Interpreting the Complexity of Sulfur, Carbon, and Oxygen Isotopes from Sulfides and Carbonates in a Precious Metal Epithermal Field: Insights from the Permian Drake Epithermal Au-Ag Field of Northern New South Wales, Australia
Abstract
:1. Introduction
2. Geological Setting
2.1. The Southern New England Orogen
2.2. The Drake Volcanics
3. Samples and Methodology
3.1. Sample Description
3.2. Sample Preparation
3.3. Portable X-Ray Diffraction
3.4. Micro X-Ray Fluorescence
3.5. Stable Isotope Measurements
4. Results
4.1. Carbonate Species
4.2. μ-XRF
4.3. Stable Isotope Results
4.3.1. Carbon and Oxygen Isotopes
4.3.2. Sulfur Isotopes
5. Discussion
5.1. Sources of Fluid for the Carbonates
5.2. Sources of Sulfur
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lindgren, W. Mineral Deposits; McGraw-Hill Book Company Inc.: New York, NY, USA, 1933; p. 930. [Google Scholar]
- White, N.C.; Hedenquist, J. Epithermal gold deposits. Styles, characteristics and exploration. SEG Newsl. 1995, 27, 1–13. [Google Scholar] [CrossRef]
- Simmons, S.F.; White, N.C.; John, D.A. Geological characteristics of epithermal precious and base metal deposits. In 100th Anniversary Volume; Society of Economic Geologists: Littleton, CO, USA, 2005; pp. 485–522. [Google Scholar]
- Sillitoe, R.H. Epithermal paleosurfaces. Miner. Depos. 2015, 50, 767–793. [Google Scholar] [CrossRef]
- Hedenquist, J.W.; Arribas, A.; Gonzalez-Urien, E. Exploration for epithermal gold deposits. In Reviews in Economic Geology; Society of Economic Geologists: Littleton, CO, USA, 2000; Volume 13, pp. 245–277. [Google Scholar]
- White Rock Minerals. Mt Carrington Project: Overview, Geological Setting, Resources, Development, Exploration Gold and Silver, and Exploration Copper. Available online: https://www.whiterockminerals.com.au/mt-carrington-overview (accessed on 7 August 2019).
- Murray, C. Tectonic evolution and metallogenesis of the New England Orogen. In New England Orogen-Tectonics and Metallogenesis; Kleeman, J.D., Ed.; University of New England: Armidale, Australia, 1988; pp. 204–210. [Google Scholar]
- Thomson, J. Geology of the Drake 1: 100,000 Sheet; 0724006699; Geological Survey of New South Wales, Department of Mines: Sydney, NSW, Australia, 1976; p. 202. [Google Scholar]
- Andrews, E.C. Report on the Drake Gold and Copper Field by EC Andrews; Geological Survey; Department of Mines and Agriculture: Perth, WA, Australia, 1908; p. 46. [Google Scholar]
- Perkins, C. Mineralization in the Drake Volcanics. New England Orogen Tectonics and Metallogenesis; University of New England: Armidale, NSW, Australia, 1988; p. 275. [Google Scholar]
- Craighead, G.; Gordon, M. White Rock Minerals (WRM): Low Cost Gold/Silver Start-Up Opportunity, Sydney; Breakaway Investment Group: St. Augustine, FL, USA, 2016; pp. 6–19. [Google Scholar]
- Chomiszak, G. Relationship Between Alteration Assemblages, Their Intensity and Mineralisation and Grade at the White Rock Epithermal Ag Deposit, Drake, Northeastern NSW. Unpublished Honours Thesis, University of New South Wales, Sydney, Australia, 2016. [Google Scholar]
- Zhang, H. Relationship Between Alteration Assemblages, Alteration Intensity and Mineralisation and Grade for the Lady Hampden Epithermal Au-Ag Deposit, Drake, North-Eastern NSW. Unpublished Honours Thesis, University of New South Wales, Sydney, Australia, 2016. [Google Scholar]
- White, V. Volcanic Facies and Its Relationship to Silver Mineralisation, White Rock and White Rock North Epithermal Deposits, Drake Goldfield, NE NSW. Unpublished Honours Thesis, University of New South Wales, Sydney, Australia, 2017. [Google Scholar]
- Madayag, E. Controls on Mineralisation and Alteration in the Epithermal Strauss Au-Ag Deposit, Drake Goldfield, Northern NSW. Unpublished Honours Thesis, University of New South Wales, Sydney, Australia, 2020. [Google Scholar]
- Lay, A. A Comparative Study of the Mineralogy and Geochemistry of Ore Minerals from Silver-Rich Polymetallic Deposits of the Lachlan and Southern New England Orogens, New South Wales, Australia. Unpublished Ph.D. Thesis, University of New South Wales, Sydney, Australia, 2019. [Google Scholar]
- Davies, B. Mt Carrington District: Structural Framework & Mineralisation; Confidential company report prepared; Rex Minerals Ltd.: Pine Point, Australia, 2010; p. 44. [Google Scholar]
- Bottomer, L. Epithermal silver-gold mineralization in the Drake area, northeastern New South Wales. Aust. J. Earth Sci. 1986, 33, 457–473. [Google Scholar] [CrossRef]
- Leitch, E. The geological development of the southern part of the New England Fold Belt. J. Geol. Soc. Aust. 1974, 21, 133–156. [Google Scholar] [CrossRef]
- Jessop, K.; Daczko, N.; Piazolo, S. Tectonic cycles of the New England Orogen, eastern Australia: A review. Aust. J. Earth Sci. 2019, 66, 459–496. [Google Scholar] [CrossRef]
- Cawood, P.; Pisarevsky, S.A.; Leitch, E. Unraveling the New England orocline, east Gondwana accretionary margin. Tectonics 2011, 30, 1–15. [Google Scholar] [CrossRef]
- Shaw, S.; Flood, R. The New England Batholith, eastern Australia: Geochemical variations in time and space. J. Geophys. Res. Solid Earth 1981, 86, 10530–10544. [Google Scholar] [CrossRef]
- Waltenberg, K.; Blevin, P.; Bull, K.; Cronin, D.; Armistead, S. New SHRIMP U–Pb zircon Ages from the Lachlan Orogen and the New England Orogen; Geoscience Australia: Canberra, Australia, 2015; pp. 64–75. [Google Scholar]
- Herbert, H. The Drake mineral field—An unique entity in eastern Australia. In Proceedings of the In Permian Geology of Queensland, Geological Society of Autralia, Queesland Diveision, Brisbane, Australia, 14–16 July 1982; pp. 367–377. [Google Scholar]
- Cumming, G. Geochemistry of the Drake Volcanics, Drake Region, Northern NSW: Preliminary Data Analysis; unpublished report; White Rock Minerals Ltd.: Ballarat, Australia, 2011; p. 25. [Google Scholar]
- Herbert, H.K. Gold-silver mineralisation within the Drake Volcanics of northeastern N.S.W. In Proceedings of the Permian Geology fo Queensland, Geological Society of Autralia, Queesland Diveision, Brisbane, Australia, 14–16 July 1982; pp. 401–412. [Google Scholar]
- Perkins, C. The red rock deposit: A late Permian submarine epithermal precious metal system in Northastern New South Wales. In Proceedings of the Pacific Rim 87. International Congress on the Geology, Structure, Mineralisation and Economics of Pacific Rim, Gold Coast, Australia, 26–29 August 1987; pp. 895–898. [Google Scholar]
- Brownlow, J. Diapirism and the development of four thermal provinces in north-eastern New South Wales. In Proceedings of the New England Geology, Voisey Symposium, Armidale, Australia, 7 October–8 November; University of New England: Armidale, NSW, Australia, 1982; pp. 229–237. [Google Scholar]
- Korsch, R. Early Permian Tectonic Events in the New England Orogen. New England Geology. Voisey Symposium, University of New England: Armidale, Australia, 1982; 35–42. [Google Scholar]
- Flood, P.; Fergusson, C. The geological development of the northern New England Province of the New England Fold Belt. In Proceedings of the 1984 Field Conference. Volcanics, Granites and Mineralisation of the Stan Thorpe-Emmaville-Drake Region. Geological Society of Australia, Queensland Division, Brisbane, Australia, 6–10 August 1984; pp. 1–19. [Google Scholar]
- Houston, M. The geology and mineralisation of the Drake mine area, northern NSW, Australia. In Proceedings of the New England Orogen, Eastern Australia, NEO 93, University of New England, Armidale, NSW, Australia, 2–4 February 1993; pp. 337–348. [Google Scholar]
- Steven, T.A.; Eaton, G.P. Environment of ore deposition in the Creede mining district, San Juan Mountains, Colorado; I, Geologic, hydrologic, and geophysical setting. Econ. Geol. 1975, 70, 1023–1037. [Google Scholar] [CrossRef]
- Barton, P.; Bethke, P.M.; Roedder, E. Environment of ore deposition in the Creede mining district, San Juan Mountains, Colorado; Part III, Progress toward interpretation of the chemistry of the ore-forming fluid for the OH Vein. Econ. Geol. 1977, 72, 1–24. [Google Scholar] [CrossRef]
- Hayba, D.O. Environment of ore deposition in the Creede mining district, San Juan Mountains, Colorado; Part V, Epithermal mineralization from fluid mixing in the OH Vein. Econ. Geol. 1997, 92, 29–44. [Google Scholar] [CrossRef]
- Sander, M.V.; Einaudi, M.T. Epithermal deposition of gold during transition from propylitic to potassic alteration at Round Mountain, Nevada. Econ. Geol. 1990, 85, 285–311. [Google Scholar] [CrossRef]
- Henry, C.D.; Elson, H.B.; McIntosh, W.C.; Heizler, M.T.; Castor, S.B. Brief duration of hydrothermal activity at Round Mountain, Nevada, determined from Ar 40/Ar 39 geochronology. Econ. Geol. 1997, 92, 807–826. [Google Scholar] [CrossRef]
- Rhys, D.A.; Lewis, P.; Rowland, J. Structural controls on ore localization in epithermal gold-silver deposits: A mineral systems approach. In Applied Structural Geology of Ore-Forming Hydrothermal Systems, SEG Reviews; Society of Economic Geologists: Littleton, CO, USA, 2020; Volume 21, pp. 83–145. [Google Scholar]
- Cumming, G. A Revised Stratigraphic Framework for Red Rock, Mozart, and White Rock, Drake Volcanics, Northern New South Wales; Unpublished report; White Rock Minerals Ltd.: Ballarat, Australia, 2013; p. 18. [Google Scholar]
- Sarrazin, P.; Chipera, S.; Bish, D.; Blake, D.; Vaniman, D. Vibrating sample holder for XRD analysis with minimal sample preparation. Int. Cent. Diffr. Data Adv. X-Ray Anal. 2005, 48, 156–164. [Google Scholar]
- Taylor, J. Computer programs for standardless quantitative analysis of minerals using the full powder diffraction profile. Powder Diffr. 1991, 6, 2–9. [Google Scholar] [CrossRef]
- Burkett, D.A.; Graham, I.T.; Ward, C.R. The application of portable X-ray diffraction to quantitative mineralogical analysis of hydrothermal systems. Can. Mineral. 2015, 53, 429–454. [Google Scholar] [CrossRef]
- Friedman, I.; O’Neil, J.R. Compilation of stable isotope fractionation factors of geochemical interest. Prof. Pap. 1977, 440, 11. [Google Scholar] [CrossRef]
- Leroy, J.L.; Hubé, D.; Marcoux, E. Episodic deposition of Mn minerals in cockade breccia structures in three low-sulfidation epithermal deposits: A mineral stratigraphy and fluid-inclusion approach. Can. Mineral. 2000, 38, 1125–1136. [Google Scholar] [CrossRef]
- Ohmoto, H.; Rye, R.; Barnes, H. Geochemistry of Hydrothermal Ore Deposits; John Wiley & Sons: New York, NY, USA, 1979; pp. 517–611. [Google Scholar]
- Huston, D. Stable isotopes and their signifi cance for understanding the genesis of volcanic-associated massive sulfide deposits: A review. In Volcanic-Associated Massive Sulfide Deposits: Processes and Examples in Modern and Ancient Settings; Society of Economic Geologists: Littleton, CO, USA, 1999; pp. 157–179. [Google Scholar]
- Hoefs, J. Isotope fractionation processes of selected elements. In Stable Isotope Geochemistry; Springer: Berlin/Heidelberg, Germany, 2018; pp. 53–227. [Google Scholar]
- Rye, R.O.; Ohmoto, H. Sulfur and carbon isotopes and ore genesis: A review. Econ. Geol. 1974, 69, 826–842. [Google Scholar] [CrossRef]
- Matsuhisa, Y.; Morishita, Y.; Sato, T. Oxygen and carbon isotope variations in gold-bearing hydrothermal veins in the Kushikino mining area, southern Kyushu, Japan. Econ. Geol. 1985, 80, 283–293. [Google Scholar] [CrossRef]
- Ma, Y.; Jiang, S.-Y.; Frimmel, H.E. Metallogeny of the Late Jurassic Qiucun epithermal gold deposit in southeastern China: Constraints from geochronology, fluid inclusions, and HOC-Pb isotopes. Ore Geol. Rev. 2022, 142, 104688. [Google Scholar] [CrossRef]
- Rollinson, H.R. Using Geochemical Data: Evaluation, Presentation, Interpretation; Routledge: London, UK, 2014. [Google Scholar]
- Liu, J. Basin fluid genetic model of sediment-hosted micro-disseminated gold deposits in the gold-triangle area between Guizhou, Guangxi and Yunnan. Acta Miner. Sin. 1997, 17, 448–456. [Google Scholar]
- Zheng, Y.-F. Carbon-oxygen isotopic covariation in hydrothermal calcite during degassing of CO2. Miner. Depos. 1990, 25, 246–250. [Google Scholar] [CrossRef]
- Zheng, Y.-F.; Hoefs, J. Carbon and oxygen isotopic covariations in hydrothermal calcites. Miner. Depos. 1993, 28, 79–89. [Google Scholar] [CrossRef]
- Simmons, S.F.; Christenson, B.W. Origins of calcite in a boiling geothermal system. Am. J. Sci. 1994, 294, 361–400. [Google Scholar] [CrossRef]
- Zheng, Y. The modeling of stable isotopic system and application for ore deposit geochemistry. Miner. Depos. 2001, 20, 246–250. [Google Scholar]
- Simmons, S.; Browne, P. Mineralogical indicators of boiling in two low sulfidation epithermal environments: The Broadlands-Ohaaki and Waiotapu geothermal systems. In Geology and Ore Deposits; Geological Society of Nevada: Reno, NV, USA, 2000; pp. 683–690. [Google Scholar]
- Pokrovsky, O.S.; Golubev, S.V.; Schott, J.; Castillo, A. Calcite, dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150 C and 1 to 55 atm pCO2: New constraints on CO2 sequestration in sedimentary basins. Chem. Geol. 2009, 265, 20–32. [Google Scholar] [CrossRef]
- Barnes, H.L. Geochemistry of Hydrothermal Ore Deposits; John Wiley & Sons: Hoboken, NJ, USA, 1997. [Google Scholar]
- Shanks, W.P., III. 13.3—Stable Isotope Geochemistry of Mineral Deposits; Elsevie: Amsterdam, The Netherlands, 2014; pp. 59–85. [Google Scholar]
- Chaussidon, M.; Lorand, J.-P. Sulphur isotope composition of orogenic spinel lherzolite massifs from Ariege (North-Eastern Pyrenees, France): An ion microprobe study. Geochim. Cosmochim. Acta 1990, 54, 2835–2846. [Google Scholar] [CrossRef]
- Field, C.; Fifarek, R. Light-Stable Isotope Systematics in Epithermal Systems: Reviews in Economic Geology; Society of Economic Geologists: Littleton, CO, USA, 1985; Volume 2, pp. 99–128. [Google Scholar]
- Arribas, A., Jr. Characteristics of high-sulfidation epithermal deposits, and their relation to magmatic fluid. Mineral. Assoc. Can. Short Course 1995, 23, 419–454. [Google Scholar]
- Herbert, H.; Smith, J. Sulfur isotopes and origin of some sulfide deposits, New England, Australia. Miner. Depos. 1978, 13, 51–63. [Google Scholar] [CrossRef]
- Richards, J.P. Alkalic-Type Gold Deposits: A Review. In MAGMAS, Fluids and Ore Deposits; Short Course; Mineralogical of Association of Canada: Victoria, BC, Canada, 1995; Volume 23, pp. 367–400. [Google Scholar]
- Zhou, J.; Huang, Z.; Bao, G.; Gao, J. Sources and thermo-chemical sulfate reduction for reduced sulfur in the hydrothermal fluids, southeastern SYG Pb-Zn metallogenic province, SW China. J. Earth Sci. 2013, 24, 759–771. [Google Scholar] [CrossRef]
- Google Earth Pro, 2021. V7.3.3. 7786. Drake, NSW Australia. Lat -28.886327°, Lon 152.382921°, 531E. Retrieved from June 2021. Available online: https://earth.google.com/web/ (accessed on 22 January 2025).
Mineral | Number of Samples | δ13CVPDB (‰) | Average Value for δ13CVSMOW (‰) | δ18OVSMOW (‰) | Average Value for δ18OVSMOW (‰) |
---|---|---|---|---|---|
Ankerite | 4 | −9.33–−5.92 | −7.39 | +5.81–+7.99 | +6.63 |
Calcite | 68 | −21.32–+1.42 | −9.13 | −0.92–+17.94 | +7.77 |
Dolomite | 17 | −13.02–−5.15 | −8.47 | +3.40–+10.59 | +5.47 |
Magnesite | 15 | −10.44–−5.37 | −7.99 | +8.15–+15.84 | +11.89 |
Siderite | 1 | −13.71 | - | +17.11 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quan, H.; Graham, I.; Worland, R.; Adler, L.; Dietz, C.; Madayag, E.; Wang, H.; French, D. Interpreting the Complexity of Sulfur, Carbon, and Oxygen Isotopes from Sulfides and Carbonates in a Precious Metal Epithermal Field: Insights from the Permian Drake Epithermal Au-Ag Field of Northern New South Wales, Australia. Minerals 2025, 15, 134. https://doi.org/10.3390/min15020134
Quan H, Graham I, Worland R, Adler L, Dietz C, Madayag E, Wang H, French D. Interpreting the Complexity of Sulfur, Carbon, and Oxygen Isotopes from Sulfides and Carbonates in a Precious Metal Epithermal Field: Insights from the Permian Drake Epithermal Au-Ag Field of Northern New South Wales, Australia. Minerals. 2025; 15(2):134. https://doi.org/10.3390/min15020134
Chicago/Turabian StyleQuan, Hongyan, Ian Graham, Rohan Worland, Lewis Adler, Christian Dietz, Emmanuel Madayag, Huixin Wang, and David French. 2025. "Interpreting the Complexity of Sulfur, Carbon, and Oxygen Isotopes from Sulfides and Carbonates in a Precious Metal Epithermal Field: Insights from the Permian Drake Epithermal Au-Ag Field of Northern New South Wales, Australia" Minerals 15, no. 2: 134. https://doi.org/10.3390/min15020134
APA StyleQuan, H., Graham, I., Worland, R., Adler, L., Dietz, C., Madayag, E., Wang, H., & French, D. (2025). Interpreting the Complexity of Sulfur, Carbon, and Oxygen Isotopes from Sulfides and Carbonates in a Precious Metal Epithermal Field: Insights from the Permian Drake Epithermal Au-Ag Field of Northern New South Wales, Australia. Minerals, 15(2), 134. https://doi.org/10.3390/min15020134