Petrogenesis and U–Pb Dating of Variscan S-Type Granites from the Junqueira Batholith (Central Iberian Zone)
Abstract
:1. Introduction
2. Geological Setting
3. The Junqueira Syn- to Late-D3 Batholith
Granite Facies | Massif | Age | Method | Reference |
---|---|---|---|---|
Medium- to coarse-grained porphyritic two-mica granite (Silvares) | Silvares | 316 ± 8 Ma | K–Ar in Ms | [89] |
Abraveses | 315 ± 7 Ma | K–Ar in Ms | [89] | |
Medium- to coarse-grained two-mica granite (Vouzela) | Vouzela | 314 ± 6 Ma | K–Ar in Ms | [89] |
Fine- to medium-grained two-mica granite (Junqueira–Serra da Freita) | Boa Aldeia | 305 ± 6 Ma | K–Ar in Ms | [89] |
Sra. do Crasto | 303 ± 6 Ma | K–Ar in Ms | [89] | |
Serra da Freita | 329 ± 4 Ma * | WR Rb–Sr | [85] | |
Medium-grained porphyritic two-mica granite (Campia) | Sra. do Crasto | 301 ± 6 Ma to 283 ± 5 Ma | K–Ar in Ms | [89] |
Serra da Freita | 320 ± 3 Ma * | WR Rb–Sr | [88] |
4. Analytical Methods
5. Results
5.1. Petrography and Mineral Chemistry
5.2. ID-TIMS U–Pb Geochronology
5.3. Geochemistry
5.4. Whole-Rock Sr–Nd Isotopic Data
6. Discussion
6.1. Emplacement Age of the Junqueira Batholith
6.2. Petrogenetic Constraints
6.2.1. Petrographic, Geochemical and Sr–Nd Isotope Inferences
6.2.2. Source Rocks
6.2.3. Partial Melting Processes
6.2.4. Heat Sources
6.2.5. Fractional Crystallization
7. Geodynamic Considerations
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petford, N.; Cruden, A.R.; McCaffrey, K.J.W.; Vigneresse, J.-L. Granite Magma Formation, Transport and Emplacement in the Earth’s Crust. Nature 2000, 408, 669–673. [Google Scholar] [CrossRef]
- Hawkesworth, C.J.; Dhuime, B.; Pietranik, A.B.; Cawood, P.A.; Kemp, A.I.S.; Storey, C.D. The Generation and Evolution of the Continental Crust. J. Geol. Soc. Lond. 2010, 167, 229–248. [Google Scholar] [CrossRef]
- Brown, M. Granite: From Genesis to Emplacement. Geol. Soc. Am. Bull. 2013, 125, 1079–1113. [Google Scholar] [CrossRef]
- Moyen, J.-F.; Laurent, O.; Chelle-Michou, C.; Couzinié, S.; Vanderhaeghe, O.; Zeh, A.; Villaros, A.; Gardien, V. Collision vs. Subduction-Related Magmatism: Two Contrasting Ways of Granite Formation and Implications for Crustal Growth. Lithos 2017, 277, 154–177. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A.J.R. I- and S-Type Granites in the Lachlan Fold Belt. Earth Env. Sci. Trans. R. Soc. Edinb. 1992, 83, 1–26. [Google Scholar] [CrossRef]
- Clemens, J. S-Type Granitic Magmas—Petrogenetic Issues, Models and Evidence. Earth Sci. Rev. 2003, 61, 1–18. [Google Scholar] [CrossRef]
- Barbarin, B. A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments. Lithos 1999, 46, 605–626. [Google Scholar] [CrossRef]
- Harris, N.B.W.; Inger, S. Trace Element Modelling of Pelite-Derived Granites. Contrib. Mineral. Petrol. 1992, 110, 46–56. [Google Scholar] [CrossRef]
- Weinberg, R.F.; Hasalová, P. Water-Fluxed Melting of the Continental Crust: A Review. Lithos 2015, 212–215, 158–188. [Google Scholar] [CrossRef]
- Clemens, J.D.; Stevens, G.; Bryan, S.E. Conditions during the Formation of Granitic Magmas by Crustal Melting—Hot or Cold; Drenched, Damp or Dry? Earth Sci. Rev. 2020, 200, 102982. [Google Scholar] [CrossRef]
- Jacob, J.-B.; Moyen, J.-F.; Fiannacca, P.; Laurent, O.; Bachmann, O.; Janoušek, V.; Farina, F.; Villaros, A. Crustal Melting vs. Fractionation of Basaltic Magmas: Part 2, Attempting to Quantify Mantle and Crustal Contributions in Granitoids. Lithos 2021, 402–403, 106292. [Google Scholar] [CrossRef]
- Moyen, J.-F.; Janoušek, V.; Laurent, O.; Bachmann, O.; Jacob, J.-B.; Farina, F.; Fiannacca, P.; Villaros, A. Crustal Melting vs. Fractionation of Basaltic Magmas: Part 1, Granites and Paradigms. Lithos 2021, 402–403, 106291. [Google Scholar] [CrossRef]
- Beetsma, J.J. The Late Proterozoic/Paleozoic and Hercynian Crustal Evolution of the Iberian Massif, N Portugal. Ph.D. Thesis, Vrije Universiteit, Amsterdam, The Netherlands, 1995. [Google Scholar]
- Dias, G.; Leterrier, J.; Mendes, A.; Simões, P.P.; Bertrand, J.M. U–Pb Zircon and Monazite Geochronology of Post-Collisional Hercynian Granitoids from the Central Iberian Zone (Northern Portugal). Lithos 1998, 45, 349–369. [Google Scholar] [CrossRef]
- Valle Aguado, B.; Azevedo, M.R.; Schaltegger, U.; Martínez Catalán, J.R.; Nolan, J. U–Pb Zircon and Monazite Geochronology of Variscan Magmatism Related to Syn-Convergence Extension in Central Northern Portugal. Lithos 2005, 82, 169–184. [Google Scholar] [CrossRef]
- Fernández-Suárez, J.; Gutierrez-Alonso, G.; Johnston, S.T.; Jeffries, T.E.; Pastor-Galán, D.; Jenner, G.A.; Murphy, J.B. Iberian Late-Variscan Granitoids: Some Considerations on Crustal Sources and the Significance of “Mantle Extraction Ages”. Lithos 2011, 123, 121–132. [Google Scholar] [CrossRef]
- Teixeira, R.J.S.; Neiva, A.M.R.; Gomes, M.E.P.; Corfu, F.; Cuesta, A.; Croudace, I.W. The Role of Fractional Crystallization in the Genesis of Early Syn-D3, Tin-Mineralized Variscan Two-Mica Granites from the Carrazeda de Ansiães Area, Northern Portugal. Lithos 2012, 153, 177–191. [Google Scholar] [CrossRef]
- Villaseca, C.; Orejana, D.; Belousova, E.A. Recycled Metaigneous Crustal Sources for S- and I-Type Variscan Granitoids from the Spanish Central System Batholith: Constraints from Hf Isotope Zircon Composition. Lithos 2012, 153, 84–93. [Google Scholar] [CrossRef]
- Pereira, M.F.; Díez Fernández, R.; Gama, C.; Hofmann, M.; Gärtner, A.; Linnemann, U. S-Type Granite Generation and Emplacement during a Regional Switch from Extensional to Contractional Deformation (Central Iberian Zone, Iberian Autochthonous Domain, Variscan Orogeny). Int. J. Earth Sci. 2018, 107, 251–267. [Google Scholar] [CrossRef]
- Azevedo, M.R.; Aguado, B.V.; Nolan, J.; Martins, M.E.; Medina, J. Origin and Emplacement of Syn-Orogenic Variscan Granitoids in Iberia the Beiras Massif. J. Virtual Explor. 2005, 19, 7–24. [Google Scholar] [CrossRef]
- Costa, M.M.; Neiva, A.M.R.; Azevedo, M.R.; Corfu, F. Distinct Sources for Syntectonic Variscan Granitoids: Insights from the Aguiar Da Beira Region, Central Portugal. Lithos 2014, 196–197, 83–98. [Google Scholar] [CrossRef]
- Ferreira, J.A.; Mata, J.; Bento dos Santos, T.; Pereira, I. The Role of Melting on the Geochemical Evolution and Isotopic Variability of an Anatectic Complex in the Iberian Variscides. Lithos 2020, 378–379, 105769. [Google Scholar] [CrossRef]
- Portela, L.; Azevedo, M.R.; Ribeiro, S.; Medina, J. New Geochemical and Sr-Nd Isotopic Data for the Caramulo Pluton (Central Iberian Zone). Comun. Geológicas 2020, 107, 23–28. [Google Scholar]
- Teixeira, R.J.S.; Neiva, A.M.R.; Gomes, M.E.P.; Corfu, F.; Cuesta, A.; Croudace, I.W. The Importance of Sequential Partial Melting and Fractional Crystallization in the Generation of Syn-D3 Variscan Two-Mica Granites from the Carrazeda de Ansiães Area, Northern Portugal. J. Iber. Geol. 2021, 47, 281–305. [Google Scholar] [CrossRef]
- Martins, H.C.B.; Sant’Ovaia, H.; Noronha, F. Genesis and Emplacement of Felsic Variscan Plutons within a Deep Crustal Lineation, the Penacova-Régua-Verín Fault: An Integrated Geophysics and Geochemical Study (NW Iberian Peninsula). Lithos 2009, 111, 142–155. [Google Scholar] [CrossRef]
- Villaseca, C.; Bellido, F.; Pérez-Soba, C.; Billström, K. Multiple Crustal Sources for Post-Tectonic I-Type Granites in the Hercynian Iberian Belt. Miner. Pet. 2009, 96, 197–211. [Google Scholar] [CrossRef]
- Martins, H.C.B.; Sant’Ovaia, H.; Noronha, F. Late-Variscan Emplacement and Genesis of the Vieira Do Minho Composite Pluton, Central Iberian Zone: Constraints from U–Pb Zircon Geochronology, AMS Data and Sr–Nd–O Isotope Geochemistry. Lithos 2013, 162–163, 221–235. [Google Scholar] [CrossRef]
- Dias, G.; Leterrier, J. The Genesis of Felsic-Mafic Plutonic Associations: A Sr and Nd Isotopic Study of the Hercynian Braga Granitoid Massif (Northern Portugal). Lithos 1994, 32, 207–223. [Google Scholar] [CrossRef]
- Azevedo, M.R.; Nolan, J. Hercynian Late-Post-Tectonic Granitic Rocks from the Fornos de Algodres Area (Northern Central Portugal). Lithos 1998, 44, 1–20. [Google Scholar] [CrossRef]
- Dias, G.; Simões, P.P.; Ferreira, N.; Leterrier, J. Mantle and Crustal Sources in the Genesis of Late-Hercynian Granitoids (NW Portugal): Geochemical and Sr-Nd Isotopic Constraints. Gondwana Res. 2002, 5, 287–305. [Google Scholar] [CrossRef]
- Valle Aguado, B.; Azevedo, M.R.; Nolan, J.; Medina, J.; Costa, M.M.; Corfu, F.; Martínez Catalán, J.R. Granite Emplacement at the Termination of a Major Variscan Transcurrent Shear Zone: The Late Collisional Viseu Batholith. J. Struct. Geol. 2017, 98, 15–37. [Google Scholar] [CrossRef]
- Matte, P. The Variscan Collage and Orogeny (480–290 Ma) and the Tectonic Definition of the Armorica Microplate: A Review. Terra Nova 2001, 13, 122–128. [Google Scholar] [CrossRef]
- Nance, R.D.; Gutiérrez-Alonso, G.; Keppie, J.D.; Linnemann, U.; Murphy, J.B.; Quesada, C.; Strachan, R.A.; Woodcock, N.H. A Brief History of the Rheic Ocean. Geosci. Front. 2012, 3, 125–135. [Google Scholar] [CrossRef]
- Schulmann, K.; Martínez Catalán, J.R.; Lardeaux, J.M.; Janoušek, V.; Oggiano, G. The Variscan Orogeny: Extent, Timescale and the Formation of the European Crust. Geol. Soc. Lond. Spec. Publ. 2014, 405, 1–6. [Google Scholar] [CrossRef]
- Lotze, F. Zur Gliederung Der Varisziden Der Iberischen Meseta. Geotektonische Forschungen 1945, 6, 78–92. [Google Scholar]
- Julivert, M.; Fontboté, J.M.; Ribeiro, A.; Conde, L.N. Memória Explicativa Do Mapa Tectónico de La Peninsula Ibérica y Baleares (1: 1.000.000); Instituto Geologico y Minero de España: Madrid, Spain, 1974. [Google Scholar]
- Farias, P.; Gallastegui, G.; González Lodeiro, F.; Marquínez, J.; Martín-Parra, L.M.; Martínez Catalán, J.R.; Pablo Maciá, J.G.; Rodríguez-Fernandéz, L.R. Aportaciones al Conocimiento de La Litoestratigrafía y Estructura de Galicia Central; Memórias da Faculdade de Ciências, Universidade do Porto: Porto, Portugal, 1987; Volume 1, pp. 411–431. [Google Scholar]
- von Raumer, J.F.; Bussy, F.; Schaltegger, U.; Schulz, B.; Stampfli, G.M. Pre-Mesozoic Alpine Basements—Their Place in the European Paleozoic Framework. Geol. Soc. Am. Bull. 2013, 125, 89–108. [Google Scholar] [CrossRef]
- Martínez Catalán, J.R.; Arenas, R.; Abati, J.; Martínez, S.S.; García, F.D.; Suárez, J.F.; Cuadra, P.G.; Castiñeiras, P.; Barreiro, J.G.; Montes, A.D.; et al. A Rootless Suture and the Loss of the Roots of a Mountain Chain: The Variscan Belt of NW Iberia. Comptes Rendus. Géoscience 2009, 341, 114–126. [Google Scholar] [CrossRef]
- Arenas, R.; Díez Fernández, R.; Rubio Pascual, F.J.; Sánchez Martínez, S.; Martín Parra, L.M.; Matas, J.; González del Tánago, J.; Jiménez-Díaz, A.; Fuenlabrada, J.M.; Andonaegui, P.; et al. The Galicia–Ossa-Morena Zone: Proposal for a New Zone of the Iberian Massif. Variscan Implications. Tectonophysics 2016, 681, 135–143. [Google Scholar] [CrossRef]
- Dias, R.; Ribeiro, A.; Romão, J.; Coke, C.; Moreira, N. A Review of the Arcuate Structures in the Iberian Variscides; Constraints and Genetic Models. Tectonophysics 2016, 681, 170–194. [Google Scholar] [CrossRef]
- Díez Fernández, R.; Arenas, R.; Pereira, M.F.; Sánchez-Martínez, S.; Albert, R.; Martín Parra, L.-M.; Rubio Pascual, F.-J.; Matas, J. Tectonic Evolution of Variscan Iberia: Gondwana–Laurussia Collision Revisited. Earth Sci. Rev. 2016, 162, 269–292. [Google Scholar] [CrossRef]
- Matte, P.; Ribeiro, A. Forme et Orientation de l’ellipsoide de Déformation Dans La Virgation Hercynienne de Galicia: Relation Avec Le Plissement et Hypothèses Sur La Génèse de l’arc Ibéro-Armoricain. Comptes Rendus L’académie Sci. 1975, 280, 2825–2828. [Google Scholar]
- Matte, P. Tectonics and Plate Tectonics Model for the Variscan Belt of Europe. Tectonophysics 1986, 126, 329–374. [Google Scholar] [CrossRef]
- Dias, R.; Ribeiro, A. The Ibero-Armorican Arc: A Collision Effect against an Irregular Continent? Tectonophysics 1995, 246, 113–128. [Google Scholar] [CrossRef]
- Ribeiro, A.; Dias, R.; Brandão Silva, J. Genesis of the Ibero-Armorican Arc. Geodin. Acta 1995, 8, 173–184. [Google Scholar] [CrossRef]
- Gutiérrez-Alonso, G.; Fernández-Suárez, J.; Weil, A.B. Orocline Triggered Lithospheric Delamination. In Orogenic Curvature: Integrating Paleomagnetic and Structural Analyses; Sussman, A.J., Arlo, B., Weil, A.B., Eds.; Geological Society of America: Boulder, CO, USA, 2004; pp. 121–130. [Google Scholar]
- Gutiérrez-Alonso, G.; Fernández-Suárez, J.; Weil, A.B.; Brendan Murphy, J.; Damian Nance, R.; Corfú, F.; Johnston, S.T. Self-Subduction of the Pangaean Global Plate. Nat. Geosci. 2008, 1, 549–553. [Google Scholar] [CrossRef]
- Gutiérrez-Alonso, G.; Collins, A.S.; Fernández-Suárez, J.; Pastor-Galán, D.; González-Clavijo, E.; Jourdan, F.; Weil, A.B.; Johnston, S.T. Dating of Lithospheric Buckling: 40Ar/39Ar Ages of Syn-Orocline Strike–Slip Shear Zones in Northwestern Iberia. Tectonophysics 2015, 643, 44–54. [Google Scholar] [CrossRef]
- Martínez Catalán, J.R.; Arenas, R.; García, F.D.; Cuadra, P.G.; Gómez-Barreiro, J.; Abati, J.; Castiñeiras, P.; Fernández-Suárez, J.; Martínez, S.S.; Andonaegui, P.; et al. Space and Time in the Tectonic Evolution of the Northwestern Iberian Massif. In Implications for the Variscan Belt; The Geological Society of America: Boulder, CO, USA, 2007; pp. 403–423. [Google Scholar]
- Martínez Catalán, J.R. Are the Oroclines of the Variscan Belt Related to Late Variscan Strike-slip Tectonics? Terra Nova 2011, 23, 241–247. [Google Scholar] [CrossRef]
- Weil, A.; Gutiérrez-Alonso, G.; Conan, J. New Time Constraints on Lithospheric-Scale Oroclinal Bending of the Ibero-Armorican Arc: A Palaeomagnetic Study of Earliest Permian Rocks from Iberia. J. Geol. Soc. Lond. 2010, 167, 127–143. [Google Scholar] [CrossRef]
- Weil, A.B.; Gutiérrez-Alonso, G.; Johnston, S.T.; Pastor-Galán, D. Kinematic Constraints on Buckling a Lithospheric-Scale Orocline along the Northern Margin of Gondwana: A Geologic Synthesis. Tectonophysics 2013, 582, 25–49. [Google Scholar] [CrossRef]
- Sousa, M.B. Considerações Paleogeográficas Sobre a Estratigrafia Do Complexo Xisto-Grauváquico (CXG) e Sua Relação Com o Paleozóico Inferior. Cuad. Geol. Ibérica 1984, 9, 9–36. [Google Scholar]
- Rodríguez-Alonso, M.D.; Díez Balda, M.A.; Perejón, A.; Pieren, A.; Liñán, E.; López Díaz, F.; Moreno, F.; Gámez Vintaned, J.A.; Gónzalez Lodeiro, F.; Martínez Poyatos, D.; et al. Domínio Del Complejo Esquisto-Grauváquico: Estratigrafía. In Geología de España; Vera, J.A., Ed.; SGE-IGME: Madrid, Spain, 2004; pp. 78–81. [Google Scholar]
- Talavera, C.; Montero, P.; Martínez Poyatos, D.; Williams, I.S. Ediacaran to Lower Ordovician Age for Rocks Ascribed to the Schist–Graywacke Complex (Iberian Massif, Spain): Evidence from Detrital Zircon SHRIMP U–Pb Geochronology. Gondwana Res. 2012, 22, 928–942. [Google Scholar] [CrossRef]
- Pereira, M.F. Potential Sources of Ediacaran Strata of Iberia: A Review. Geodin. Acta 2015, 27, 1–14. [Google Scholar] [CrossRef]
- Meireles, C.A.P.; Castro, P.F.; Vaz, N.; Ângelo, C.; Ferreira, N.; Sequeira, A.J.D.; Sá, A.A. Lithostratigraphy of the “Schist-Greywacke Domain” in Portugal: A Reappraisal. Cad. Lab. Xeolóxico Laxe. Rev. Xeol. Galego Hercínico Peninsular 2022, 44, 1–32. [Google Scholar] [CrossRef]
- Teixeira, R.J.S.; Neiva, A.M.R.; Silva, P.B.; Gomes, M.E.P.; Andersen, T.; Ramos, J.M.F. Combined U–Pb Geochronology and Lu–Hf Isotope Systematics by LAM–ICPMS of Zircons from Granites and Metasedimentary Rocks of Carrazeda de Ansiães and Sabugal Areas, Portugal, to Constrain Granite Sources. Lithos 2011, 125, 321–334. [Google Scholar] [CrossRef]
- Villaseca, C.; Merino, E.; Oyarzun, R.; Orejana, D.; Pérez-Soba, C.; Chicharro, E. Contrasting Chemical and Isotopic Signatures from Neoproterozoic Metasedimentary Rocks in the Central Iberian Zone (Spain) of Pre-Variscan Europe: Implications for Terrane Analysis and Early Ordovician Magmatic Belts. Precambrian Res. 2014, 245, 131–145. [Google Scholar] [CrossRef]
- Gutiérrez-Alonso, G.; Fernández-Suárez, J.; Jeffries, T.E.; Johnston, S.T.; Pastor-Galán, D.; Murphy, J.B.; Franco, M.P.; Gonzalo, J.C. Diachronous Post-orogenic Magmatism within a Developing Orocline in Iberia, European Variscides. Tectonics 2011, 30, TC5008. [Google Scholar] [CrossRef]
- Gutiérrez-Marco, J.C.; Piçarra, J.M.; Meireles, C.A.; Cózar, P.; García-Bellido, D.C.; Pereira, Z.; Vaz, N.; Pereira, S.; Lopes, G.; Oliveira, J.T.; et al. Early Ordovician–Devonian Passive Margin Stage in the Gondwanan Units of the Iberian Massif. In The Geology of Iberia: A Geodynamic Approach; Quesada, C., Oliveira, J.T., Eds.; Springer: Cham, Switzerland, 2019; Volume 2, pp. 75–98. [Google Scholar]
- Dallmeyer, R.D.; Catalán, J.R.M.; Arenas, R.; Gil Ibarguchi, J.I.; Gutiérrez^Alonso, G.; Farias, P.; Bastida, F.; Aller, J. Diachronous Variscan Tectonothermal Activity in the NW Iberian Massif: Evidence from 40Ar/39Ar Dating of Regional Fabrics. Tectonophysics 1997, 277, 307–337. [Google Scholar] [CrossRef]
- Rubio Pascual, F.J.; Arenas, R.; Martínez Catalán, J.R.; Rodríguez Fernández, L.R.; Wijbrans, J.R. Thickening and Exhumation of the Variscan Roots in the Iberian Central System: Tectonothermal Processes and 40Ar/39Ar Ages. Tectonophysics 2013, 587, 207–221. [Google Scholar] [CrossRef]
- Escuder Viruete, J.; Hernáiz Huerta, P.P.; Valverde-Vaquero, P.; Rodrı́guez Fernández, R.; Dunning, G. Variscan Syncollisional Extension in the Iberian Massif: Structural, Metamorphic and Geochronological Evidence from the Somosierra Sector of the Sierra de Guadarrama (Central Iberian Zone, Spain). Tectonophysics 1998, 290, 87–109. [Google Scholar] [CrossRef]
- Castiñeiras, P.; Villaseca, C.; Barbero, L.; Martín Romera, C. SHRIMP U–Pb Zircon Dating of Anatexis in High-Grade Migmatite Complexes of Central Spain: Implications in the Hercynian Evolution of Central Iberia. Int. J. Earth Sci. 2008, 97, 35–50. [Google Scholar] [CrossRef]
- Martínez Catalán, J.R.; Rubio Pascual, F.J.; Montes, A.D.; Fernández, R.D.; Barreiro, J.G.; Dias Da Silva, Í.; Clavijo, E.G.; Ayarza, P.; Alcock, J.E. The Late Variscan HT/LP Metamorphic Event in NW and Central Iberia: Relationships to Crustal Thickening, Extension, Orocline Development and Crustal Evolution. Geol. Soc. Lond. Spec. Publ. 2014, 405, 225–247. [Google Scholar] [CrossRef]
- Díez Fernández, R.; Pereira, M.F. Extensional Orogenic Collapse Captured by Strike-Slip Tectonics: Constraints from Structural Geology and U-Pb Geochronology of the Pinhel Shear Zone (Variscan Orogen, Iberian Massif). Tectonophysics 2016, 691, 290–310. [Google Scholar] [CrossRef]
- Gutiérrez-Alonso, G.; Fernández-Suárez, J.; López-Carmona, A.; Gärtner, A. Exhuming a Cold Case: The Early Granodiorites of the Northwest Iberian Variscan Belt—A Visean Magmatic Flare-Up? Lithosphere 2018, 10, 194–216. [Google Scholar] [CrossRef]
- Bento dos Santos, T.; Rodrigues, J.F.; Castro, P.; Cotrim, B.; Pereira, I.; Ferreira, J.A.; Meireles, C.; Ferreira, N.; Ferreira, P.; Ribeiro, A.; et al. Exhumation of an Anatectic Complex by Channel Flow and Extrusion Tectonics: Structural and Metamorphic Evidence from the Porto–Viseu Metamorphic Belt, Central-Iberian Zone. Int. J. Earth Sci. 2021, 110, 2179–2201. [Google Scholar] [CrossRef]
- Ferreira, J.A.; Pereira, I.; Bento dos Santos, T.; Mata, J. U–Pb Age Constraints on the Protolith, Cooling and Exhumation of a Variscan Middle Crust Migmatite Complex from the Central Iberian Zone: Insights into the Variscan Metamorphic Evolution and Ediacaran Palaeogeographic Implications. J. Geol. Soc. Lond. 2022, 179, jgs2021-072. [Google Scholar] [CrossRef]
- Pereira, I.; Dias, R.; Bento dos Santos, T.; Mata, J. Exhumation of a Migmatite Complex along a Transpressive Shear Zone: Inferences from the Variscan Juzbado–Penalva Do Castelo Shear Zone (Central Iberian Zone). J. Geol. Soc. Lond. 2017, 174, 1004–1018. [Google Scholar] [CrossRef]
- Cotrim, B.; Bento dos Santos, T.; Azevedo, M.R.; Cachapuz, P.; Carvalho, D.; Benoit, M. Formation and Evolution of Metapelitic-Derived Melts within Anatectic Complexes: Geochemical Constraints and Inferences on the Protoliths and Geodynamics of the Porto-Viseu Metamorphic Belt, Central Iberian Zone (Central-North Portugal). Geochemistry 2024, 84, 126088. [Google Scholar] [CrossRef]
- Dias da Silva, Í.; Gómez-Barreiro, J.; Martínez Catalán, J.R.; Ayarza, P.; Pohl, J.; Martínez, E. Structural and Microstructural Analysis of the Retortillo Syncline (Variscan Belt, Central Iberia). Implications for the Central Iberian Orocline. Tectonophysics 2017, 717, 99–115. [Google Scholar] [CrossRef]
- Iglesias, M.; Ribeiro, A. La Zone de Cisaillement Ductile de Juzbado (Salamanca)- Penalva Do Castelo (Viseu): Un Linéament Ancien Reactivé Pendant l’orogenese Hercynienne? Comun. Serviços Geológicos Port. 1981, 67, 89–93. [Google Scholar]
- Ferreira, N.; Iglesias, M.; Noronha, F.; Pereira, E.; Ribeiro, A.; Ribeiro, M.L. Granitóides Da Zona Centro-Ibérica e Seu Enquadramento Geodinâmico. In Geologia de Los Granitoides E Rocas Asociadas Del Macizo Hespérico; Bea, F., Carnicero, A., Gonzalo, J.C., López Plaza, M., Rodríguez-Alonso, M.D., Eds.; Editorial Rueda: Madrid, Spain, 1987; pp. 37–53. [Google Scholar]
- Azevedo, M.R.; Valle Aguado, B. Origem e Instalação de Granitóides Variscos Na Zona Centro-Ibérica. In Geologia de Portugal No Contexto da Ibéria; Dias, R., Araújo, A., Terrinha, P., Kullberg, J.C., Eds.; Universidade de Évora: Évora, Portugal, 2006; pp. 107–121. [Google Scholar]
- Antunes, I.M.H.R.; Neiva, A.M.R.; Silva, M.M.V.G.; Corfu, F. Geochemistry of S-Type Granitic Rocks from the Reversely Zoned Castelo Branco Pluton (Central Portugal). Lithos 2008, 103, 445–465. [Google Scholar] [CrossRef]
- Neiva, A.M.R.; Williams, I.S.; Lima, S.M.; Teixeira, R.J.S. U–Pb and 39Ar/40Ar Data Constraining the Ages of the Source, Emplacement and Recrystallization/Cooling Events from Late- to Post-D3 Variscan Granites of the Gouveia Area, Central Portugal. Lithos 2012, 153, 72–83. [Google Scholar] [CrossRef]
- Gomes, M.E.P.; Teixeira, R.J.S.; Neiva, A.M.R.; Corfu, F. Geoquímica e Geocronologia Dos Granitóides Da Região de Bemposta-Picote, Nordeste de Portugal. Comun. Geológicas 2014, 101, 115–118. [Google Scholar]
- Ferreira, J.A.; Bento dos Santos, T.; Pereira, I.; Mata, J. Tectonically Assisted Exhumation and Cooling of Variscan Granites in an Anatectic Complex of the Central Iberian Zone, Portugal: Constraints from LA-ICP-MS Zircon and Apatite U–Pb Ages. Int. J. Earth Sci. 2019, 108, 2153–2175. [Google Scholar] [CrossRef]
- Gonçalves, A.; Teixeira, R.; Sant’Ovaia, H.; Noronha, F. Zircon U–Pb Dating and Lu–Hf Isotopic Composition of Some Granite Intrusions in Northern and Central Portugal: Constraints on the Emplacement Age and Nature of the Source Rocks. Minerals 2024, 14, 573. [Google Scholar] [CrossRef]
- Portela, L.; Azevedo, M.R.; Medina, J.; Valle Aguado, B. The Lusinde Late-Post-Tectonic Variscan Granite (Central Iberian Zone): Pluton Emplacement at the Termination of the Juzbado-Penalva Do Castelo Shear Zone. J. Iber. Geol. 2024. [Google Scholar] [CrossRef]
- Soen, O.I. Granite Intrusion, Folding and Metamorphism in Central Northern Portugal. Boletín Geológico Min. 1970, 81, 271–298. [Google Scholar]
- Reavy, R.J.; Stephens, W.E.; Fallick, A.E.; Halliday, A.N.; Godinho, M.M. Geochemical and Isotopic Constraints on Petrogenesis: The Serra Da Freita Pluton, a Typical Granite Body from the Portuguese Hercynian Collision Belt. Geol. Soc. Am. Bull. 1991, 103, 392–401. [Google Scholar] [CrossRef]
- Ávila Martins, J. Contribuição Para o Conhecimento Geológico da Região do Caramulo. Junta Energ. Nucl. 1962, 35, 123–227. [Google Scholar]
- Godinho, M.M. Sobre O Plutonometamorfismo Da Região de Guardão (Caramulo, Portugal); Memórias e Notícias do Museu do Laboratório de Mineralogia e Geologia da Universidade de Coimbra: Coimbra, Portugal, 1974; Volume 78, pp. 37–77. [Google Scholar]
- Priem, H.N.A.; Schermerhorn, L.J.C.; Boelrijk, N.A.I.M.; Hebeda, E.H. Rb-Sr Geochronology of Variscan Granitoids in the Tin–Tungsten Province of Northern Portugal: A Progress Report. Terra Cogn. 1984, 4, 212–213. [Google Scholar]
- Neves, L.J.P.F. Transferências de Matéria e Energia Na Interface Granitóides Biotíticos Porfiróides-Granitóides Muscovítico Biotíticos Na Região de Torredeita (Viseu, Portugal Central). Ph.D. Thesis, University of Coimbra, Coimbra, Portugal, 1991. [Google Scholar]
- Villa, I.M.; De Bièvre, P.; Holden, N.E.; Renne, P.R. IUPAC-IUGS Recommendation on the Half Life of 87Rb. Geochim. Cosmochim. Acta 2015, 164, 382–385. [Google Scholar] [CrossRef]
- Pereira, E.; Moreira, A.; Gonçalves, S.; Rodrigues, J.; Silva, A.F. Folha 13-D (Oliveira de Azeméis) da Carta Geológica de Portugal à Escala 1:50,000; INETI: Lisbon, Portugal, 2006. [Google Scholar]
- Ferreira, N.; Castro, P.; Godinho, M.M.; Neves, L.; Pereira, A.; Ferreira Pinto, A.; Simões, L.; Silva, F.G.; Valle Aguado, B.; Azevedo, M.R.; et al. Folha 17-a (Viseu) da Carta Geológica de Portugal à Escala 1:50,000; LNEG: Lisbon, Portugal, 2009. [Google Scholar]
- Dickin, A.P. Radiogenic Isotope Geology; Cambridge University Press: Cambridge, UK, 2018; ISBN 9781316163009. [Google Scholar]
- Villa, I.M.; Holden, N.E.; Possolo, A.; Ickert, R.B.; Hibbert, D.B.; Renne, P.R. IUPAC-IUGS Recommendation on the Half-Lives of 147Sm and 146Sm. Geochim. Cosmochim. Acta 2020, 285, 70–77. [Google Scholar] [CrossRef]
- Watkins, P.J.; Nolan, J. Determination of Rare-Earth Elements, Scandium, Yttrium And Hafnium in 32 Geochemical Reference Materials Using Inductively Coupled Plasma-Atomic Emission Spectrometry. Geostand. Newsl. 1990, 14, 11–20. [Google Scholar] [CrossRef]
- Watkins, P.J.; Nolan, J. Determination of Rare-Earth Elements, Yttrium, Scandium and Hafnium Using Cation-Exchange Separation and Inductively Coupled Plasma-Atomic Emission Spectrometry. Chem. Geol. 1992, 95, 131–139. [Google Scholar] [CrossRef]
- DePaolo, D.J.; Wasserburg, G.J. Nd Isotopic Variations and Petrogenetic Models. Geophys. Res. Lett. 1976, 3, 249–252. [Google Scholar] [CrossRef]
- Liew, T.C.; Hofmann, A.W. Precambrian Crustal Components, Plutonic Associations, Plate Environment of the Hercynian Fold Belt of Central Europe: Indications from a Nd and Sr Isotopic Study. Contrib. Mineral. Petrol. 1988, 98, 129–138. [Google Scholar] [CrossRef]
- Mattinson, J.M. Zircon U–Pb Chemical Abrasion (“CA-TIMS”) Method: Combined Annealing and Multi-Step Partial Dissolution Analysis for Improved Precision and Accuracy of Zircon Ages. Chem. Geol. 2005, 220, 47–66. [Google Scholar] [CrossRef]
- Krogh, T.E. A Low-Contamination Method for Hydrothermal Decomposition of Zircon and Extraction of U and Pb for Isotopic Age Determinations. Geochim. Cosmochim. Acta 1973, 37, 485–494. [Google Scholar] [CrossRef]
- Corfu, F. U-Pb Age, Setting and Tectonic Significance of the Anorthosite-Mangerite-Charnockite-Granite Suite, Lofoten-Vesteralen, Norway. J. Petrol. 2004, 45, 1799–1819. [Google Scholar] [CrossRef]
- Stacey, J.S.; Kramers, J.D. Approximation of Terrestrial Lead Isotope Evolution by a Two-Stage Model. Earth Planet. Sci. Lett. 1975, 26, 207–221. [Google Scholar] [CrossRef]
- Jaffey, A.H.; Flynn, K.F.; Glendenin, L.E.; Bentley, W.C.; Essling, A.M. Precision Measurement of Half-Lives and Specific Activities of 235U and 238U. Phys. Rev. C 1971, 4, 1889–1906. [Google Scholar] [CrossRef]
- Vermeesch, P. IsoplotR: A Free and Open Toolbox for Geochronology. Geosci. Front. 2018, 9, 1479–1493. [Google Scholar] [CrossRef]
- Miller, C.F.; Stoddard, E.F.; Bradfish, I.J.; Dollase, W.A. Composition of Plutonic Muscovite; Genetic Implications. Can. Miner. 1981, 19, 25–34. [Google Scholar]
- Nachit, H.; Razafimahefa, N.; Stussi, J.M.; Carron, J.P. Composition Chimique des Biotites et Typologie Magmatique des Granitoides. Comptes Rendus Acad. Sci. Paris Série II 1985, 301, 813–818. [Google Scholar]
- Fazio, E.; Fiannacca, P.; Russo, D.; Cirrincione, R. Submagmatic to Solid-State Deformation Microstructures Recorded in Cooling Granitoids during Exhumation of Late-Variscan Crust in North-Eastern Sicily. Geosciences 2020, 10, 311. [Google Scholar] [CrossRef]
- Debon, F.; Le Fort, P. A Cationic Classification of Common Plutonic Rocks and Their Magmatic Associations: Principles, Method, Applications. Bull. Minéralogie 1988, 111, 493–510. [Google Scholar] [CrossRef]
- Chappell, B.W. Aluminium Saturation in I- and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos 1999, 46, 535–551. [Google Scholar] [CrossRef]
- Inger, S.; Harris, N. Geochemical Constraints on Leucogranite Magmatism in the Langtang Valley, Nepal Himalaya. J. Petrol. 1993, 34, 345–368. [Google Scholar] [CrossRef]
- Champion, D.C.; Bultitude, R.J. The Geochemical and Sr Nd Isotopic Characteristics of Paleozoic Fractionated S-Types Granites of North Queensland: Implications for S-Type Granite Petrogenesis. Lithos 2013, 162–163, 37–56. [Google Scholar] [CrossRef]
- Cao, H.-W.; Pei, Q.-M.; Santosh, M.; Li, G.-M.; Zhang, L.-K.; Zhang, X.-F.; Zhang, Y.-H.; Zou, H.; Dai, Z.-W.; Lin, B.; et al. Himalayan Leucogranites: A Review of Geochemical and Isotopic Characteristics, Timing of Formation, Genesis, and Rare Metal Mineralization. Earth Sci. Rev. 2022, 234, 104229. [Google Scholar] [CrossRef]
- Frost, B.R.; Barnes, C.G.; Collins, W.J.; Arculus, R.J.; Ellis, D.J.; Frost, C.D. A Geochemical Classification for Granitic Rocks. J. Petrol. 2001, 42, 2033–2048. [Google Scholar] [CrossRef]
- Peacock, M.A. Classification of Igneous Rock Series. J. Geol. 1931, 39, 54–67. [Google Scholar] [CrossRef]
- Irvine, T.N.; Baragar, W.R.A. A Guide to the Chemical Classification of the Common Volcanic Rocks. Can. J. Earth Sci. 1971, 8, 523–548. [Google Scholar] [CrossRef]
- Yang, X.-M. Using the Rittmann Serial Index to Defi Ne the Alkalinity of Igneous Rocks. Neues Jahrb. Für Mineral.—Abh. 2007, 184, 95–103. [Google Scholar] [CrossRef]
- Rittmann, A. Stable Mineral Assemblages of Igneous Rocks; Springer: Berlin/Heidelberg, Germany, 1973; ISBN 978-3-642-65484-8. [Google Scholar]
- Ugidos, J.M.; Sánchez-Santos, J.M.; Barba, P.; Valladares, M.I. Upper Neoproterozoic Series in the Central Iberian, Cantabrian and West Asturian Leonese Zones (Spain): Geochemical Data and Statistical Results as Evidence for a Shared Homogenised Source Area. Precambrian Res. 2010, 178, 51–58. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S.-S. The Composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Kryza, R.; Pin, C.; Oberc-Dziedzic, T.; Crowley, Q.G.; Larionov, A. Deciphering the Geochronology of a Large Granitoid Pluton (Karkonosze Granite, SW Poland): An Assessment of U–Pb Zircon SIMS and Rb–Sr Whole-Rock Dates Relative to U–Pb Zircon CA-ID-TIMS. Int. Geol. Rev. 2014, 56, 756–782. [Google Scholar] [CrossRef]
- Azevedo, M.R.; Martins, F.; Cardoso, T.; Valle Aguado, B.; Costa, M.M.; Nolan, J.; Corfu, F. Petrografia, Geoquímica e Idades U-Pb Do Complexo Granítico de Sátão (Zona Centro-Ibérica). Comun. Geológicas 2014, 101, 45–48. [Google Scholar]
- Díaz Alvarado, J.; Fernández, C.; Castro, A.; Moreno-Ventas, I. SHRIMP U–Pb Zircon Geochronology and Thermal Modeling of Multilayer Granitoid Intrusions. Lithos 2013, 175–176, 104–123. [Google Scholar] [CrossRef]
- López-Moro, F.J.; López-Plaza, M.; Romer, R.L. Generation and Emplacement of Shear-Related Highly Mobile Crustal Melts: The Synkinematic Leucogranites from the Variscan Tormes Dome, Western Spain. Int. J. Earth Sci. 2012, 101, 1273–1298. [Google Scholar] [CrossRef]
- Reavy, R.J. Structural Controls on Metamorphism and Syn-Tectonic Magmatism: The Portuguese Hercynian Collision Belt. J. Geol. Soc. Lond. 1989, 146, 649–657. [Google Scholar] [CrossRef]
- Sylvester, P.J. Post-Collisional Strongly Peraluminous Granites. Lithos 1998, 45, 29–44. [Google Scholar] [CrossRef]
- Patiño Douce, A.E.; Harris, N. Experimental Constraints on Himalayan Anatexis. J. Petrol. 1998, 39, 689–710. [Google Scholar] [CrossRef]
- Knesel, K.M.; Davidson, J.P. Insights into Collisional Magmatism from Isotopic Fingerprints of Melting Reactions. Science 2002, 296, 2206–2208. [Google Scholar] [CrossRef] [PubMed]
- Patiño Douce, A.E.; Johnston, A.D. Phase Equilibria and Melt Productivity in the Pelitic System: Implications for the Origin of Peraluminous Granitoids and Aluminous Granulites. Contrib. Mineral. Petrol. 1991, 107, 202–218. [Google Scholar] [CrossRef]
- Vielzeuf, D.; Holloway, J.R. Experimental Determination of the Fluid-Absent Melting Relations in the Pelitic System. Contrib. Mineral. Petrol. 1988, 98, 257–276. [Google Scholar] [CrossRef]
- Milord, I.; Sawyer, E.W.; Brown, M. Formation of Diatexite Migmatite and Granite Magma during Anatexis of Semi-Pelitic Metasedimentary Rocks: An Example from St. Malo, France. J. Petrol. 2001, 42, 487–505. [Google Scholar] [CrossRef]
- Solar, G.S.; Brown, M. Petrogenesis of Migmatites in Maine, USA: Possible Source of Peraluminous Leucogranite in Plutons? J. Petrol. 2001, 42, 789–823. [Google Scholar] [CrossRef]
- Mendes, M.H.A.H. Processos Metamórficos Variscos Na Serra Da Freita: Zona Centro-Ibérica, Portugal. Unpublished. Ph.D. Thesis, University of Aveiro, Aveiro, Portugal, 1997. [Google Scholar]
- Whitney, D.L.; Evans, B.W. Abbreviations for Names of Rock-Forming Minerals. Am. Mineral. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- Fiannacca, P.; Cirrincione, R.; Bonanno, F.; Carciotto, M.M. Source-Inherited Compositional Diversity in Granite Batholiths: The Geochemical Message of Late Paleozoic Intrusive Magmatism in Central Calabria (Southern Italy). Lithos 2015, 236–237, 123–140. [Google Scholar] [CrossRef]
- Hildreth, W.; Moorbath, S. Crustal Contributions to Arc Magmatism in the Andes of Central Chile. Contrib. Mineral. Petrol. 1988, 98, 455–489. [Google Scholar] [CrossRef]
- Annen, C.; Blundy, J.D.; Sparks, R.S.J. The Genesis of Intermediate and Silicic Magmas in Deep Crustal Hot Zones. J. Petrol. 2006, 47, 505–539. [Google Scholar] [CrossRef]
- Bea, F. The Sources of Energy for Crustal Melting and the Geochemistry of Heat-Producing Elements. Lithos 2012, 153, 278–291. [Google Scholar] [CrossRef]
- Nabelek, P.I.; Whittington, A.G.; Hofmeister, A.M. Strain Heating as a Mechanism for Partial Melting and Ultrahigh Temperature Metamorphism in Convergent Orogens: Implications of Temperature-dependent Thermal Diffusivity and Rheology. J. Geophys. Res. Solid. Earth 2010, 115, B12417. [Google Scholar] [CrossRef]
- Fernández-Suárez, J.; Dunning, G.R.; Jenner, G.A.; Gutiérrez-Alonso, G. Variscan Collisional Magmatism and Deformation in NW Iberia: Constraints from U–Pb Geochronology of Granitoids. J. Geol. Soc. Lond. 2000, 157, 565–576. [Google Scholar] [CrossRef]
- Nash, W.P.; Crecraft, H.R. Partition Coefficients for Trace Elements in Silicic Magmas. Geochim. Cosmochim. Acta 1985, 49, 2309–2322. [Google Scholar] [CrossRef]
- Arth, J.G. Behavior of Trace Elements during Magmatic Processes—A Summary of Theoretical Models and Their Applications. J. Res. US Geol. Surv. 1976, 4, 41–47. [Google Scholar]
- Ledru, P.; Courrioux, G.; Dallain, C.; Lardeaux, J.M.; Montel, J.M.; Vanderhaeghe, O.; Vitel, G. The Velay Dome (French Massif Central): Melt Generation and Granite Emplacement during Orogenic Evolution. Tectonophysics 2001, 342, 207–237. [Google Scholar] [CrossRef]
- Laurent, O.; Couzinié, S.; Zeh, A.; Vanderhaeghe, O.; Moyen, J.-F.; Villaros, A.; Gardien, V.; Chelle-Michou, C. Protracted, Coeval Crust and Mantle Melting during Variscan Late-Orogenic Evolution: U–Pb Dating in the Eastern French Massif Central. Int. J. Earth Sci. 2017, 106, 421–451. [Google Scholar] [CrossRef]
- Duchesne, J.-C.; Liégeois, J.-P.; Bolle, O.; Vander Auwera, J.; Bruguier, O.; Matukov, D.I.; Sergeev, S.A. The Fast Evolution of a Crustal Hot Zone at the End of a Transpressional Regime: The Saint-Tropez Peninsula Granites and Related Dykes (Maures Massif, SE France). Lithos 2013, 162–163, 195–220. [Google Scholar] [CrossRef]
- Bolle, O.; Corsini, M.; Diot, H.; Laurent, O.; Melis, R. Late-Orogenic Evolution of the Southern European Variscan Belt Constrained by Fabric Analysis and Dating of the Camarat Granitic Complex and Coeval Felsic Dykes (Maures–Tanneron Massif, SE France). Tectonics 2023, 42, e2022TC007310. [Google Scholar] [CrossRef]
- Paquette, J.L.; Gleizes, G.; Leblanc, D.; Bouchez, J.L. Le Granite de Bassiès (Pyrénées): Un Pluton Syntectonique d’âge Westphalien. Géochronologie U-Pb Sur Zircons. Comptes Rendus L’academie Sci. Paris 1997, 324, 387–392. [Google Scholar]
- Roberts, M.P.; Pin, C.; Clemens, J.D.; Paquette, J.-L. Petrogenesis of Mafic to Felsic Plutonic Rock Associations: The Calc-Alkaline Quérigut Complex, French Pyrenees. J. Petrol. 2000, 41, 809–844. [Google Scholar] [CrossRef]
- Maurel, O.; Respaut, J.-P.; Monié, P.; Arnaud, N.; Brunel, M. U-Pb Emplacement and 40Ar/39Ar Cooling Ages of the Eastern Mont-Louis Granite Massif (Eastern Pyrenees, France). Comptes Rendus. Géoscience 2004, 336, 1091–1098. [Google Scholar] [CrossRef]
- Fiannacca, P.; Williams, I.S.; Cirrincione, R.; Pezzino, A. Crustal Contributions to Late Hercynian Peraluminous Magmatism in the Southern Calabria-Peloritani Orogen, Southern Italy: Petrogenetic Inferences and the Gondwana Connection. J. Petrol. 2008, 49, 1497–1514. [Google Scholar] [CrossRef]
- Fiannacca, P.; Williams, I.S.; Cirrincione, R. Timescales and Mechanisms of Batholith Construction: Constraints from Zircon Oxygen Isotopes and Geochronology of the Late Variscan Serre Batholith (Calabria, Southern Italy). Lithos 2017, 277, 302–314. [Google Scholar] [CrossRef]
- Fréville, K.; Jacob, J.-B.; Vanardois, J.; Trap, P.; Melleton, J.; Faure, M.; Guillot, S.; Janots, E.; Bruguier, O.; Poujol, M.; et al. Protracted Magmatism and Crust–Mantle Interaction during Continental Collision: Insights from the Variscan Granitoids of the External Western Alps. Int. J. Earth Sci. 2024, 113, 1165–1196. [Google Scholar] [CrossRef]
- Paquette, J.-L.; Ménot, R.-P.; Pin, C.; Orsini, J.-B. Episodic and Short-Lived Granitic Pulses in a Post-Collisional Setting: Evidence from Precise U–Pb Zircon Dating through a Crustal Cross-Section in Corsica. Chem. Geol. 2003, 198, 1–20. [Google Scholar] [CrossRef]
- Kroner, U.; Romer, R.L. Two Plates—Many Subduction Zones: The Variscan Orogeny Reconsidered. Gondwana Res. 2013, 24, 298–329. [Google Scholar] [CrossRef]
- Orejana, D.; Villaseca, C.; Valverde-Vaquero, P.; Belousova, E.A.; Armstrong, R.A. U–Pb Geochronology and Zircon Composition of Late Variscan S- and I-Type Granitoids from the Spanish Central System Batholith. Int. J. Earth Sci. 2012, 101, 1789–1815. [Google Scholar] [CrossRef]
- Barbarin, B. Mafic Magmatic Enclaves and Mafic Rocks Associated with Some Granitoids of the Central Sierra Nevada Batholith, California: Nature, Origin, and Relations with the Hosts. Lithos 2005, 80, 155–177. [Google Scholar] [CrossRef]
- Barbey, P.; Gasquet, D.; Pin, C.; Bourgeix, A.L. Igneous Banding, Schlieren and Mafic Enclaves in Calc-Alkaline Granites: The Budduso Pluton (Sardinia). Lithos 2008, 104, 147–163. [Google Scholar] [CrossRef]
- Slaby, E.; Martin, H. Mafic and Felsic Magma Interaction in Granites: The Hercynian Karkonosze Pluton (Sudetes, Bohemian Massif). J. Petrol. 2007, 49, 353–391. [Google Scholar] [CrossRef]
- Secchi, F.; Giovanardi, T.; Naitza, S.; Casalini, M.; Kohút, M.; Conte, A.M.; Oggiano, G. Multiple Crustal and Mantle Inputs in Post-Collisional Magmatism: Evidence from Late-Variscan Sàrrabus Pluton (SE Sardinia, Italy). Lithos 2022, 420–421, 106697. [Google Scholar] [CrossRef]
- Castro, A.; Gómez-Frutos, D.; Gutiérrez-Alonso, G.; Sant’Ovaia, H.; Ferreira, J.; Pereira, M.F.; de la Rosa, J. The Miranda-Sayago Batholith (NW Iberia): Implications on Mantle-Crust Hybrid Zone Generation during Variscan Collision. Lithos 2025, 108107. [Google Scholar] [CrossRef]
Silvares | Vouzela | Junqueira | Campia | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PL | RM | Calc. | PL | RM | Calc. | PL | RM | Calc. | PL | RM | Calc. | |
Sample | VT133 | VT168 | VCM069 | VT158 | 154-7 | VT181 | VT131 | VT176 | ||||
SiO2 | 72.83 | 75.02 | 75.13 | 72.83 | 74.81 | 74.89 | 72.66 | 74.37 | 74.46 | 72.65 | 74.09 | 74.26 |
TiO2 | 0.25 | 0.15 | 0.16 | 0.33 | 0.15 | 0.28 | 0.36 | 0.11 | 0.29 | 0.23 | 0.18 | 0.17 |
Al2O3 | 15.68 | 14.63 | 15.14 | 15.05 | 14.53 | 14.76 | 15.41 | 15.10 | 15.35 | 15.74 | 15.09 | 15.36 |
FeOT | 1.82 | 1.07 | 1.21 | 1.55 | 1.08 | 1.10 | 1.62 | 1.03 | 1.04 | 1.92 | 1.39 | 1.33 |
MnO | 0.04 | 0.04 | 0.04 | 0.02 | 0.03 | 0.02 | 0.01 | 0.04 | 0.01 | 0.03 | 0.03 | 0.03 |
MgO | 0.33 | 0.20 | 0.10 | 0.43 | 0.17 | 0.28 | 0.53 | 0.18 | 0.35 | 0.36 | 0.26 | 0.21 |
CaO | 0.47 | 0.51 | 0.43 | 0.65 | 0.53 | 0.65 | 0.54 | 0.38 | 0.58 | 0.43 | 0.47 | 0.36 |
Na2O | 3.30 | 3.48 | 3.18 | 3.17 | 3.87 | 3.53 | 2.82 | 3.61 | 3.14 | 3.36 | 3.23 | 3.12 |
K2O | 4.84 | 4.48 | 4.40 | 5.54 | 4.46 | 4.42 | 5.65 | 4.72 | 4.69 | 4.84 | 4.85 | 4.83 |
P2O5 | 0.43 | 0.43 | 0.47 | 0.43 | 0.36 | 0.40 | 0.40 | 0.46 | 0.42 | 0.45 | 0.41 | 0.48 |
Total | 100.0 | 100.0 | 100.3 | 100.0 | 100.0 | 100.3 | 100.0 | 100.0 | 100.3 | 100.0 | 100.0 | 100.2 |
% Cryst. | 12 | 15 | 15 | 8 | ||||||||
ΣR2 | 0.41 | 0.21 | 0.38 | 0.11 | ||||||||
Sr (a) | 42 | 37 | 28 | 58 | 26 | 39 | 60 | 31 | 43 | 40 | 40 | 29 |
Ba (a) | 173 | 139 | 111 | 239 | 112 | 105 | 280 | 107 | 129 | 146 | 150 | 122 |
Rb (b) | 434 | 476 | 446 | 345 | 368 | 365 | 348 | 412 | 366 | 469 | 429 | 481 |
Bt (%) | 28.4 | 18.2 | 21.3 | 27.9 | ||||||||
Pl (%) | 33.9 | - | - | 55.0 | ||||||||
Kfs (%) | 37.7 | 71.4 | 62.7 | 17.2 | ||||||||
Qz (%) | - | 9.3 | 15.3 | - | ||||||||
Ilm (%) | - | - | 0.1 | - | ||||||||
Ap (%) | - | 1.2 | 0.5 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Portela, L.; Azevedo, M.R.; Valle Aguado, B.; Costa, M.M.; Medina, J. Petrogenesis and U–Pb Dating of Variscan S-Type Granites from the Junqueira Batholith (Central Iberian Zone). Minerals 2025, 15, 481. https://doi.org/10.3390/min15050481
Portela L, Azevedo MR, Valle Aguado B, Costa MM, Medina J. Petrogenesis and U–Pb Dating of Variscan S-Type Granites from the Junqueira Batholith (Central Iberian Zone). Minerals. 2025; 15(5):481. https://doi.org/10.3390/min15050481
Chicago/Turabian StylePortela, Luís, Maria Rosário Azevedo, Beatriz Valle Aguado, Maria Mafalda Costa, and Jorge Medina. 2025. "Petrogenesis and U–Pb Dating of Variscan S-Type Granites from the Junqueira Batholith (Central Iberian Zone)" Minerals 15, no. 5: 481. https://doi.org/10.3390/min15050481
APA StylePortela, L., Azevedo, M. R., Valle Aguado, B., Costa, M. M., & Medina, J. (2025). Petrogenesis and U–Pb Dating of Variscan S-Type Granites from the Junqueira Batholith (Central Iberian Zone). Minerals, 15(5), 481. https://doi.org/10.3390/min15050481