Extraction of Copper from Printed Circuit Boards in an Alkaline Solution Using EDTA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grinding, Classification, and Characterization of WPCBs
2.2. Copper Extraction Process with H2O2/EDTA
2.3. Determination of Extracted Copper Amount by UV-Vis Spectroscopy
3. Results and Discussion
3.1. XRF Analysis of WPCB Samples
3.2. ICP-OES Analysis of WPCB Samples
3.3. Determination of the Polymeric Fraction
3.4. Copper Extraction from WPCBs with H2O2/EDTA
3.5. Kinetics of Copper Extraction from WPCBs with H2O2/EDTA
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shittu, O.S.; Williams, I.D.; Shaw, P.J. Global E-Waste Management: Can WEEE Make a Difference? A Review of e-Waste Trends, Legislation, Contemporary Issues and Future Challenges. Waste Manag. 2021, 120, 549–563. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Awasthi, A.K.; Qin, W.; Liu, W.; Yang, C. Recycling Value Materials from Waste PCBs Focus on Electronic Components: Technologies, Obstruction and Prospects. J. Environ. Chem. Eng. 2022, 10, 108516. [Google Scholar] [CrossRef]
- Forti, V.; Baldé, C.P.; Kuehr, R. E-Waste Statistics: Guidelines on Classifications, Reporting and Indicators, 2nd ed.; United Nations University, ViE–SCYCLE: Bonn, Germany, 2018. [Google Scholar]
- Baldé, C.P.; Kuehr, R.; Yamamoto, T.; McDonald, R.; Althaf, S.; Bel, G.; Deubzer, O.; Fernandez-Cubillo, E.; Forti, V.; Gray, V.; et al. The Global E-Waste Monitor 2024; Genebra: Geneva, Switzerland, 2024. [Google Scholar]
- Charitopoulou, M.A.; Stefanidis, S.D.; Lappas, A.A.; Achilias, D.S. Catalytic Pyrolysis of Polymers with Brominated Flame-Retardants Originating in Waste Electric and Electronic Equipment (WEEE) Using Various Catalysts. Sustain. Chem. Pharm. 2022, 26, 100612. [Google Scholar] [CrossRef]
- Arias, N.R.; Arias, S.F.R.; Rivera, L.A.M.; Oliveros, M.E.M. Recovery of Copper through Concentration Processes from Ashes Produced by WEEE Pyrolysis. J. Appl. Res. Technol. 2021, 19, 163–171. [Google Scholar] [CrossRef]
- Blumbergs, E.; Serga, V.; Shishkin, A.; Goljandin, D.; Shishko, A.; Zemcenkovs, V.; Markus, K.; Baronins, J.; Pankratov, V. Selective Disintegration–Milling to Obtain Metal-Rich Particle Fractions from E-Waste. Metals 2022, 12, 1468. [Google Scholar] [CrossRef]
- Li, H.; Eksteen, J.; Oraby, E. Hydrometallurgical Recovery of Metals from Waste Printed Circuit Boards (WPCBs): Current Status and Perspectives–A Review. Resour. Conserv. Recycl. 2018, 139, 122–139. [Google Scholar] [CrossRef]
- Annamalai, M.; Gurumurthy, K. Characterization of End-of-Life Mobile Phone Printed Circuit Boards for Its Elemental Composition and Beneficiation Analysis. J. Air Waste Manag. Assoc. 2021, 71, 315–327. [Google Scholar] [CrossRef]
- Dhanasekar, S.; Stella, T.J.; Thenmozhi, A.; Bharathi, N.D.; Thiyagarajan, K.; Singh, P.; Reddy, Y.S.; Srinivas, G.; Jayakumar, M. Study of Polymer Matrix Composites for Electronics Applications. J. Nanomater. 2022, 2022, 8605099. [Google Scholar] [CrossRef]
- Hao, J.; Wang, Y.; Wu, Y.; Guo, F. Metal Recovery from Waste Printed Circuit Boards: A Review for Current Status and Perspectives. Resour. Conserv. Recycl. 2020, 157, 104787. [Google Scholar] [CrossRef]
- Faraji, F.; Golmohammadzadeh, R.; Pickles, C.A. Potential and Current Practices of Recycling Waste Printed Circuit Boards: A Review of the Recent Progress in Pyrometallurgy. J. Environ. Manag. 2022, 316, 115242. [Google Scholar] [CrossRef]
- Nekouei, R.K.; Pahlevani, F.; Rajarao, R.; Golmohammadzadeh, R.; Sahajwalla, V. Two-Step Pre-Processing Enrichment of Waste Printed Circuit Boards: Mechanical Milling and Physical Separation. J. Clean. Prod. 2018, 184, 1113–1124. [Google Scholar] [CrossRef]
- Eswaraiah, C.; Soni, R.K. Milling and Classification of Printed Circuit Boards for Material Recycling. Part. Sci. Technol. 2015, 33, 659–665. [Google Scholar] [CrossRef]
- Hubau, A.; Chagnes, A.; Minier, M.; Touzé, S.; Chapron, S.; Guezennec, A.G. Recycling-Oriented Methodology to Sample and Characterize the Metal Composition of Waste Printed Circuit Boards. Waste Manag. 2019, 91, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Touzé, S.; Laperche, V.; Hubau, A.; Moreau, P. PXRF on Printed Circuit Boards: Methodology, Applications, and Challenges. Waste Manag. 2022, 146, 66–76. [Google Scholar] [CrossRef]
- Kumar, A.; Holuszko, M.E.; Janke, T. Determination of loss on ignition test conditions for nonmetal fraction from processed waste printed circuit boards. Resour. Conserv. Recycl. 2020, 163, 105105. [Google Scholar] [CrossRef]
- Wongsawa, T.; Traiwongsa, N.; Pancharoen, U.; Nootong, K. A Review of the Recovery of Precious Metals Using Ionic Liquid Extractants in Hydrometallurgical Processes. Hydrometallurgy 2020, 198, 105488. [Google Scholar] [CrossRef]
- Li, X.; Gao, Q.; Jiang, S.; Nie, C.; Zhu, X.; Jiao, T. Review on the Gentle Hydrometallurgical Treatment of WPCBs: Sustainable and Selective Gradient Process for Multiple Valuable Metals Recovery. J. Environ. Manag. 2023, 348, 119288. [Google Scholar] [CrossRef]
- Binnemans, K.; Jones, P.T. The Twelve Principles of Circular Hydrometallurgy. J. Sust. Metall. 2023, 9, 1–25. [Google Scholar] [CrossRef]
- Nithya, R.; Sivasankari, C.; Thirunavukkarasu, A. Electronic Waste Generation, Regulation and Metal Recovery: A Review. Environ. Chem. Lett. 2021, 19, 1347–1368. [Google Scholar] [CrossRef]
- Sirola, K. Chelating Adsorbents in Purification of Hydrometallurgical Solutions; Lappeenrannan Teknillinen Yliopisto: Lappeenranta, Finland, 2009; ISBN 978-952-214-843-8. [Google Scholar]
- Chauhan, G.; Jadhao, P.R.; Pant, K.K.; Nigam, K.D.P. Novel Technologies and Conventional Processes for Recovery of Metals from Waste Electrical and Electronic Equipment: Challenges & Opportunities–A Review. J. Environ. Chem. Eng. 2018, 6, 1288–1304. [Google Scholar] [CrossRef]
- Deng, D.; Deng, C.; Liu, T.; Xue, D.; Gong, J.; Tan, R.; Mi, X.; Gong, B.; Wang, Z.; Liu, C.; et al. Selective Recovery of Copper from Electroplating Sludge by Integrated EDTA Mixed with Citric Acid Leaching and Electrodeposition. Sep. Purif. Technol. 2022, 301, 121917. [Google Scholar] [CrossRef]
- Jadhao, P.; Chauhan, G.; Pant, K.K.; Nigam, K.D.P. Greener Approach for the Extraction of Copper Metal from Electronic Waste. Waste Manag. 2016, 57, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Yousefzadeh, S.; Yaghmaeian, K.; Mahvi, A.H.; Nasseri, S.; Alavi, N.; Nabizadeh, R. Comparative Analysis of Hydrometallurgical Methods for the Recovery of Cu from Circuit Boards: Optimization Using Response Surface and Selection of the Best Technique by Two-Step Fuzzy AHP-TOPSIS Method. J. Clean. Prod. 2020, 249, 119401. [Google Scholar] [CrossRef]
- Monzyk, B.; Martyak, N.M.; Berger, P. Complexation Equilibria for the Copper—EDTA—Cyanide System. Trans. IMF 1995, 73, 50–53. [Google Scholar] [CrossRef]
- Choi, W.K.; Oh, W.Z.; Woo, S.I. Dissolution Behaviors of Copper Metal in Alkaline H2O2-EDTA Solutions. J. Nucl. Sci. Technol. 1993, 30, 549–553. [Google Scholar] [CrossRef]
- Torres, R.; Lapidus, G.T. Copper Leaching from Electronic Waste for the Improvement of Gold Recycling. Waste Manag. 2016, 57, 131–139. [Google Scholar] [CrossRef]
- Ross, J.R.H. The Kinetics and Mechanisms of Catalytic Reactions. In Heterogeneous Catalysis; Elsevier: Amsterdam, The Netherlands, 2012; pp. 123–142. [Google Scholar] [CrossRef]
- Dwadasi, B.S.; Goverapet Srinivasan, S.; Rai, B. Interfacial Structure in the Liquid–Liquid Extraction of Rare Earth Elements by Phosphoric Acid Ligands: A Molecular Dynamics Study. Phys. Chem. Chem. Phys. 2020, 22, 4177–4192. [Google Scholar] [CrossRef]
- Havlík, T. Kinetics of Heterogeneous Reactions of Leaching Processes. In Hydrometallurgy; Havlík, T., Ed.; Woodhead Publishing: Cambridge, UK, 2008; pp. 184–241. [Google Scholar] [CrossRef]
- Liao, Y.; Huang, F.; Zhou, J.; Li, B. Kinetics and Behavior of Cobalt Extraction from Low Nickel Matte Converter Slag by Pressure Oxidative Leaching with Sulfuric Acid. CIESC J. 2015, 66, 3971–3978. [Google Scholar] [CrossRef]
- Muzayanha, S.U.; Yudha, C.S.; Hasanah, L.M.; Gupita, L.T.; Widiyandari, H.; Purwanto, A. Comparative Study of Various Kinetic Models on Leaching of Nca Cathode Material. Indo J. Chem. 2020, 20, 1291–1300. [Google Scholar] [CrossRef]
- Hao, J.; Wang, X.; Wang, Y.; Wu, Y.; Guo, F. Optimizing the Leaching Parameters and Studying the Kinetics of Copper Recovery from Waste Printed Circuit Boards. ACS Omega 2022, 7, 3689–3699. [Google Scholar] [CrossRef]
- Li, Q.; Liu, Z.; Liu, Q. Kinetics of Vanadium Leaching from a Spent Industrial V2O5/TiO2 Catalyst by Sulfuric Acid. Ind. Eng. Chem. Res. 2014, 53, 2956–2962. [Google Scholar] [CrossRef]
- Smith, A.J.; Garciano, L.O.; Tran, T.; Wainwrigh, M.S. Structure and Kinetics of Leaching for the Formation of Skeletal (Raney) Cobalt Catalysts. Ind. Eng. Chem. Res. 2008, 47, 1409–1415. [Google Scholar] [CrossRef]
- Faraji, F.; Alizadeh, A.; Rashchi, F.; Mostoufi, N. Kinetics of Leaching: A Review. Rev. Chem. Eng. 2022, 38, 113–148. [Google Scholar] [CrossRef]
- Korf, N.; Løvik, A.N.; Figi, R.; Schreiner, C.; Kuntz, C.; Mählitz, P.M.; Rösslein, M.; Wäger, P.; Rotter, V.S. Multi-Element Chemical Analysis of Printed Circuit Boards: Challenges and Pitfalls. Waste Manag. 2019, 92, 124–136. [Google Scholar] [CrossRef]
- Canassa, T. Utilização Da Lei de Lambert-Beer Para Determinação Da Concentração de Soluções. J. Exp. Tech. Instrum. 2018, 1, 23–30. [Google Scholar] [CrossRef]
- Rahardjo, S.B.; Saraswati, T.E.; Masykur, A.; Finantrena, N.N.F.; Syaima, H. Synthesis and Characterization of Tetrakis (2-Amino-3-Methylpyridine) Copper (II) Sulfate Tetrahydrate. IOP Conf. Ser. Mater. Sci. Eng. 2018, 349, 012056. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, H.; Chang, F.; Ashraf, U.; Peng, W.; Wu, H.; Liu, Q.; Liu, F.; Zhang, Y.; Duan, L. Application of Corrected Methods for High-Resolution XRF Core Scanning Elements in Lake Sediments. Appl. Sci. 2020, 10, 8012. [Google Scholar] [CrossRef]
- Suponik, T.; Franke, D.M.; Nuckowski, P.M.; Matusiak, P.; Kowol, D.; Tora, B. Impact of Grinding of Printed Circuit Boards on the Efficiency of Metal Recovery by Means of Electrostatic Separation. Minerals 2021, 11, 281. [Google Scholar] [CrossRef]
- Yamane, L.H.; de Moraes, V.T.; Espinosa, D.C.R.; Tenório, J.A.S. Recycling of WEEE: Characterization of Spent Printed Circuit Boards from Mobile Phones and Computers. Waste Manag. 2011, 31, 2553–2558. [Google Scholar] [CrossRef]
- Trinh, H.B.; Kim, S.; Lee, J. Selective Copper Recovery by Acid Leaching from Printed Circuit Board Waste Sludge. Metals 2020, 10, 293. [Google Scholar] [CrossRef]
Metal | PA20 | PA80 | ||
---|---|---|---|---|
Mean (%) | RSD (%) | Mean (%) | RSD (%) | |
Bal | 45.39 | 1.16 | 41.99 | 1.28 |
Cu | 26.85 | 1.02 | 13.21 | 1.22 |
Al | 6.27 | 2.77 | 5.33 | 2.98 |
Fe | 2.36 | 1.15 | 18.33 | 0.86 |
Sn | 1.94 | 1.66 | 2.21 | 1.62 |
Zn | 0.79 | 1.68 | 0.34 | 2.93 |
Ni | 0.57 | 2.08 | 0.30 | 3.84 |
Pb | 0.51 | 2.31 | 0.58 | 2.20 |
Bi | 0.37 | 2.47 | 0.27 | 2.81 |
Ti | 0.29 | 6.81 | 0.25 | 7.87 |
Au | 0.13 | 4.97 | 0.09 | 6.15 |
Ag | 0.07 | 3.07 | 0.04 | 3.67 |
Mn | 0.04 | 17.53 | 0.18 | 7.31 |
Sr | 0.03 | 3.54 | 0.03 | 3.36 |
Metal | PA20 | PA80 | ||
---|---|---|---|---|
Mean (%) | RSD (%) | Mean (%) | RSD (%) | |
Cu | 36.63 | 0.24 | 7.09 | 2.26 |
Zn | 5.28 | 0.34 | 0.29 | 0.49 |
Fe | 4.52 | 0.23 | 19.73 | 0.3 |
Pb | 1.77 | 4.57 | 0.77 | 5.79 |
Al | 0.93 | 1.03 | 2.17 | 0.82 |
Sn | 0.46 | 14.94 | 0.45 | 11.92 |
Ni | 0.66 | 0.53 | 0.17 | 3.42 |
Mn | 0.15 | 0.95 | 0.11 | 0.86 |
Ag | 0.09 | 3.94 | 0.05 | 0.74 |
Au | 0.03 | 5.64 | 0.03 | 16.64 |
Sr | 0.01 | 0.36 | 0.04 | 0.14 |
ME | 50.53 | 0.57 | 30.90 | 1.13 |
Sample | Materials | |||||
---|---|---|---|---|---|---|
Metals | Polymer | Ceramic | ||||
Mean (%) | SD (%) | Mean (%) | SD (%) | Mean (%) | SD (%) | |
PA20 | 50.5 | 0.3 | 28.9 | 3.1 | 20.5 | 3.1 |
PA80 | 30.9 | 0.4 | 24.1 | 3.4 | 44.9 | 3.4 |
Time | PA20 | PA80 | ||
---|---|---|---|---|
Extraction Cu (%) | RSD (%) | Extraction Cu (%) | RSD (%) | |
40 °C | ||||
T1 | 2.1 | 0.6 | 11.8 | 0.5 |
T2 | 4.3 | 1.8 | 26.6 | 0.7 |
T3 | 6.4 | 2.1 | 39.5 | 1.7 |
T4 | 9.3 | 0.6 | 47.9 | 2.1 |
T5 | 15.5 | 2.4 | 55.4 | 2.7 |
T6 | 17.6 | 2.2 | 57.9 | 2.5 |
60 °C | ||||
T1 | 7.0 | 0.6 | 24.0 | 6.3 |
T2 | 15.3 | 2.2 | 29.7 | 1.7 |
T3 | 21.6 | 2.0 | 43.8 | 0.5 |
T4 | 26.2 | 0.1 | 56.0 | 10.8 |
T5 | 34.7 | 0.8 | 75.0 | 0.7 |
T6 | 47.6 | 0.9 | 78.6 | 1.4 |
80 °C | ||||
T1 | 7.8 | 0.6 | 29.7 | 1.0 |
T2 | 13.6 | 1.2 | 33.2 | 0.9 |
T3 | 23.1 | 1.5 | 35.1 | 0.8 |
T4 | 26.4 | 1.8 | 45.2 | 1.5 |
T5 | 26.9 | 2.1 | 51.4 | 0.8 |
T6 | 42.6 | 2.4 | 54.4 | 0.8 |
Step | PA20 | PA80 |
---|---|---|
Initial feed (WPCBs) | 10.0 g | 10.0 g |
Copper mass in WPCBs | 3.66 g | 0.71 g |
Mass of copper extracted at 60 °C | 1.74 g | 0.56 g |
Mass of Copper remaining in WPCBs | 1.86 g | 0.13 g |
Copper present in the rates of solution collected over time | 0.06 g | 0.02 g |
Accountability factor | 100% | 100% |
Temperature (°C) | Chemical Reaction | Diffusion | Mixed | |||
---|---|---|---|---|---|---|
PA20 | ||||||
40 | 0.00035 | 0.95172 | 0.00002 | 0.92462 | 0.00072 | 0.95184 |
60 | 0.00098 | 0.98976 | 0.00019 | 0.94608 | 0.00208 | 0.98958 |
80 | 0.00078 | 0.94952 | 0.00014 | 0.90692 | 0.00165 | 0.94570 |
PA80 | ||||||
40 | 0.00124 | 0.87439 | 0.000322 | 0.93774 | 0.0027 | 0.88417 |
60 | 0.00209 | 0.94157 | 0.000749 | 0.93140 | 0.0049 | 0.94272 |
80 | 0.00071 | 0.92859 | 0.000217 | 0.93677 | 0.0017 | 0.93035 |
Reaction | |
---|---|
Zeroth order | |
First order | |
Second order | |
Three-halves-order kinetics (reaction control) | |
One-half-order kinetics (reaction control) | |
Two-thirds-order kinetics (reaction control) | |
One-thirds-order kinetics (diffusion control) |
Model | Temperature | |||||
---|---|---|---|---|---|---|
40 °C | 60 °C | 80 °C | ||||
PA20 | ||||||
Zeroth order | 0.00035 | 0.95172 | 0.00098 | 0.98976 | 0.00078 | 0.94952 |
First order | 0.00002 | 0.92462 | 0.00019 | 0.94608 | 0.00014 | 0.90692 |
Second order | 0.00072 | 0.95184 | 0.00208 | 0.98958 | 0.00165 | 0.94570 |
Three-halves-order | 0.00058 | 0.95210 | 0.00079 | 0.98435 | 0.00153 | 0.94604 |
One-half-order | 0.00052 | 0.95159 | 0.00070 | 0.98942 | 0.00112 | 0.94907 |
Two-thirds-order | 0.00068 | 0.95144 | 0.00092 | 0.98859 | 0.00141 | 0.94824 |
One-thirds-order | 0.00035 | 0.95172 | 0.00048 | 0.98976 | 0.00078 | 0.94952 |
PA80 | ||||||
Zeroth order | 0.00124 | 0.87439 | 0.00209 | 0.94157 | 0.00071 | 0.92859 |
First order | 0.000322 | 0.93774 | 0.000749 | 0.93140 | 0.0049 | 0.94272 |
Second order | 0.00071 | 0.92859 | 0.000217 | 0.93677 | 0.0017 | 0.93035 |
Three-halves-order | 0.00291 | 0.91508 | 0.00348 | 0.93783 | 0.00186 | 0.93585 |
One-half-order | 0.00171 | 0.86496 | 0.00271 | 0.93965 | 0.00105 | 0.92692 |
Two-thirds-order | 0.00210 | 0.85515 | 0.00228 | 0.93676 | 0.00128 | 0.92519 |
One-thirds-order | 0.00124 | 0.87439 | 0.00139 | 0.94157 | 0.00077 | 0.92859 |
Temperature (°C) | |||
---|---|---|---|
PA20 | |||
40 | 0.0019 | 0.9012 | 0.9803 |
60 | 0.0086 | 0.8204 | 0.9812 |
80 | 0.0122 | 0.7189 | 0.9709 |
PA80 | |||
40 | 0.0186 | 0.7765 | 0.9537 |
60 | 0.0312 | 0.7490 | 0.9548 |
80 | 0.1300 | 0.3388 | 0.9067 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goulart, A.O.; Veloso, T.C.; Veit, H.M.; Benvenuti, T. Extraction of Copper from Printed Circuit Boards in an Alkaline Solution Using EDTA. Minerals 2025, 15, 409. https://doi.org/10.3390/min15040409
Goulart AO, Veloso TC, Veit HM, Benvenuti T. Extraction of Copper from Printed Circuit Boards in an Alkaline Solution Using EDTA. Minerals. 2025; 15(4):409. https://doi.org/10.3390/min15040409
Chicago/Turabian StyleGoulart, Alan Oliveira, Tácia Costa Veloso, Hugo Marcelo Veit, and Tatiane Benvenuti. 2025. "Extraction of Copper from Printed Circuit Boards in an Alkaline Solution Using EDTA" Minerals 15, no. 4: 409. https://doi.org/10.3390/min15040409
APA StyleGoulart, A. O., Veloso, T. C., Veit, H. M., & Benvenuti, T. (2025). Extraction of Copper from Printed Circuit Boards in an Alkaline Solution Using EDTA. Minerals, 15(4), 409. https://doi.org/10.3390/min15040409