The Diversity of Rare-Metal Pegmatites Associated with Albite-Enriched Granite in the World-Class Madeira Sn-Nb-Ta-Cryolite Deposit, Amazonas, Brazil: A Complex Magmatic-Hydrothermal Transition
Abstract
:1. Introduction
2. Geological Setting and the History of Geoscientific Studies
2.1. Geological Setting from the Oldest to the Youngest Lithologies
2.2. The Albite-Enriched Granite Host Rock
2.3. The Madeira Rare-Metal Deposit
3. Materials and Methods
4. Results
4.1. Miarolitic Pegmatites
4.1.1. Structure
4.1.2. Texture and Mineral Assemblage
4.2. Pegmatite Veins
4.2.1. Structure
4.2.2. Texture
4.2.3. Mineral Assemblage
4.3. Pegmatitic Core Albite-Enriched Granite
4.3.1. Structure and Texture
4.3.2. Mineral Assemblage
4.4. Border Pegmatites
4.4.1. Structure and Texture
4.4.2. Mineral Assemblage
4.5. Chemical Studies of Selected Minerals
4.5.1. Thorite
4.5.2. Xenotime
4.5.3. Genthelvite
4.5.4. Gagarinite
4.5.5. Riebeckite
4.5.6. Polylithionite
4.5.7. Pyrochlore
4.5.8. Columbite
4.5.9. Other Products of Pyrochlore Alteration
4.6. Whole Rock Geochemical Data
4.6.1. Trends of Compositional Variation
4.6.2. REE Contents and Patterns
4.6.3. Chemical Correlations
5. Discussion
5.1. Paragenetic Evolution in the Magmatic and Hydrothermal Stages of the Studied Pegmatites
5.1.1. Magmatic Phases
5.1.2. Hydrothermal Phases
5.2. The Parental Rock
5.3. Role of Fluorine in Magmatic-Hydrothermal Systems
5.4. Nb/Ta Ratio Behavior in Magmatic-Hydrothermal Systems
5.5. Emplacement of the Host Rock and the Studied Pegmatites
5.5.1. Host Rock
5.5.2. Border Pegmatites
5.5.3. Pegmatite Veins
5.5.4. Miarolitic Pegmatites and Pegmatitic CAG
5.6. Classification of the Studied Pegmatites
5.7. Pegmatite Genesis
5.7.1. Border Pegmatites
5.7.2. Pegmatitic CAG and Amphibole-Rich PEG
5.7.3. Miarolitic Pegmatites
5.7.4. Polylithionite-Rich PEG and Cryolite-Rich PEG
5.8. Source of the Hydrothermal Fluids
5.8.1. Hydrothermal Fluids in the Pegmatites
5.8.2. Hydrothermal Fluid in the BAG and CAG
6. Conclusions
- The ascent of the albite-enriched granite magma triggered rapid decompression, causing separation of an F-poor, K-Ca-Sr-Zr-Y-HREE-rich aqueous phase from the BAG melt. This fluid ascended and crystallized early as border pegmatites.
- Continued crystallization in the CAG led to a highly fractionated residual melt, forming pegmatitic CAG enriched in Rb, Nb, Ta, Th, and other HFSE.
- Reverse faulting may have caused a second pressure quench, prompting the separation of a supercritical aqueous melt enriched in Y, Li, Be, Zn, and F. This melt intruded fractures and miarolitic cavities, forming amphibole-rich PEG and miarolitic pegmatites.
- During this stage, melt–melt immiscibility occurred, producing two distinct phases: a K-F-rich aluminosilicate melt (low in H2O), enriched in Y, Li, Be, and Zn; and a Na-F-rich aqueous melt (low in SiO2), leading to the formation of polylithionite-rich PEG and cryolite-rich PEG, respectively.
- The magmatic–hydrothermal transition occurred independently in each body—border pegmatites, BAG, CAG, and pegmatites veins—driven by their distinct compositional and chronological crystallization histories. Residual aqueous fluids exsolved upon H2O saturation, with local melt composition controlling elemental availability.
- In border pegmatites and pegmatite veins, exsolution of F-rich hydrothermal fluids led to the formation of fluorite and cryolite II, respectively, along with intense autometasomatic alteration of magmatic minerals. In the CAG, this process generated a massive cryolite body and extensive hydrothermal alteration in the pluton’s core.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dill, H.G. Pegmatites and aplites: Their genetic and applied ore geology. Ore. Geol. Rev. 2015, 69, 417–561. [Google Scholar] [CrossRef]
- Cameron, E.N.; Jahns, R.H.; Page, L.R. Internal structure of granitic pegmatites. Econ. Geol. 1949, 2, 115. [Google Scholar]
- Kang, K.; Ma, Y.; Zhang, P.; Li, H.; Wang, X.; Liao, Z.; Niu, L.; Chen, J.; Liu, X.; Xu, X. Geochronology and Geochemistry of Granitic Pegmatites from Tashidaban Li Deposit in the Central Altun Tagh, Northwest China. Minerals 2024, 14, 542. [Google Scholar] [CrossRef]
- Dill, H.G. Geology and chemistry of Variscan-type pegmatite systems (SE Germany)-With special reference to structural and chemical pattern recognition of felsic mobile components in the crust. Ore. Geol. Rev. 2018, 92, 205–239. [Google Scholar] [CrossRef]
- Dill, H.G. Coupling restites and mobilizates–Geological and litho-chemical investigations of paired belts of calcsilicate fels and quartzite (SE German Basement)-Quo vadis David London’s pegmatology? Ore. Geol. Rev. 2019, 105, 636–666. [Google Scholar] [CrossRef]
- Jahns, R.H.; Burnham, C.W. Experimental studies of pegmatite genesis; l, A model for the derivation and crystallization of granitic pegmatites. Econ. Geol. 1969, 64, 843–864. [Google Scholar] [CrossRef]
- Jahns, R.H. Internal evolution of pegmatite bodies. MAC Short Course Handb. 1982, 8, 293–327. [Google Scholar]
- London, D. Pegmatites. Can. Mineral. Spec. Publ. 2008, 10, 347. [Google Scholar]
- Thomas, R.; Webster, J.D.; Heinrich, W. Melt inclusions in pegmatite quartz: Complete miscibility between silicate melts and hydrous fluids at low pressure. Contrib. Mineral. Petrol. 2000, 139, 394–401. [Google Scholar] [CrossRef]
- Thomas, R.; Webster, J.D.; Rhede, D.; Seifert, W.; Rickers, K.; Förster, H.J.; Heinrich, W.; Davidson, P. The transition from peraluminous to peralkaline granitic melts: Evidence from melt inclusions and accessory minerals. Lithos 2006, 91, 137–149. [Google Scholar] [CrossRef]
- Thomas, R.; Davidson, P. Water and melt/melt immiscibility, the essential components in the formation of pegmatites; evidence from melt inclusions. Z. Geol Wiss. 2008, 36, 347–364. [Google Scholar]
- London, D.; Kontak, D.J. Granitic pegmatites: Scientific wonders and economic bonanzas. Elements 2012, 8, 257–261. [Google Scholar] [CrossRef]
- London, D. Ore-forming processes within granitic pegmatites. Ore. Geol. Rev. 2018, 101, 349–383. [Google Scholar] [CrossRef]
- Romer, R.; Pichanvant, M. Rare metal (Sn, W, Ta-Nb, Li) granites and pegmatites. In Elsevier Reference Collection in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2021; pp. 840–846. [Google Scholar]
- Li, J.K.; Wang, D.H.; Chen, Y.C. The ore-forming mechanism of the Jiajika pegmatite-type rare metal deposit in western Sichuan province: Evidence from isotope dating. Acta Geol. Sin. Engl. Ed. 2013, 87, 91–101. [Google Scholar]
- Fei, G.C.; Menuge, J.F.; Chen, C.S.; Yang, Y.L.; Deng, Y.; Li, Y.G.; Zheng, L. Evolution of pegmatite ore-forming fluid: The Lijiagou spodumene pegmatites in the Songpan-Garze fold belt, southwestern Sichuan province, China. Ore. Geol. Rev. 2021, 139, 104441. [Google Scholar] [CrossRef]
- Deng, J.Y.; Li, J.K.; Zhang, D.H.; Chou, I.M.; Yan, Q.G.; Xiong, X. Origin of pegmatitic melts from granitic magmas in the formation of the Jiajika lithium deposit in the eastern Tibetan Plateau. Asian Earth Sci. 2022, 229, 105147. [Google Scholar] [CrossRef]
- Sun, Z.H.; Qin, K.Z.; Mao, Y.J.; Tang, D.M.; Wang, F.Y.; Evans, N.J. Mineral chemistry of pyrochlore supergroup minerals from the Boziguoer Nb-Ta-Zr-Rb-REE deposit, NW China: Implications for Nb enrichment by alkaline magma differentiation. Minerals 2022, 12, 785. [Google Scholar] [CrossRef]
- Xue, Y.; Sun, N.Y.; Li, G.W. Evolution of Nb–Ta oxide minerals and their relationship to the magmatic-hydrothermal processes of the Nb–Ta mineralized syenitic dikes in the Panxi region, SW China. Minerals 2022, 11, 1204. [Google Scholar] [CrossRef]
- Chen, X.; Chen, C.; Lai, X.; Yang, Y.; Gu, Y.; Cai, Y. Whole-Rock Geochemistry and Mica Compositions in Lijiagou Pegmatite Spodumene Deposit, Western Sichuan, China. Minerals 2024, 14, 69. [Google Scholar] [CrossRef]
- Yin, R.; Sun, X.; Wang, S.; Wu, B. Mineral Chemistry of Pyrochlore Supergroup Minerals as Records of Nb Mineralization Processes in NYF-Type Pegmatites: A Case Study of the Emeishan Large Igneous Province, SW China. Minerals 2024, 14, 13. [Google Scholar] [CrossRef]
- Bastos Neto, A.C.; Ferron, T.M.M.; Chauvet, A.; Chemale, F.; Lima, E.F.; Barbanson, L.; Costa, C.F.M. U-Pb dating of the Madeira Suite and structural control of the albite-enriched granite at Pitinga (Amazônia, Brazil): Evolution of the A-type magmatism and implications for the genesis of the Madeira Sn-Ta-Nb (REE, cryolite) world-class deposit. Precambrian Res. 2014, 243, 181–196. [Google Scholar] [CrossRef]
- Bastos Neto, A.C.; Pereira, V.P.; Ronchi, L.H.; Lima, E.F.; Frantz, J.C. The world-class Sn, Nb, Ta, F (T, REE, Li) deposit and the massive cryolite associated with the albite-enriched facies of the Madeira A-type granite, Pitinga Mining District, Amazonas State, Brazil. Can. Mineral. 2009, 47, 1329–1357. [Google Scholar] [CrossRef]
- Almeida, F.F.M.; Hasui, Y.; Brito Neves, B.B.; Fuck, R.A. Brazilian structural Provinces: An introduction. Earth Sci. Rev. 1981, 17, 1–29. [Google Scholar] [CrossRef]
- Santos, J.O.S.; Hartmann, L.A.; Gaudete, H.E.; Groves, D.I.; McNaughton, N.J.; Fletcher, L.R.A. New understanding of the Provinces of Amazon Craton based on Integration of Field Mapping and U-Pb and Sm-Nd geochronology. Gondwana Res. 2000, 3, 453–488. [Google Scholar] [CrossRef]
- Veiga, J.P., Jr.; Nunes, A.C.B.; Fernandes, A.S.; Amaral, J.E.; Pessoa, M.R.; Cruz, S.A.S. Projeto Sulfetos de Uatumã. In Relatório Final; DNPM/CPRM: Manaus, Brazil, 1979. [Google Scholar]
- Ferron, J.M.T.M.; Bastos Neto, A.C.; Lima, E.F.; Costi, H.T.; Moura, C.A.V.; Prado, M.; Galarza, M.A. Geologia e cronologia Pb-Pb de rochas graníticas e vulcânicas ácidas a intermediárias paleoproterozóicas da Província de Pitinga, Cráton Amazônico. Rev. Bras. Geociências 2006, 36, 499–512. [Google Scholar] [CrossRef]
- Pierosan, R.; Lima, E.F.; Nardi, L.V.S.; Campos, C.P.; Bastos Neto, A.C.; Ferron, J.M.T.M.; Prado, M. Paleoproterozoic (~1.88 Ga) felsic volcanism of the Iricoumé Group in the Pitinga Mining District area, Amazonian Craton, Brazil: Insights in ancient volcanic processes from field and petrological data. An. Acad. Bras. Ciências 2011, 83, 921–937. [Google Scholar] [CrossRef]
- Pierosan, R.; Lima, E.F.; Nardi, L.V.S.; Bastos Neto, A.C.; Campos, C.P.; Ferron, J.M.T.M.; Prado, M. Geochemistry of Paleoproterozoic volcanic rocks of the Iricoumé Group, Pitinga Mining District, Amazonian craton, Brazil. Int. Geol. Rev. 2011, 53, 946–976. [Google Scholar] [CrossRef]
- Simões, M.S.S.; Almeida, M.E.; Souza, A.G.H.; Silva, B.D.P.B.; Rocha, P.G. Characterization of the volcanic and hypabyssal rocks of the Paleoproterozoic Iricoumé Group in the Pitinga region and Balbina Lake area, Amazonian craton, Brazil: Petrographic distinguishing features and emplacement conditions. J. Volcanol. Geotherm. Res. 2014, 286, 138–147. [Google Scholar] [CrossRef]
- Costi, H.T. Petrologia de Granitos Alcalinos Com Alto Flúor Mineralizados em Metais Raros: O exemplo do Albita-Granito da Mina Pitinga, Amazonas, Brazil. Ph.D. Thesis, Universidade Federal do Pará, Belém, Brazil, 2000; p. 345. [Google Scholar]
- Horbe, M.A.; Horbe, A.C.; Costi, H.T.; Teixeira, J.T. Geochemical characteristics of cryolite-tin-bearing granites from the Pitinga mine, northwestern Brazil—A review. J. Geochem. Explor. 1991, 40, 227–249. [Google Scholar] [CrossRef]
- Lenharo, S.L.R.; Pollard, P.J.; Born, H. Petrology and textural evolution of granites associated with tin and rare-metals mineralization at the Pitinga mine, Amazonas, Brazil. Lithos 2003, 66, 37–61. [Google Scholar] [CrossRef]
- Costi, H.T.; Borges, R.M.; Dall’Agnol, R. Depósitos de estanho da mina Pitinga, estado do Amazonas. In Caracterização de Depósitos Minerais em Distritos Mineiros da Amazônia; Marini, O.J., Queiroz, E.T., Ramos, B.W., Eds.; DNPM-CT/MINERAL-ADIMB: Brasília, Brazil, 2005; pp. 391–475. [Google Scholar]
- Costi, H.T.; Dall’Agnol, R.; Pichavant, M.; Ramo, O.T. The peralkaline tin-mineralized Madeira cryolite albite-rich granite of Pitinga, Amazonian Craton, Brazil: Petrography, mineralogy and crystallization processes. Can. Miner. 2009, 47, 1177–1203. [Google Scholar] [CrossRef]
- Minuzzi, O.R.R. Gênese e Evolução da Mineralização de Criolita, Pirocloro e Columbita da Subfacies Albita Granito de Núcleo, Mina Pitinga, Amazonas, Brazil. Ph.D. Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 2005; p. 249. [Google Scholar]
- Hadlich, I.W.; Bastos Neto, A.C.; Botelho, N.F.; Pereira, V.P. The thorite mineralization in the Madeira Sn-Nb-Ta world-class deposit (Pitinga, Brazil). Ore. Geol. Rev. 2019, 105, 445–466. [Google Scholar] [CrossRef]
- Pires, A.C.; Bastos Neto, A.C.; Pereira, V.P.; Botelho, N.F.; Minuzzi, O.R.R. Gagarinita-(Y) com polimorfo de fluocerita: Provável caso de formação de um novo mineral por exsolução de ETRL a partir de fluoreto de ETRLP (Mina Pitinga–AM). Rev. Bras. Geociências 2006, 36, 155–164. [Google Scholar] [CrossRef]
- Bastos Neto, A.C.; Pereira, V.P.; Pires, A.C.; Barbanson, L.; Chauvet, A. Fluorine-rich xenotime from the Nb-Ta-Sn Madeira world-class deposit associated with the albite-enriched granite at Pitinga, Amazonia, Brazil. Can. Mineral. 2012, 50, 1019–1032. [Google Scholar] [CrossRef]
- Schuck, C. Contribuição à Mineralogia do Albita Granito Madeira (Mina Pitinga, Amazonas): Estudo do Anfibólio, Biotita e Polilitionita. Bachelor’s Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 2015; p. 100. [Google Scholar]
- Stolnik, D. Caracterização da Xenotima na Fácies Pegmatítica do Albita Granito de Núcleo, Pitinga (AM). Bachelor’s Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 2015; p. 67. [Google Scholar]
- Lengler, H.F. Pegmatitos do Albita Granito Madeira: Avaliação do Minério Para Fins de Beneficiamento. Bachelor’s Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 2016; p. 118. [Google Scholar]
- Paludo, C.M.; Bastos Neto, A.C.; Pereira, V.P.; Botelho, N.F. Mineralogia e geoquímica de pegmatitos ricos em ETR, F e metais alcalinos associados à facies albita granito no depósito de Sn-Nb-Ta-(F, ETR, U, Th) Madeira (mina Pitinga, AM, Brazil). Pesqui. Em Geociências 2018, 45, e0747. [Google Scholar] [CrossRef]
- Bastos Neto, A.C.; Pereira, V.P.; Lima, E.F.; Ferron, J.M.; Minuzzi, O.; Prado, M.; Ronchi, L.H.; Flores, J.A.; Frantz, J.C.; Pires, A.; et al. A jazida de criolita da Mina Pititnga (Amazonas). In Caracterização de Depósitos Minerais em Distritos Mineiros da Amazônia; Marini, O.J., Queiroz, E.T., Ramos, B.W., Eds.; DNPM-CT/MINERAL-ADIMB: Brasília, Brazil, 2005; pp. 481–547. [Google Scholar]
- Minuzzi, O.R.R.; Bastos Neto, A.C.; Pereira, V.P.; Flores, J.A.A. The massive cryolite deposit and the disseminated ore of cryolite from the Pitinga mine (Amazon, Brazil). Rev. Bras. Geociências 2006, 36, 104–123. [Google Scholar] [CrossRef]
- Minuzzi, O.R.R.; Bastos Neto, A.C.; Pereira, V.P.; Nunes, L. A columbitização do pirocloro do albita granito na mina de Pitinga (AM): Relações com a mineralização de criolita. Rev. Bras. Geociências 2006, 35, 123–137. [Google Scholar] [CrossRef]
- Minuzzi, O.R.R.; Bastos Neto, A.C.; Formoso, M.L.L.; Andrade, S.; Janasi, V.A.; Flores, J.A. Rare Earth elements and yttrium geochemistry applied to the genetic study of cryolite ore at the Pitinga Mine (Amazon, Brazil). An. Acad. Bras. Ciências 2008, 80, 719–733. [Google Scholar] [CrossRef]
- Pires, A.C. A Gagarinita e Fases Associadas no Granito Madeira (Pitinga, Amazonas). Master’s Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 2005; p. 122. [Google Scholar]
- Pires, A.C. Xenotima, Gagarinita, Fluocerita e Waimirita da Mina Pitinga (AM): Mineralogia e Avaliação Preliminar do Potencial do Albita Granito Para Exploração de Elementos Terras Raras e Ítrio. Ph.D. Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 2010; p. 201. [Google Scholar]
- Ronchi, F.C.; Althoff, F.J.; Bastos Neto, A.C.; Dill, H.G. Structural control of REE-pegmatites associated with the world-class Sn-Nb-Ta-cryolite deposit at the Pitinga mine, Amazonas, Brazil. Pesqui. Em Geociências 2019, 46, e0734. [Google Scholar] [CrossRef]
- Hadlich, I.W.; Bastos Neto, A.C.; Pereira, V.P.; Botelho, N.F.; Ronchi, L.H.; Dill, H.G. Mn-Fe-rich genthelvite from pegmatites associated with the Madeira Sn-Nb-Ta world-class deposit, Pitinga, Brazil: New constraints on the magmatic-hydrothermal transition in the albite-enriched granite system. Mineral. Mag. 2024, 88, 111–126. [Google Scholar] [CrossRef]
- Hadlich, I.W.; Bastos Neto, A.C.; Pereira, V.P.; Dill, H.G.; Botelho, N.F. The radioactive rare metal mineralization in the world-class Sn-Nb-Ta-U-Th-REE-deposit Madeira (Pitinga, Amazonas State, Brazil): With special reference to the complex alteration of pyrochlore-group minerals. Minerals 2024, 14, 895. [Google Scholar] [CrossRef]
- Ronchi, L.H.; Bastos Neto, A.C.; Gedoz, S.C.; Weber, M.L.; Pereira, V.P.; Andrek, M. A transição magmático-hidrotermal registrada por inclusões fluidas no albita-granito de núcleo, Mina Pitinga, Amazonas, In Contribuições à Metalogenia do Brazil; Frantz, J.C., Charão, J.M., Jost, H., Eds.; CPRM-UFRGS: Porto Alegre, Brazil, 2011; Volume 10. [Google Scholar]
- Siachoque, A.; Garcia, R.; Vlach, S.R.F. Occurrence and composition of columbite-(Fe) in the reduced A-type Desemborque Pluton, Graciosa Province (S-SE Brazil). Minerals 2020, 10, 411–428. [Google Scholar] [CrossRef]
- Anders, E.; Grevesse, N. Abundances of the elements: Meteoritic and solar. Geochim. Cosmochim. Acta 1989, 53, 197–214. [Google Scholar] [CrossRef]
- Hawthorne, F.C.; Oberti, R.; Harlow, G.E.; Maresch, W.V.; Martin, R.F.; Schumacher, J.C.; Welch, M.D. Nomenclature of the amphibole supergroup. Am. Mineral. 2012, 97, 2031–2048. [Google Scholar] [CrossRef]
- Tindle, A.G.; Webb, P.C. Estimation of lithium content in trioctahedral micas using microprobe data; application to micas from granitic rocks. Eur. J. Mineral. 1990, 2, 595–610. [Google Scholar] [CrossRef]
- Masuda, A.; Kawakami, O.; Dohmoto, Y.; Takenaka, T. Lanthanite tetrad effects in nature: Two mutually opposite types, W and M. Geochem. J. 1987, 21, 119–124. [Google Scholar] [CrossRef]
- Černý, P. Exploration strategy and methods for pegmatite deposits of tantalum. In Lanthanides, Tantalum and Niobium; Möller, P., Černý, P., Saupé, F., Eds.; Springer: Berlin/Heidelberg, Germany, 1989; pp. 274–310. [Google Scholar]
- Van Lichtervelde, M.; Holtz, F.; Hanchar, J.M. Solubility of manganotantalite, zircon and hafnon in highly fluxed peralkaline to peraluminous pegmatitic melts. Contrib. Mineral. Petrol. 2010, 160, 17–32. [Google Scholar] [CrossRef]
- Costi, H.T.; Dall’Agnol, R.; Moura, C.A.V. Geology and Pb-Pb Geochronology of Paleoproterozoic volcanic and granitic rocks of Pitinga province, Amazonian craton, northern Brazil. Int. Geol. Rev. 2000, 42, 832–849. [Google Scholar] [CrossRef]
- Rosenberg, P.E.; Foit, F.F. Fe2+-F avoidance in silicates. Geochim. Cosmochim. Acta 1977, 41, 345–346. [Google Scholar] [CrossRef]
- Munoz, J.L. F-OH and Cl-OH exchange in micas with applications to hydrothermal ore deposits. Rev. Mineral. Geochem. 1984, 13, 469–493. [Google Scholar]
- Sharygin, V.V.; Zubkova, N.V.; Pekov, I.V.; Rusakov, V.S.; Ksenofontov, D.A.; Nigmatulina, E.N.; Pushcharovsky, D.Y. Lithium-containing Na-Fe amphibole from cryolite rocks of the Katugin rare-metal deposit (Transbaikalia, Russia): Chemical features and crystal structure. Russ. Geol. Geophys. 2016, 57, 1191–1203. [Google Scholar] [CrossRef]
- Breiter, K.; Galiová, M.V.; Hložková, M.; Korbelová, Z.; Kynický, J.; Costi, H.T. Trace element composition of micas from rare-metal granites of different geochemical affiliations. Lithos 2023, 446–558, 107135. [Google Scholar] [CrossRef]
- Černý, P.; Meintzer, R.E.; Anderson, A.J. Extreme fractionation in rare-element granitic pegmatites: Selected examples of data and mechanisms. Can. Mineral. 1985, 23, 381–421. [Google Scholar]
- Černý, P.; London, D.; Novák, M. Granitic pegmatites as reflections of their sources. Elements 2012, 8, 289–294. [Google Scholar] [CrossRef]
- Thomas, R.; Forster, H.; Rickers, K.; Webster, J.D. Formation of extremely F-rich hydrous melt fractions and hydrothermal fluids during differentiation of highly evolved tin-granite magmas: A melt/fluid-inclusion study. Contrib. Mineral. Petrol. 2005, 148, 582–601. [Google Scholar] [CrossRef]
- Thomas, R.; Davison, P.; Beurlen, H. The competing models for the origin and internal evolution of granitic pegmatites in the light of melt and fluid inclusion research. Mineral. Petrol. 2012, 106, 55–73. [Google Scholar] [CrossRef]
- Thomas, R.; Davidson, P. Water in granite and pegmatite forming melts. Ore Geol. Rev. 2012, 46, 32–46. [Google Scholar] [CrossRef]
- Xie, Y.L.; Wang, B.G.; Li, Y.X.; Li, G.M.; Dong, S.L.; Guo, X.; Wang, L. Characteristics of Pegmatite-Related Fluids and Significance to Ore-Forming Processes in the Zhaxikang Pb-Zn-Sb Polymetallic Deposit, Tibet, China. Acta Geol. Sin. 2015, 89, 811–821. [Google Scholar]
- London, D.; Morgan, G.B.V.I. The pegmatite puzzle. Elements 2012, 8, 263–268. [Google Scholar] [CrossRef]
- Stilling, A.; Černý, P.; Vanstone, P.J. The Tanco pegmatite at Bernic Lake, Manitoba. XVI. Zonal and bulk compositions and their petrogenetic significance. Can. Mineral. 2006, 44, 599–623. [Google Scholar]
- Staatz, M.H.; Trites, A.F. Geology of the Quartz Creek Pegmatite District, Gunnison Country, Colorado; U.S. Geological Survey: Reston, VA, USA, Report 138; 1955; p. 288. [Google Scholar]
- Haapala, I. On the granitic pegmatites in the Peraseinajoki-Alavus area, south Pohjanmaa, Finland. Bull. Comm. Géologique Finl. 1966, 224, 1–98. [Google Scholar]
- Mulligan, R. Geology of Canadian lithium deposits. Econ. Geol. 1965, 21, 131. [Google Scholar]
- Gundsambuu, T. Genetic relationship between the tin-tungsten deposits and granitic magmatism of Mongolia. Geol. Surv. 1974, 144, 99–103. [Google Scholar]
- Jahns, R.H. The genesis of pegmatites. Am. Mineral. 1953, 38, 1078–1112. [Google Scholar]
- Bøggild, O.B. The mineralogy of Greenland. Meddelelser Grønland 1953, 149, 1–442. [Google Scholar]
- Mineyev, D.A. Geochemical differentiation of the rare earths. Geochem. 1963, 12, 1129–1149. [Google Scholar]
- Wood, S.A. The aqueous geochemistry of the rare earth elements and yttrium–2: Theoretical predictions of speciation in hydrothermal solutions to 350 °C at saturated water pressure. Chem. Geol. 1990, 88, 99–125. [Google Scholar] [CrossRef]
- Williams-Jones, A.E.; Vasyukova, O.V. Niobium, Critical Metal, and Progeny of the Mantle. Econ. Geol. 2023, 118, 837–855. [Google Scholar] [CrossRef]
- Ballouard, C.; Massuyeau, M.; Elburg, M.A.; Tappe, S.; Viljoen, F.; Brandenburg, J.T. The magmatic and magmatic-hydrothermal evolution of felsic igneous rocks as seen through Nb-Ta geochemical fractionation, with implications for the origins of rare-metal mineralizations. Earth Sci. Rev. 2020, 203, 103115. [Google Scholar] [CrossRef]
- Ogunleye, P.O.; Garba, I.; Ike, E.C. Factors contributing to enrichment and crystallization of niobium in pyrochlore in the Kaffo albite arfvedsonite granite, Ririwai Complex, Younger Granites province of Nigeria. J. Afr. Earth Sci. 2006, 44, 372–382. [Google Scholar] [CrossRef]
- Goodenough, K.M.; Upton, B.G.J.; Ellam, R.M. Geochemical evolution of the Ivigtut granite, South Greenland: A fluorine-rich “A-type” intrusion. Lithos 2000, 51, 205–221. [Google Scholar] [CrossRef]
- Ballouard, C.; Poujol, M.; Boulvais, P.; Branquet, Y.; Tartèse, R.; Vigneresse, J.L. Nb-Ta fractionation in peraluminous granites: A marker of the magmatic-hydrothermal transition. Geology 2016, 44, 231–234. [Google Scholar] [CrossRef]
- Möller, V.; Williams-Jones, A.E. Petrogenesis of the Nechalacho Layered Suite, Canada: Magmatic evolution of a REE-Nb-rich nepheline syenite intrusion. J. Petrol. 2016, 57, 229–276. [Google Scholar] [CrossRef]
- Münker, C.; Pfänder, J.A.; Weyer, S.; Büchl, A.; Kleine, T.; Mezger, K. Evolution of planetary cores and the earth-moon system from Nb/Ta systematics. Science 2003, 301, 84–87. [Google Scholar] [CrossRef]
- Martin, R.F. A-type granites of crustal origin ultimately result from open-system fenitization-type reactions in an extensional environmental. Lithos 2006, 91, 125–136. [Google Scholar] [CrossRef]
- Baumann, L. Tin deposits of the Erzgebirge, Institution of Mining and Metallurgy Transactions. Econ. Geol. 1970, 79, 68–75. [Google Scholar]
- Lukkari, S. Petrography and geochemistry of the topaz-bearing granite stocks in Artjärvi and Sääskjärvi, western margin of the Wiborg rapakivi granite batholith. Bull. Geol. Soc. Finl. 2002, 74, 115–132. [Google Scholar] [CrossRef]
- Soloviev, S.G.; Kryazhev, S.; Dvurechenskaya, S. Geology, igneous geochemistry, mineralization, and fluid inclusion characteristics of the Kougarok tin-tantalum-lithium prospect, Seward Peninsula, Alaska, USA. Miner. Depos. 2019, 55, 79–106. [Google Scholar] [CrossRef]
- Bouabsa, L.; Marignac, C.; Chabbi, R.; Cuney, M. The Filfila (NE Algeria) topaz-bearing granites and their rare metal minerals: Petrologic and metallogenic implications. J. Afr. Earth Sci. 2010, 56, 107–113. [Google Scholar] [CrossRef]
- Breiter, K.; Müller, A.; Leichmann, J.; Gabasová, A. Textural and chemical evolution of a fracionated granitic system: The Podlesí stock, Czech Republic. Lithos 2005, 80, 323–345. [Google Scholar] [CrossRef]
- Müller, A.; Herklotz, G.; Giegling, H. Chemistry of quartz to the Zinnwald/Cínovec Sn-W-Li greisen-type deposit, Eastern Erzgebirge, Germany. J. Geochem. Explor. 2018, 190, 357–373. [Google Scholar] [CrossRef]
- Pereira, R.M.; Rodrigues, D.; Avila, C.A.; Neumann, R. Stockscheider quartzo-muscovítico e pegmatíticos na zona de cúpula do granitoide Ritápolis, região de São João del Rei, Minas Gerais. Anuário Inst. Geociências UFRJ 2011, 34, 59–69. [Google Scholar] [CrossRef]
- Zhu, J.C.; Li, R.K.; Li, F.C.; Xiong, X.L.; Zhou, F.Y.; Huang, X.L. Topaz-albite granites and rare-metal mineralization in the Limu District, Guagxi Province, southeast China. Miner. Depos. 2001, 36, 393–405. [Google Scholar] [CrossRef]
- Haapala, I.; Ojanperä, P. Genthelvite-bearing greisens in southern Finland, Geological Survey of Finland. Bulletin 1972, 259, 27. [Google Scholar]
- Zirner, A.L.K.; Marks, M.A.W.; Wenzel, T.; Jacob, D.E.; Markl, G. Rare earth elements in apatite as a monitor of magmatic and metasomatic processes: The Ilimaussaq complex, South Greenland. Lithos 2015, 228–229, 15–22. [Google Scholar] [CrossRef]
- Schmitz, C.; Burt, D.M. The Black Pearl Mine, Arizona: Wolframite veins and stockscheider pegmatite related to an albitic stock. In Ore-Bearing Granite Systems: Petrogenesis and Mineralizing Processes; Stein, H.J., Hannah, J.L., Eds.; Geological Society of America Special Paper; Geological Society of America: Boulder, CO, USA, 1990; Volume 246, pp. 221–232. [Google Scholar]
- Thomas, R.; Davidson, P.; Rhede, D.; Leh, M. The miarolitic pegmatites from the Königshain: A contribution to understanding the genesis of pegmatites. Contrib. Mineral. Petrol. 2009, 157, 505–523. [Google Scholar] [CrossRef]
- Berni, G.V.; Wagner, T.; Fusswinkel, T. From a F-rich granite to a NYF pegmatite: Magmatic-hydrothermal fluid evolution of the Kymi topaz granite stock, SE Finland. Lithos 2020, 364–365, 105538. [Google Scholar] [CrossRef]
- Černý, P. Constitution, petrology, affiliations and categories of miarolitic pegmatites. In Mineralogy and Petrology of Shallow Depth Pegmatites; Pezzotta, F., Ed.; Memorie de la Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano: Milan, Italy, 2000; Volume 30, pp. 5–12. [Google Scholar]
- Zaraisky, G.P.; Korzhinskaya, V.S.; Kotova, N.P. Experimental studies of Ta2O5 and columbite-tantalite solubility in fluoride solutions from 300 to 550 °C and 50 to 100 MPa. Mineral. Petrol. 2010, 99, 287–300. [Google Scholar] [CrossRef]
- Timofeev, A.; Migdisov, A.A.; Williams-Jones, A.E. An experimental study of the solubility and speciation of tantalum in fluoride-bearing aqueous solutions at elevated temperature. Geochim. Cosmochim. Acta 2017, 197, 294–304. [Google Scholar] [CrossRef]
- Veksler, I.V.; Dorfman, A.M.; Dulski, P.; Kamenetsky, V.S.; Danyushevsky, L.V.; Jeffries, T.; Dingwell, D.B. Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts, with implications to the origin of natrocarbonatite. Geochim. Cosmochim. Acta 2012, 79, 20–40. [Google Scholar] [CrossRef]
- Chevychelov, V.Y.; Zaraisky, G.P.; Borisovskii, S.E.; Borkov, D.A. Effect of melt composition and temperature on the partitioning of Ta, Nb, Mn, and F between granitic (alkaline) melt and fluorine-bearing aqueous fluid: Fractionation of Ta and Nb and conditions of ore formation in rare-metal granites. Petrology 2005, 13, 305–321. [Google Scholar]
- Harlaux, M.; Mercadier, J.; Bonzi, W.M.-E.; Kremer, V.; Marignac, C.; Cuney, M. Geochemical signature of magmatic-hydrothermal fluids exsolved from the Beauvoir Rare-Metal Granite (Massif Central, France): Insights from LA-ICPMS analysis of primary fluid inclusions. Geofluids 2017, 2017, 25. [Google Scholar] [CrossRef]
- Lenharo, S.L.R. Evolução Magmática e Modelo Metalogenético dos Granitos Mineralizados da Região de Pitinga, Amazonas, Brazil. Ph.D. Thesis, Universidade de São Paulo, São Paulo, Brazil, 1998; p. 290. [Google Scholar]
CAG Fluocerite a | CAG Gagarinite a | Cryolite-Rich PEG Gagarinite b | ||||
---|---|---|---|---|---|---|
Range | 2σ | Range | 2σ | Range | 2σ | |
n c = 24 | n = 16 | n = 25 | ||||
U | d.l. | d.l. | 0.20 | 0.05 | ||
Th | d.l. | d.l. | 0.17 | 0.10 | ||
Y | 0.36 | 0.53 | 31.12 | 1.32 | 25.31 | 1.78 |
HREE | 0.48 | 2.31 | 12.15 | 1.37 | 15.66 | 0.82 |
LREE | 66.15 | 3.21 | 9.03 | 3.05 | 7.12 | 1.66 |
Ca | 0.14 | 0.71 | 8.10 | 0.48 | 7.61 | 1.70 |
Pb | d.l. | d.l. | 0.25 | 0.08 | ||
Sr | d.l. | d.l. | 0.14 | 0.10 | ||
Na | d.l. | 1.90 | 1.01 | 3.19 | 1.38 | |
F | 35.67 | 3.59 | 38.22 | 3.27 | 42.29 | 1.42 |
Total | 102.80 | 4.22 | 100.52 | 3.03 | 101.95 | 2.59 |
Structural formula in a.p.f.u. | ||||||
U | 0.003 | 0.001 | ||||
Th | 0.002 | 0.001 | ||||
Y | 0.010 | 0.010 | 1.009 | 0.051 | 0.917 | 0.087 |
HREE | 0.003 | 0.029 | 0.210 | 0.030 | 0.302 | 0.023 |
LREE | 0.977 | 0.070 | 0.139 | 0.057 | 0.158 | 0.034 |
Ca | 0.007 | 0.037 | 0.584 | 0.028 | 0.609 | 0.094 |
Pb | 0.004 | 0.002 | ||||
Sr | 0.005 | 0.004 | ||||
Na | 0.001 | 0.012 | 0.238 | 0.127 | 0.450 | 0.226 |
F | 3.883 | 0.448 | 5.808 | 0.574 | 5.840 | 0.288 |
LREE/HREE | 289.08 | 243.86 | 0.75 | 0.40 | 0.45 | 0.10 |
CAG a | Amphibole-Rich PEG b | |||
---|---|---|---|---|
Mean | 2σ | Mean | 2σ | |
n c = 43 | n = 19 | |||
SiO2 | 49.38 | 1.27 | 51.14 | 1.20 |
TiO2 | 0.16 | 0.39 | 0.11 | 0.25 |
Al2O3 | 0.75 | 0.42 | 1.03 | 0.54 |
Fe2O3 | - | - | 4.01 | 8.60 |
FeO | - | - | 25.95 | 3.89 |
FeOT | 34.17 | 3.20 | - | - |
MnO | 0.47 | 0.54 | 0.78 | 0.34 |
ZnO | 2.09 | 2.64 | 2.31 | 0.95 |
Na2O | 7.43 | 0.48 | 7.63 | 1.51 |
K2O | 0.27 | 0.25 | 1.02 | 0.79 |
F | 0.67 | 0.27 | 2.12 | 2.27 |
Cl | d.l. | - | 0.01 | 0.02 |
H2O * | 1.58 | 0.14 | 0.83 | 1.12 |
O = F, Cl | −0.28 | 0.12 | −0.90 | 0.96 |
Total | 96.68 | 1.93 | 96.42 | 3.20 |
Structural formula based on 23 oxygens (a.p.f.u.) | ||||
Si4+ | 7.930 | 0.110 | 8.343 | 0.226 |
IVTi4+ | 0.001 | 0.014 | 0.000 | 0.000 |
IVAl3+ | 0.070 | 0.097 | 0.000 | 0.000 |
IVFe3+ | 0.001 | 0.010 | 0.000 | 0.000 |
SumT | 8.002 | 0.015 | 8.343 | 0.226 |
Ti4+ | 0.018 | 0.044 | 0.013 | 0.030 |
VIAl3+ | 0.073 | 0.100 | 0.199 | 0.105 |
Fe3+ | 1.585 | 0.285 | 0.486 | 1.034 |
Fe2+ | 2.996 | 0.334 | 3.543 | 0.609 |
Mn2+ | 0.064 | 0.073 | 0.108 | 0.048 |
Zn2+ | 0.255 | 0.308 | 0.278 | 0.119 |
SumC | 4.991 | 0.092 | 4.614 | 0.278 |
Na+B | 2.000 | 0.000 | 1.998 | 0.017 |
Na+ | 0.313 | 0.162 | 0.417 | 0.530 |
K+ | 0.054 | 0.047 | 0.213 | 0.168 |
SumA | 0.376 | 0.223 | 0.631 | 0.647 |
F− | 0.339 | 0.142 | 1.102 | 1.195 |
Cl− | 0.000 | 0.000 | 0.002 | 0.005 |
OH− * | 1.661 | 0.142 | 0.895 | 1.196 |
CAG 120 m a | CAG 140 m a | CAG 160 m a | Amphibole-Rich PEG b | Polylithionite-rich PEG | Cryolite-Rich PEG | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 2σ | Mean | 2σ | Mean | 2σ | Mean | 2σ | Mean | 2σ | Mean | 2σ | |
nc = 11 | n = 14 | n = 20 | n1 = 32; n2 = 15 d | n = 13 | n = 10 | |||||||
SiO2 | 53.32 | 1.71 | 52.79 | 1.70 | 52.34 | 1.71 | 55.82 | 3.77 | 56.16 | 2.63 | 55.05 | 1.24 |
TiO2 | 0.10 | 0.06 | 0.12 | 0.06 | 0.13 | 0.05 | 0.10 | 0.23 | 0.09 | 0.16 | 0.13 | 0.22 |
UO2 | n.a. | - | n.a. | - | n.a. | - | 1.76 * | 4.14 | 1.04 | 0.06 | 1.01 | 0.09 |
Al2O3 | 12.49 | 0.58 | 12.63 | 0.71 | 12.40 | 0.65 | 12.22 | 1.35 | 12.61 | 0.42 | 12.42 | 0.38 |
HREE2O3 | n.a. | - | n.a. | - | n.a. | - | 0.07 | 0.13 | 0.12 | 0.15 | 0.08 | 0.07 |
LREE2O3 | n.a. | - | n.a. | - | n.a. | - | 0.09 | 0.17 | 0.14 | 0.13 | 0.10 | 0.12 |
FeO | 7.55 | 2.02 | 6.37 | 1.88 | 6.08 | 1.48 | 5.86 | 3.83 | 7.31 | 2.97 | 8.50 | 1.24 |
MnO | 0.22 | 0.09 | 0.34 | 0.13 | 0.24 | 0.38 | 0.15 | 0.19 | 0.12 | 0.18 | 0.16 | 0.11 |
ZnO | 1.14 | 0.33 | 1.21 | 0.43 | 2.51 | 0.72 | 0.54 | 0.61 | 0.25 | 0.18 | 0.72 | 0.20 |
Li2O e | 5.75 | 0.49 | 5.60 | 0.49 | 5.47 | 0.49 | 6.47 | 1.08 | 6.57 | 0.75 | 6.25 | 0.36 |
Na2O | 0.02 | 0.04 | 0.04 | 0.13 | 0.01 | 0.04 | 0.06 | 0.09 | 0.09 | 0.07 | 0.10 | 0.05 |
K2O | 8.57 | 0.41 | 8.06 | 0.38 | 8.24 | 0.24 | 7.48 | 2.74 | 9.27 | 0.48 | 9.01 | 0.20 |
Rb2O | 4.62 | 0.65 | 5.57 | 0.00 | 5.46 | 0.04 | 3.92 | 3.63 | n.a. | - | n.a. | - |
F | 6.40 | 0.68 | 6.70 | 0.00 | 7.53 | 0.65 | 9.18 | 1.10 | 9.26 | 0.48 | 8.92 | 0.37 |
F=O2 | 2.70 | 0.29 | 2.82 | 0.00 | 3.17 | 0.28 | −3.86 | 0.46 | 3.90 | 0.20 | 3.76 | 0.16 |
Total | 97.51 | 1.71 | 96.60 | 1.19 | 97.23 | 1.82 | 97.73 | 4.32 | 103.03 | 1.22 | 98.69 | 1.39 |
Structural formula based on 11 Oxygens (a.p.f.u.) | ||||||||||||
Si4+ | 3.877 | 0.035 | 3.874 | 0.034 | 3.860 | 0.023 | 3.951 | 0.071 | 3.919 | 0.049 | 3.904 | 0.029 |
Ti4+ | 0.006 | 0.004 | 0.006 | 0.004 | 0.007 | 0.003 | 0.006 | 0.012 | 0.005 | 0.009 | 0.007 | 0.012 |
IVAl3+ | 0.123 | 0.035 | 0.126 | 0.034 | 0.140 | 0.023 | 0.052 | 0.060 | 0.081 | 0.049 | 0.096 | 0.029 |
∑IV | 4.006 | 0.004 | 4.006 | 0.004 | 4.007 | 0.003 | 4.008 | 0.022 | 4.005 | 0.009 | 4.007 | 0.012 |
U4+ | 0.028 | 0.066 | 0.016 | 0.001 | 0.016 | 0.001 | ||||||
VIAl3+ | 0.947 | 0.027 | 0.966 | 0.035 | 0.938 | 0.028 | 0.968 | 0.066 | 0.957 | 0.018 | 0.942 | 0.020 |
HREE3+ | 0.002 | 0.004 | 0.003 | 0.005 | 0.002 | 0.003 | ||||||
LREE3+ | 0.002 | 0.004 | 0.003 | 0.003 | 0.003 | 0.003 | ||||||
Fe2+ | 0.207 | 0.060 | 0.176 | 0.056 | 0.169 | 0.045 | 0.157 | 0.108 | 0.193 | 0.083 | 0.227 | 0.035 |
Mn2+ | 0.014 | 0.006 | 0.021 | 0.008 | 0.015 | 0.024 | 0.009 | 0.012 | 0.007 | 0.011 | 0.009 | 0.006 |
Zn2+ | 0.062 | 0.019 | 0.066 | 0.025 | 0.136 | 0.040 | 0.026 | 0.035 | 0.013 | 0.010 | 0.038 | 0.011 |
Li+ | 1.681 | 0.099 | 1.652 | 0.100 | 1.621 | 0.094 | 1.838 | 0.193 | 1.842 | 0.145 | 1.782 | 0.071 |
∑VI | 2.911 | 0.046 | 2.881 | 0.046 | 2.880 | 0.053 | 3.031 | 0.098 | 3.034 | 0.057 | 3.019 | 0.046 |
Na+ | 0.003 | 0.006 | 0.005 | 0.018 | 0.001 | 0.005 | 0.008 | 0.012 | 0.012 | 0.009 | 0.014 | 0.007 |
K+ | 0.795 | 0.030 | 0.755 | 0.030 | 0.775 | 0.024 | 0.675 | 0.231 | 0.825 | 0.036 | 0.815 | 0.023 |
Rb+ | 0.216 | 0.031 | 0.263 | 0.007 | 0.259 | 0.008 | 0.085 | 0.213 | ||||
∑XII | 1.014 | 0.039 | 1.023 | 0.026 | 1.035 | 0.032 | 0.767 | 0.079 | 0.837 | 0.038 | 0.829 | 0.025 |
OH− f | 0.527 | 0.159 | 0.446 | 0.043 | 0.244 | 0.160 | 0.009 | 0.041 | 0.001 | 0.010 | 0.012 | 0.040 |
F− | 1.473 | 0.159 | 1.554 | 0.043 | 1.756 | 0.160 | 2.053 | 0.167 | 2.044 | 0.072 | 2.001 | 0.069 |
Mn/Mn + Fe | 0.063 | 0.015 | 0.107 | 0.026 | 0.076 | 0.116 | 0.050 | 0.057 | 0.034 | 0.045 | 0.039 | 0.026 |
K/Rb | 1.69 | 0.24 | 1.31 | 0.06 | 1.37 | 0.04 | 1.62 | 0.97 | ||||
LREE/HREE | 2.73 | 7.34 | 2.96 | 9.51 | 1.82 | 3.32 |
CAG 1 | BAG 1 | Amphibole-Rich PEG | Northern Border Pegmatite | Eastern Border Pegmatite | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Crystal | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) |
Nb2O5 | 46.20 | 40.10 | 31.93 | 47.45 | 33.20 | 43.53 | 43.66 | 34.36 | 24.32 | 34.29 | 33.83 |
Ta2O5 | 06.13 | 02.47 | 01.69 | 03.44 | 04.04 | 16.99 | 15.17 | 12.86 | 09.23 | 05.43 | 05.04 |
SiO2 | 00.21 | 00.42 | 13.82 | 01.09 | 04.89 | 00.68 | 00.58 | 09.37 | 16.92 | 14.61 | 15.27 |
SnO2 | 01.16 | 00.72 | d.l. | 01.53 | 00.78 | 01.12 | 00.62 | 00.23 | 00.24 | 00.57 | 00.61 |
TiO2 | 01.05 | 00.92 | 01.45 | 00.84 | d.l. | 00.36 | 00.28 | 02.24 | 02.03 | 00.00 | 00.62 |
UO2 | 02.81 | 06.97 | 12.64 | 00.04 | 08.86 | 01.13 | 01.13 | 06.40 | 09.76 | 04.79 | 05.72 |
ThO2 | 01.77 | 00.49 | 00.84 | 00.73 | 00.35 | 00.90 | 00.98 | 00.00 | 00.66 | 01.44 | 00.91 |
Y2O3 | 01.00 | 00.13 | 00.25 | 00.73 | 00.24 | 00.68 | 00.65 | 01.72 | 03.53 | 00.18 | 00.29 |
HREE2O3 | 00.91 | 00.20 | 01.63 | 00.38 | 00.07 | 01.21 | 01.91 | 00.24 | 02.72 | 00.27 | 00.26 |
LREE2O3 | 07.02 | 04.08 | 01.88 | 03.87 | 00.26 | 07.14 | 08.05 | 00.66 | 00.89 | 02.32 | 03.28 |
FeO (2) | 00.69 | 01.70 | 03.24 | 00.38 | 00.00 | 00.23 | 00.04 | 02.70 | 01.90 | 03.27 | 03.76 |
CaO | 01.42 | 01.04 | 00.34 | 00.96 | 00.00 | 00.77 | 01.48 | 00.61 | 00.19 | 02.48 | 01.78 |
MnO | 00.11 | 00.23 | 00.49 | 02.60 | 01.33 | 00.08 | 00.00 | 00.12 | 00.29 | 00.45 | 00.41 |
PbO | 07.23 | 13.98 | 00.02 | 23.72 | 28.87 | 09.01 | 05.27 | 22.00 | 14.91 | 05.53 | 04.93 |
Na2O | 00.76 | 00.18 | 00.31 | 00.24 | 00.21 | 02.80 | 04.42 | d.l. | 00.07 | 00.75 | 00.27 |
F | 02.73 | 00.85 | 00.21 | 01.51 | 00.31 | 04.35 | 04.47 | 00.00 | 00.00 | 00.14 | 00.08 |
F=O2 | −01.15 | −00.36 | −00.09 | −00.64 | −00.13 | −01.83 | −01.88 | −00.00 | −00.00 | −00.06 | −00.03 |
Total | 80.08 | 74.18 | 69.34 | 91.00 | 83.29 | 89.18 | 86.86 | 93.29 | 85.49 | 76.22 | 76.70 |
Structural formula based on a sum of 2 a.p.f.u. in the [6]B site | |||||||||||
U4+ | 0.052 | 0.154 | 0.189 | 0.033 | 0.185 | 0.020 | 0.020 | 0.094 | 0.135 | 0.067 | 0.078 |
Th4+ | 0.034 | 0.011 | 0.013 | 0.036 | 0.008 | 0.016 | 0.018 | 0.009 | 0.021 | 0.013 | |
Y3+ | 0.044 | 0.007 | 0.009 | 0.033 | 0.012 | 0.028 | 0.028 | 0.061 | 0.117 | 0.006 | 0.009 |
HREE3+ | 0.024 | 0.006 | 0.034 | 0.01 | 0.002 | 0.03 | 0.049 | 0.005 | 0.053 | 0.005 | 0.005 |
LREE3+ | 0.213 | 0.149 | 0.046 | 0.117 | 0.009 | 0.203 | 0.235 | 0.016 | 0.021 | 0.054 | 0.073 |
Pb2+ | 0.162 | 0.373 | 0.531 | 0.730 | 0.189 | 0.114 | 0.393 | 0.251 | 0.094 | 0.081 | |
Fe2+ | 0.048 | 0.141 | 0.182 | 0.027 | 0.015 | 0.003 | 0.150 | 0.099 | 0.172 | 0.193 | |
Mn2+ | 0.008 | 0.020 | 0.028 | 0.183 | 0.106 | 0.005 | 0.007 | 0.015 | 0.024 | 0.021 | |
Ca2+ | 0.127 | 0.111 | 0.024 | 0.086 | 0.064 | 0.127 | 0.044 | 0.013 | 0.167 | 0.117 | |
Na+ | 0.123 | 0.035 | 0.041 | 0.039 | 0.039 | 0.422 | 0.689 | 0.009 | 0.092 | 0.033 | |
Ʃ [8]A | 0.835 | 1.006 | 0.565 | 1.094 | 1.090 | 0.992 | 1.284 | 0.769 | 0.722 | 0.701 | 0.624 |
Nb5+ | 1.739 | 1.795 | 0.968 | 1.781 | 1.408 | 1.531 | 1.585 | 1.029 | 0.685 | 0.973 | 0.936 |
Ta5+ | 0.139 | 0.067 | 0.031 | 0.078 | 0.103 | 0.360 | 0.332 | 0.232 | 0.157 | 0.093 | 0.084 |
Si4+ | 0.017 | 0.042 | 0.929 | 0.091 | 0.460 | 0.053 | 0.047 | 0.622 | 1.057 | 0.919 | 0.937 |
Sn4+ | 0.039 | 0.028 | 0.051 | 0.029 | 0.035 | 0.020 | 0.006 | 0.006 | 0.014 | 0.015 | |
Ti4+ | 0.066 | 0.069 | 0.073 | 0.021 | 0.017 | 0.111 | 0.095 | 0.029 | |||
Ʃ [6]B | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 |
O2− | 4.878 | 5.328 | 3.580 | 5.305 | 5.061 | 4.855 | 5.320 | 4.068 | 3.759 | 3.617 | 3.504 |
F− | 0.071 | 0.137 | |||||||||
OH− | 1.122 | 0.672 | 2.420 | 0.695 | 0.939 | 1.074 | 0.543 | 1.932 | 2.241 | 2.383 | 3.498 |
ƩX | 6.000 | 6.000 | 6.000 | 6.000 | 6.000 | 6.000 | 6.000 | 6.000 | 6.000 | 6.000 | 6.000 |
F− | 0.721 | 0.268 | 0.046 | 0.398 | 0.091 | 1.000 | 1.000 | 0.027 | 0.016 | ||
OH− | 0.279 | 0.732 | 0.954 | 0.602 | 0.909 | 0 | 1.000 | 1.000 | 0.973 | 0.984 | |
ƩY | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Nb/Ta | 12.519 | 26.957 | 31.336 | 22.914 | 13.633 | 4.257 | 4.780 | 4.440 | 4.378 | 10.482 | 11.152 |
Fe/Mn | 6.064 | 7.169 | 6.567 | 0.145 | 0 | 2.949 | 22.838 | 6.524 | 7.219 | 9.019 | |
LREE/HREE | 8.875 | 24.833 | 1.352 | 11.700 | 4.500 | 6.766 | 4.795 | 3.200 | 0.396 | 10.800 | 14.600 |
Facies | Eastern Border Pegmatite | Amphibole- Rich PEG | Northern Border Pegmatite | |||
---|---|---|---|---|---|---|
Crystal | (1) | (2) | (3) | (4) | (5) | (6) |
Nb2O5 | 22.26 | 01.48 | 02.62 | 03.19 | 02.79 | 00.26 |
Ta2O5 | 00.27 | 00.38 | 01.05 | 00.00 | 01.17 | 00.00 |
P2O5 | 00.00 | 01.82 | 00.00 | 01.07 | 06.80 | 00.00 |
SiO2 | 00.93 | 09.51 | 00.10 | 14.76 | 16.24 | 00.03 |
UO2 | 34.56 | 01.57 | 00.30 | 29.23 | 12.48 | 00.31 |
ThO2 | 00.16 | 35.69 | 00.49 | 00.25 | 07.69 | 00.05 |
ZrO2 | 00.00 | 00.40 | d.l. | 00.00 | 00.00 | 00.00 |
Y2O3 | 00.17 | 03.02 | 00.22 | 15.09 | 13.34 | 00.28 |
HREE2O3 | 00.00 | 02.59 | 00.29 | 10.88 | 07.92 | 00.18 |
LREE2O3 | 00.30 | 00.59 | 55.40 | 00.33 | 00.40 | 56.26 |
FeO 1 | 01.75 | 01.28 | 00.17 | 00.50 | 00.27 | 00.00 |
CaO | 04.71 | 00.88 | d.l. | 00.32 | 00.48 | 00.27 |
MnO | 00.41 | d.l. | d.l. | d.l. | 00.26 | 00.16 |
PbO | 00.31 | 01.16 | d.l. | 02.71 | 01.09 | 00.00 |
Na2O | 00.37 | d.l. | d.l. | 00.00 | d.l. | 00.00 |
F | 00.00 | 04.33 | 08.65 | 02.61 | 02.80 | 07.13 |
F=O2 | −00.00 | −01.82 | −01.10 | −01.18 | ||
Total | 67.10 | 63.03 | 69.67 | 79.87 | 72.62 | 64.93 |
Facies | CAG 1 | BAG 1 | Amphibole- Rich PEG | Northern Border Pegmatite | ||
---|---|---|---|---|---|---|
Crystal | (1) | (2) | (3) | (4) | (5) | (6) |
Nb2O5 | 66.74 | 65.61 | 73.87 | 73.32 | 66.51 | 65.04 |
Ta2O5 | 03.32 | 05.72 | 01.46 | 04.67 | 06.65 | 08.08 |
SiO2 | 00.51 | 00.57 | 00.05 | 00.13 | 00.20 | 00.25 |
SnO2 | d.l. | d.l. | 00.30 | 00.00 | 00.00 | 00.00 |
TiO2 | 02.57 | 02.36 | 00.84 | 00.43 | 00.15 | 01.61 |
UO2 | 01.15 | 03.64 | 00.73 | 00.28 | 00.32 | 01.28 |
ThO2 | d.l. | 00.18 | 00.04 | 00.00 | d.l. | 00.03 |
Y2O3 | 00.12 | 00.07 | d.l. | 00.09 | 00.00 | d.l. |
HREE2O3 | 00.00 | 00.62 | 00.15 | 00.23 | 00.26 | 00.45 |
LREE2O3 | 00.30 | 00.41 | 00.47 | 00.13 | 00.27 | 00.23 |
FeO 2 | 15.33 | 16.13 | 13.38 | 14.27 | 03.62 | 08.53 |
CaO | 00.40 | d.l. | 00.00 | 00.00 | d.l. | 00.51 |
MnO | 06.70 | 04.92 | 07.84 | 07.07 | 17.54 | 11.74 |
PbO | 00.81 | 00.06 | 00.81 | 00.00 | 00.00 | 01.23 |
Na2O | d.l. | 00.04 | 00.03 | 00.00 | 00.02 | 00.03 |
F | d.l. | d.l. | 00.00 | 00.00 | 00.00 | 00.00 |
F=O2 | −00.00 | −00.00 | −00.00 | −00.00 | −00.00 | −00.00 |
Total | 97.89 | 99.74 | 99.99 | 100.63 | 95.44 | 99.04 |
Fe2+ | 0.725 | 0.771 | 0.632 | 0.676 | 0.181 | 0.415 |
Mn2+ | 0.321 | 0.238 | 0.375 | 0.339 | 0.886 | 0.578 |
Ʃ [8]A | 1.046 | 1.009 | 1.036 | 1.015 | 1.067 | 0.993 |
Nb5+ | 1.704 | 1.693 | 1.886 | 1.875 | 1.792 | 1.709 |
Ta5+ | 0.051 | 0.089 | 0.023 | 0.072 | 0.108 | 0.128 |
Si4+ | 0.029 | 0.032 | 0.003 | 0.007 | 0.012 | 0.015 |
Sn4+ | 0.007 | |||||
Ti4+ | 0.109 | 0.101 | 0.036 | 0.018 | 0.007 | 0.070 |
U4+ | 0.014 | 0.046 | 0.009 | 0.004 | 0.004 | 0.017 |
Th4+ | 0.002 | 0.001 | ||||
Y3+ | 0.004 | 0.002 | 0.003 | |||
HREE3+ | 0.011 | 0.003 | 0.004 | 0.005 | 0.008 | |
LREE3+ | 0.006 | 0.008 | 0.010 | 0.003 | 0.004 | 0.005 |
Pb2+ | 0.012 | 0.001 | 0.012 | 0.019 | ||
Ca2+ | 0.025 | 0.032 | ||||
Na+ | 0.004 | 0.004 | 0.002 | 0.004 | ||
Ʃ [8]B | 1.954 | 1.991 | 1.964 | 1.985 | 1.933 | 2.007 |
O2− | 5.576 | 5.694 | 5.837 | 5.895 | 5.738 | 5.693 |
OH− * | 0.424 | 0.306 | 0.163 | 0.105 | 0.262 | 0.307 |
ƩX | 6.000 | 6.000 | 6.000 | 6.000 | 6.000 | 6.000 |
Nb/Ta | 33.413 | 19.041 | 83.732 | 26.087 | 16.617 | 13.366 |
Fe/Mn | 2.260 | 3.236 | 1.685 | 1.993 | 0.204 | 0.717 |
LREE/HREE | 0.756 | 3.746 | 0.672 | 0.772 | 0.602 |
CAG | BAG | Border Pegmatite 1 | Amphibole-Rich PEG 2 | Polylithionite-Rich PEG 2 | Cryolite-Rich PEG 2 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 2σ | Mean | 2σ | Mean | 2σ | Mean | 2σ | Mean | 2σ | Mean | 2σ | |
na = 64 | n = 57 | n = 5 | n = 23 | n = 11 | n = 10 | |||||||
SiO2 | 69.95 | 5.81 | 72.31 | 11.60 | 73.39 | 3.98 | 66.92 | 6.82 | 58.35 | 18.22 | 12.41 | 24.55 |
TiO2 | 0.03 | 0.11 | 0.03 | 0.05 | 0.06 | 0.06 | 0.03 | 0.03 | 0.06 | 0.06 | 0.02 | 0.03 |
Al2O3 | 12.80 | 1.98 | 12.19 | 3.93 | 11.92 | 1.37 | 11.29 | 4.39 | 10.90 | 4.26 | 18.34 | 11.62 |
CaO | 0.28 | 1.39 | 0.73 | 1.86 | 0.79 | 0.86 | 0.06 | 0.10 | 0.14 | 0.27 | 0.60 | 3.17 |
FeO 3 | 2.21 | 1.12 | 2.67 | 4.49 | 1.95 | 1.14 | 3.63 | 2.74 | 4.79 | 2.87 | 0.24 | 0.61 |
MgO | 0.02 | 0.10 | 0.03 | 0.12 | 0.03 | 0.01 | 0.01 | 0.01 | 0.04 | 0.02 | 0.05 | 0.11 |
MnO | 0.06 | 0.08 | 0.06 | 0.12 | 0.02 | 0.01 | 0.09 | 0.08 | 0.16 | 0.16 | 0.02 | 0.02 |
K2O | 4.26 | 1.14 | 4.33 | 2.86 | 5.92 | 1.35 | 2.87 | 2.98 | 5.95 | 3.15 | 0.11 | 0.25 |
Na2O | 5.55 | 3.23 | 3.87 | 3.20 | 2.95 | 1.05 | 6.62 | 3.15 | 3.13 | 4.26 | 33.01 | 21.06 |
P2O5 | 0.03 | 0.07 | 0.05 | 0.26 | 0.03 | 0.01 | 0.27 | 0.65 | 1.03 | 3.48 | 0.09 | 0.33 |
LOI | 1.70 | 1.27 | 1.39 | 2.30 | 1.15 | 0.37 | 2.30 | 1.73 | 3.64 | 2.86 | 14.40 | 10.02 |
F | 2.31 | 4.49 | 0.59 | 1.49 | 0.32 | 0.36 | 3.09 | 4.63 | 5.69 | 6.04 | 35.00 | 19.31 |
F=O | −0.97 | 1.89 | −0.25 | 0.63 | −0.13 | 0.15 | −1.30 | 1.95 | −2.39 | 2.54 | −14.74 | 8.13 |
Total | 97.91 | 2.84 | 97.88 | 4.56 | 98.39 | 0.67 | 95.88 | 4.93 | 91.48 | 9.38 | 99.54 | 29.91 |
Fe/Mn | 46.64 | 37.61 | 53.59 | 49.62 | 79.58 | 31.55 | 42.66 | 20.94 | 34.44 | 31.90 | 10.91 | 28.61 |
A/CNK | 1.28 | 0.24 | 1.39 | 0.36 | 1.24 | 0.13 | 1.19 | 0.37 | 1.22 | 0.41 | 0.54 | 0.11 |
A/NK | 1.33 | 0.41 | 1.53 | 0.57 | 1.34 | 0.06 | 1.20 | 0.37 | 1.24 | 0.42 | 0.55 | 0.06 |
CAG | BAG | Border Pegmatite 1 | Amphibole-Rich PEG 2 | Polylithionite-Rich PEG 2 | Cryolite-Rich PEG 2 | Pegmatitic CAG | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 2σ | Mean | 2σ | Mean | 2σ | Mean | 2σ | Mean | 2σ | Mean | 2σ | Mean | 2σ | |
n1 a = 64; n2 = 133 | n1 = 57; n2 = 72 | n = 5 | n = 23 | n = 11 | n = 10 | n = 75 | ||||||||
Nb5+ | 1578.88 | 2101.09 | 1354.75 | 1092.53 | 693.20 | 111.04 | 998.48 | 14.60 | 913.00 | 385.23 | 159.60 | 365.31 | 1979.65 | 1443.57 |
Ta5+ | 444.69 | 2656.00 | 231.34 | 311.97 | 90.88 | 22.68 | 237.57 | 129.92 | 194.95 | 224.58 | 3.37 | 8.60 | 441.72 | 390.08 |
Sn4+ | 1722.63 | 3336.91 | 1445.47 | 2203.54 | 92.20 | 20.25 | 988.35 | 111.76 | 751.27 | 708.93 | 262.50 | 658.59 | 2459.14 | 2353.19 |
U4+ | 293.04 | 382.26 | 311.34 | 321.27 | 261.32 | 127.98 | 290.67 | 232.01 | 71.41 | 104.82 | 1.80 | 4.39 | 511.91 | 518.60 |
Th4+ | 831.09 | 2670.89 | 714.90 | 1734.86 | 386.80 | 220.56 | 1779.22 | 936.88 | 1223.45 | 1867.51 | 193.48 | 560.56 | 5026.85 | 7318.83 |
Zr4+ | 5218.30 | 4153.28 | 4676.56 | 6759.94 | 5624.00 | 1505.69 | 5886.09 | 4853.42 | 939.45 | 1991.83 | 25.90 | 42.98 | 6753.56 | 7356.04 |
Hf4+ | 317.01 | 305.31 | 306.42 | 324.07 | 242.20 | 88.42 | 635.74 | 484.63 | 158.27 | 314.14 | 18.27 | 65.11 | n.a. | - |
Y3+ | 1546.98 | 6076.98 | 1129.73 | 5962.74 | 1617.00 | 2573.24 | 2121.13 | 4978.48 | 3773.36 | 7840.26 | 1690.30 | 6238.30 | 1870.29 | 2779.06 |
HREE3+ | 352.52 | 1082.90 | 746.28 | 5149.99 | 1098.22 | 1506.67 | 2110.42 | 3601.88 | 2915.28 | 4824.19 | 1449.73 | 4761.78 | n.a. | - |
LREE3+ | 498.29 | 2909.07 | 377.03 | 1837.77 | 679.28 | 443.23 | 320.21 | 392.97 | 688.30 | 1535.92 | 1062.06 | 6339.04 | n.a. | - |
Bi3+ | 39.08 | 192.07 | 14.49 | 39.74 | n.a. | - | 10.83 | 12.21 | 53.76 | 165.80 | 49.48 | 166.43 | n.a. | - |
Zn2+ | 942.00 | 1068.84 | 1036.32 | 4424.25 | 838.00 | 1385.34 | 1860.43 | 3924.70 | 3675.45 | 4609.66 | 1060.00 | 1528.86 | n.a. | - |
Pb2+ | 1133.67 | 2715.57 | 994.68 | 3204.83 | 345.60 | 377.67 | 1100.87 | 2496.62 | 1928.27 | 4976.10 | 5360.90 | 9795.87 | n.a. | - |
Sr2+ | 34.96 | 59.09 | 25.75 | 81.31 | 27.00 | 11.27 | 42.57 | 31.35 | 271.64 | 239.91 | 185.40 | 213.31 | n.a. | - |
Be2+ | 30.74 | 64.93 | 18.71 | 47.31 | 21.80 | 12.15 | 118.74 | 794.42 | 591.27 | 2234.32 | 11.60 | 33.23 | n.a. | - |
Li+ | 668.46 | 518.77 | 226.49 | 1096.46 | 6.00 | 3.39 | 880.65 | 711.35 | 7938.18 | 4234.05 | 192.50 | 415.71 | n.a. | - |
Rb+ | 6184.52 | 3821.08 | 4456.58 | 5374.03 | 1000.00 | 0.00 | 1000.00 | 0.00 | 1000.00 | 0.00 | 316.80 | 693.24 | 6192.30 | 5680.93 |
Cs+ | 92.61 | 147.28 | 25.66 | 78.12 | 13.70 | 10.27 | 112.82 | 134.08 | 275.00 | 234.08 | 6.79 | 15.59 | n.a. | - |
S− | 120.89 | 376.29 | 256.07 | 393.27 | n.a. | - | 417.39 | 1361.35 | 827.27 | 2895.64 | 7730.00 | 26,155.27 | n.a. | - |
Nb/Ta | 9.69 | 33.06 | 7.93 | 3.16 | 7.75 | 0.72 | 4.45 | 1.97 | 7.18 | 10.42 | 40.41 | 18.60 | 4.88 | 3.22 |
Th/U | 3.90 | 8.71 | 1.79 | 3.94 | 1.51 | 0.35 | 6.61 | 4.55 | 17.96 | 32.57 | 152.96 | 507.82 | 17.87 | 98.71 |
LREE/HREE | 1.20 | 1.79 | 1.17 | 1.62 | 1.09 | 0.68 | 0.32 | 0.61 | 0.25 | 0.22 | 0.39 | 0.83 | n.a. | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadlich, I.W.; Bastos Neto, A.C.; Pereira, V.P.; Dill, H.G.; Botelho, N.F. The Diversity of Rare-Metal Pegmatites Associated with Albite-Enriched Granite in the World-Class Madeira Sn-Nb-Ta-Cryolite Deposit, Amazonas, Brazil: A Complex Magmatic-Hydrothermal Transition. Minerals 2025, 15, 559. https://doi.org/10.3390/min15060559
Hadlich IW, Bastos Neto AC, Pereira VP, Dill HG, Botelho NF. The Diversity of Rare-Metal Pegmatites Associated with Albite-Enriched Granite in the World-Class Madeira Sn-Nb-Ta-Cryolite Deposit, Amazonas, Brazil: A Complex Magmatic-Hydrothermal Transition. Minerals. 2025; 15(6):559. https://doi.org/10.3390/min15060559
Chicago/Turabian StyleHadlich, Ingrid W., Artur C. Bastos Neto, Vitor P. Pereira, Harald G. Dill, and Nilson F. Botelho. 2025. "The Diversity of Rare-Metal Pegmatites Associated with Albite-Enriched Granite in the World-Class Madeira Sn-Nb-Ta-Cryolite Deposit, Amazonas, Brazil: A Complex Magmatic-Hydrothermal Transition" Minerals 15, no. 6: 559. https://doi.org/10.3390/min15060559
APA StyleHadlich, I. W., Bastos Neto, A. C., Pereira, V. P., Dill, H. G., & Botelho, N. F. (2025). The Diversity of Rare-Metal Pegmatites Associated with Albite-Enriched Granite in the World-Class Madeira Sn-Nb-Ta-Cryolite Deposit, Amazonas, Brazil: A Complex Magmatic-Hydrothermal Transition. Minerals, 15(6), 559. https://doi.org/10.3390/min15060559