS Earth Space Chem. 2020, 4, 476–487. [Google Scholar] [CrossRef]
- Johnston, S.G.; Bennett, W.W.; Doriean, N.; Hockmann, K.; Karimian, N.; Burton, E.D. Antimony and arsenic speciation, redox-cycling and contrasting mobility in a mining-impacted river system. Sci. Total Environ. 2020, 710, 136354. [Google Scholar] [CrossRef]
- Mierzwa, J.; Mumbi, R.; Ray, A.; Rakshit, S.; Essington, M.E.; Sarkar, D. Antimony (V) adsorption at the hematite–water interface: A macroscopic and in situ ATR-FTIR study. Soil Syst. 2021, 5, 20. [Google Scholar] [CrossRef]
- Yan, L.; Chan, T.; Jing, C. Mechanistic study for antimony adsorption and precipitation on hematite facets. Environ. Sci. Technol. 2022, 56, 3138–3146. [Google Scholar] [CrossRef]
- Leuz, A.; Hug, S.J.; Wehrli, B.; Johnson, C.A. Iron-mediated oxidation of antimony(III) by oxygen and hydrogen peroxide compared to arsenic(III) oxidation. Environ. Sci. Technol. 2006, 40, 2565–2571. [Google Scholar] [CrossRef]
- Píša, M. Minerogeneze Pb-Zn ložiska v Bohutíně u Příbrami. Sbor. Geol. Věd, Lož. Geol. 1966, 7, 1–164. (In Czech) [Google Scholar]
- Ford, R.G.; Bertsch, P.M.; Farley, K.J. Changes in transition and heavy metal partitioning during hydrous iron oxide aging. Environ. Sci. Technol. 1997, 31, 2028–2033. [Google Scholar] [CrossRef]
- Ford, R.G.; Kemner, K.M.; Bertsch, P.M. Influence of sorbate-sorbent interactions on the crystallization kinetics of nickel- and lead-ferrihydrite coprecipitates. Geochim. Cosmochim. Acta 1999, 63, 39–48. [Google Scholar] [CrossRef]
- Soares Monteiro, L.V.; Bettencourt, J.S.; Juliani, C.; de Oliveira, T.F. Geology, petrography, and mineral chemistry of the Vazante non-sulfide and Ambrósia and Fagundes sulfide-rich carbonate-hosted Zn–(Pb) deposits, Minas Gerais, Brazil. Ore Geol. Rev. 2006, 28, 201–234. [Google Scholar] [CrossRef]
- Wen, N.; Ashworth, J.R.; Ixer, R.A. Evidence for the mechanism of the reaction producing a bournonite–galena symplectite from meneghinite. Mineral. Mag. 1991, 55, 153–158. [Google Scholar] [CrossRef]
- Shimizu, Y.; Arai, S.; Morishita, T.; Ishida, Y. Origin and significance of spinel–pyroxene symplectite in lherzolite xenoliths from Tallante, SE Spain. Mineral. Petrol. 2008, 94, 27–43. [Google Scholar] [CrossRef]
- Owen, N.D.; Ciobanu, C.L.; Cook, N.J.; Slattery, A.; Basak, A. Nanoscale study of clausthalite-bearing symplectites in Cu-Au-(U) ores: Implications for ore genesis. Minerals 2018, 8, 67. [Google Scholar] [CrossRef]
- Blüml, A.; Slačík, J.; Tacl, A. Minerogenetický Výzkum Žíly Pošepný na Ložisku Vrančice j. od Milína; Unpublished Report; Geofond: Prague, Czech Republic, 1974; 300p. (In Czech) [Google Scholar]
- Šulcová, V.; Kašpar, P. Mckinstryit a jalpait ze žíly Pošepný ve Vrančicích u Příbrami. Čas. Mineral. Geol. 1986, 31, 183–184. (In Czech) [Google Scholar]
- Řídkošil, T.; Kašpar, P.; Knížek, F.; Šrein, V. Porovnání vývoje stříbrné mineralizace žíly Pošepný ve Vrančicích se zrudněním žíly L1 v Lešeticích na příbramském uranovém ložisku. In Proceedings of the Symposium Stříbrné Minerální Asociace v Československu, Donovaly, Slovak Republic, 9–11 June 1992. (In Czech). [Google Scholar]
- Pauliš, P.; Toegel, V.; Malíková, R.; Pour, O. Baileychlor z Vrančic u Milína, nový minerál pro ČR. Minerál 2017, 25, 540–543. (In Czech) [Google Scholar]
- Litochleb, J.; Knížek, F.; Šrein, V. Zlatonosná mineralizace na příbramském uranovém ložisku. In Hornická Příbram ve Vědě a Technice 1986. Sympozium Pracovníků Báňského Průmyslu, Sekce Ložisková Geologie; Příbram, Czech Republic, 1986; pp. 318–325. (In Czech) [Google Scholar]
- Litochleb, J.; Šrein, V. Chemické složení minerálů bismutu a telluru ze zlatonosných žil příbramského uranového ložiska. Acta Univ. Carol. Geol. Čech Vol. 1989, 4, 511–519. (In Czech) [Google Scholar]
- Litochleb, J.; Šrein, V. Minerály stříbra příbramského uranového ložiska. Bull. Mineral.-Petrol. Odd Nár Muz (Praha) 1994, 2, 76–81. (In Czech) [Google Scholar]
- Litochleb, J.; Černý, P.; Růžička, J.; Burda, J. Mineralogická charakteristika polymetalické žíly s dyskrazitem na ložisku Brod u Příbrami. Vlast. Sbor. Podbrdsk. 1984, 26, 159–173. (In Czech) [Google Scholar]
- Škácha, P.; Sejkora, J.; Knížek, F.; Slepička, V.; Litochleb, J.; Jebavá, I. Výskyty unikátního monometalického stříbrného zrudnění na žíle H14F3 mezi 7. a 9. patrem šachty č. 21 Háje, příbramský uran-polymetalický revír (Česká republika). Bull. Mineral.-Petrol. Odd Nár Muz (Praha) 2012, 20, 230–254. (In Czech) [Google Scholar]
- Plášil, J.; Sejkora, J.; Litochleb, J.; Škácha, P. Výskyt vzácného Ag-Hg sulfidu-imiteritu-v materiálu z haldy dolu Lill (černojamské ložisko), březohorský rudní revír, Česká republika. Bull. Mineral.-Petrol. Odd Nár Muz (Praha) 2009, 17, 62–68. (In Czech) [Google Scholar]
- Mrázek, Z. Předběžná zpráva o mineralogických nálezech na Pošepného žíle ve Vrančicích. Vlast. Sbor. Podbrdska 1982, 22, 79–86. (In Czech) [Google Scholar]
- Škácha, P.; Sejkora, J. Výskyt cinabaritu s mikroskopickým gortdrumitem na ložisku Vrančice u Příbrami (Česká republika). Bull. Mineral.-Petrol. Odd Nár Muz (Praha) 2013, 21, 57–61. (In Czech) [Google Scholar]
- Kranidiotis, P.; MacLean, W.H. Systematics of chlorite alteration at the Phelps Dodge massive sulfide deposit, Matagami, Quebec. Econ. Geol. 1987, 82, 1898–1911. [Google Scholar] [CrossRef]
- Berner, R.A. Goethite stability and the origin of red beds. Geochim. Cosmochim. Acta 1969, 33, 267–273. [Google Scholar] [CrossRef]
- Skinner, B.J. The system Cu-Ag-S. Econ. Geol. 1966, 61, 1–26. [Google Scholar] [CrossRef]
- Garrett, D.E. Natural Soda Ash: Occurrences, Processing and Use; Van Nostrand Reinhold: New York, NY, USA, 1992. [Google Scholar]
- Garrett, D.E. Sodium Sulfate: Handbook of Deposits, Processing, Properties, and Use; Academic Press: San Diego, CA, USA, 2001. [Google Scholar]
- Hem, J.D. Chemical Equilibria and Rates of Manganese Oxidation; Geological Survey water-supply paper 1667-A; U.S. Government Printing Office: Washington, DC, USA, 1963; 64p.
- Liu, J.; Chen, Q.; Yang, Y.; Wei, H.; Laipan, M.; Zhu, R.; He, H.; Hochella, M.F. Coupled redox cycling of Fe and Mn in the environment: The complex interplay of solution species with Fe- and Mn-(oxyhydr)oxide crystallization and transformation. Earth-Sci. Rev. 2022, 232, 104105. [Google Scholar] [CrossRef]
- Brugger, J.; McPhail, D.C.; Wallace, M.; Waters, J. Formation of willemite in hydrothermal environments. Econ. Geol. 2003, 98, 819–835. [Google Scholar] [CrossRef]
- Kutina, J. Pb-Zn ore veins in the Příbram ore field. Some ore deposits of the Bohemian Massif. In Proceedings of the Symposium Problems of Postmagmatic Ore Deposition, Guide to Excursion, Prague, Czech Republic; 1963; pp. 55–83. [Google Scholar]
- Hitzman, M.W.; Selley, D.; Bull, S. Formation of sedimentary rock-hosted stratiform copper deposits through Earth history. Econ. Geol. 2010, 105, 627–639. [Google Scholar] [CrossRef]
- Johan, Z.; Povondra, P. Vanadium- and copper-bearing dolomite nodules from Permian sediments near Horní Kalná, Czechoslovakia. Neues Jahrb. Mineral. Abh. 1987, 157, 245–266. [Google Scholar]
- Novák, J. Ložisko měděných rud u Suchovršic v Podkrkonoší. Acta Mus. Reginaehradec. A 1973, 14, 5–12. (In Czech) [Google Scholar]
- Johan, Z. Mineragrafické studium sedimentárních měděných rud z okolí Košťálova (okres Semily). Čas. Mineral. Geol. 1959, 2, 148–152. (In Czech) [Google Scholar]
- Novoselov, K.; Belogub, E.; Palenova, E.; Blinov, I. Silver minerals in the Unkur sandstone-hosted Cu deposit (Transbaikalia region, Russia). Neues Jahrb. Mineral. Abh. 2020, 196, 221–230. [Google Scholar] [CrossRef]
- Pivec, E.; Chrt, J.; Bouška, J. Zpráva o výzkumu ložisek polymetalických rud mezi Stříbrnou Skalicí a Českým Brodem. Zpr. Geol. Výzk. v R 1964, 1963, 134–136. (In Czech) [Google Scholar]
- Michurin, S.V.; Kazbulatova, G.M. Cu and Au mineralization of the Tolparovo ore occurrence: Evidence for the formation of redbed copper occurrences in Neoproterozoic deposits of the Southern Urals. Minerals 2024, 14, 148. [Google Scholar] [CrossRef]
- Škácha, P.; Sejkora, J.; Plášil, J.; Dolníček, Z.; Ulmanová, J. Grimmite, NiCo2S4, a new thiospinel from Příbram, Czech Republic. Eur. J. Mineral. 2021, 33, 175–187. [Google Scholar] [CrossRef]
- Dörr, W.; Zulauf, G. Elevator tectonics and orogenic collapse of a Tibetan-style plateau in the European Variscides: The role of the Bohemian shear zone. Int. J. Earth Sci. (Geol. Rundsch.) 2010, 99, 299–325. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dolníček, Z.; Sejkora, J.; Škácha, P. Hypogene Alteration of Base–Metal Mineralization at the Václav Vein (Březové Hory Deposit, Příbram, Czech Republic): The Result of Recurrent Infiltration of Oxidized Fluids. Minerals 2024, 14, 1038. https://doi.org/10.3390/min14101038
Dolníček Z, Sejkora J, Škácha P. Hypogene Alteration of Base–Metal Mineralization at the Václav Vein (Březové Hory Deposit, Příbram, Czech Republic): The Result of Recurrent Infiltration of Oxidized Fluids. Minerals. 2024; 14(10):1038. https://doi.org/10.3390/min14101038
Chicago/Turabian StyleDolníček, Zdeněk, Jiří Sejkora, and Pavel Škácha. 2024. "Hypogene Alteration of Base–Metal Mineralization at the Václav Vein (Březové Hory Deposit, Příbram, Czech Republic): The Result of Recurrent Infiltration of Oxidized Fluids" Minerals 14, no. 10: 1038. https://doi.org/10.3390/min14101038
APA StyleDolníček, Z., Sejkora, J., & Škácha, P. (2024). Hypogene Alteration of Base–Metal Mineralization at the Václav Vein (Březové Hory Deposit, Příbram, Czech Republic): The Result of Recurrent Infiltration of Oxidized Fluids. Minerals, 14(10), 1038. https://doi.org/10.3390/min14101038