Ore Genesis of the Sansheng W-Mo Deposit, Inner Mongolia, NE China: Constraints from Mineral Geochemistry and In Situ S Isotope Analyses of Sulfides
Abstract
1. Introduction
2. Regional Geology

3. Ore Deposit Geology
4. Sampling and Analytical Methods
4.1. Samples
4.2. In Situ Sulfur Isotope Analyses of Sulfides
4.3. In Situ Trace Element Analysis of Wolframite
4.4. In Situ Trace Element Analyses of Sulfides
5. Results
5.1. In Situ Sulfur Isotopic Compositions
5.2. Trace Element Compositions of Wolframite
5.3. Trace Element Compositions of Sulfides
6. Discussion
6.1. Source of Materials
6.2. Occurrence of Trace Elements in Minerals
6.2.1. Wolframite
6.2.2. Pyrite
6.2.3. Arsenopyrite
6.2.4. Chalcopyrite
6.3. Mineralization Processes
6.4. Metallogenic Model of the Sansheng Magmatic–Hydrothermal System
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seedorff, E.; Dilles, J.H.; Proffett, J.M.; Einaudi, M.; Zurcher, L.; Stavast, W.J.A.; Johnson, D.A.; Barton, M.D. Porphyry deposits: Characteristics and origin of hypogene features. Econ. Geol. 2005, 100, 251–298. [Google Scholar]
- Sillitoe, R.H. Porphyry copper systems. Econ. Geol. 2010, 105, 3–41. [Google Scholar] [CrossRef]
- Jiang, S.Y.; Zhao, K.D.; Jiang, H.; Su, H.M.; Xiong, S.F.; Xiong, Y.Q.; Xu, Y.M.; Zhang, W.; Zhu, L.Y. Spatiotemporal distribution, geological characteristics and metallogenic mechanism of tungsten and tin deposits in China: An overview. Chin. Sci. Bull. 2020, 65, 3730–3745. [Google Scholar]
- Ni, P.; Pan, J.Y.; Han, L.; Cui, J.M.; Gao, Y.; Fan, M.S.; Li, W.S.; Chi, Z.; Zhang, K.H.; Cheng, Z.L.; et al. Tungsten and tin deposits in South China: Temporal and spatial distribution, metallogenic models and prospecting directions. Ore. Geol. Rev. 2023, 157, 105453. [Google Scholar] [CrossRef]
- Mao, J.W.; Wu, S.H.; Song, S.W.; Dai, P.; Xie, G.Q.; Su, Q.W.; Liu, P.; Wang, X.G.; Yu, Z.Z.; Chen, X.Y.; et al. The world-class Jiangnan tungsten belt: Geological characteristics, metallogeny, and ore deposit model. Chin. Sci. Bull. 2020, 65, 3746–3762. [Google Scholar] [CrossRef]
- Tian, Z.D.; Lehmann, B.; Deng, C.Z.; Zhang, X.C.; Luo, A.B.; Chen, Y.H.; Yin, R.S. Multiple metal sources in polymetallic W-Sn ore deposits revealed by mercury stable isotopes. Sci. China Earth Sci. 2024, 67, 3465–3475. [Google Scholar] [CrossRef]
- Harlaux, M.; Mercadier, J.; Marignac, C.; Peiffert, C.; Cloquet, C.; Cuney, M. Tracing metal sources in peribatholitic hydrothermal W deposits based on the chemical composition of wolframite: The example of the Variscan French Massif Central. Chem. Geol. 2018, 479, 58–85. [Google Scholar] [CrossRef]
- Deng, X.D.; Luo, T.; Li, J.W.; Hu, Z.C. Direct dating of hydrothermal tungsten mineralization using in situ wolframite U–Pb chronology by laser ablation ICP-MS. Chem. Geol. 2019, 515, 94–104. [Google Scholar] [CrossRef]
- Xiong, Y.Q.; Shao, Y.J.; Cheng, Y.B.; Jiang, S.Y. Discrete Jurassic and Cretaceous Mineralization Events at the Xiangdong W(-Sn) Deposit, Nanling Range, South China. Econ. Geol. 2020, 115, 385–413. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, R.Q.; Gao, J.F.; Lu, J.J.; Wu, J.W. In-situ LA-ICP-MS trace element analyses of scheelite and wolframite: Constraints on the genesis of veinlet-disseminated and vein-type tungsten deposits, South China. Ore. Geol. Rev. 2018, 99, 166–179. [Google Scholar] [CrossRef]
- Jiang, H.; Liu, B.; Kong, H.; Wu, Q.H.; Chen, S.F.; Li, H.; Wu, J.H. In situ geochemistry and Sr–O isotopic composition of wolframite and scheelite from the Yaogangxian quartz vein-type W(–Sn) deposit, South China. Ore. Geol. Rev. 2022, 149, 105066. [Google Scholar] [CrossRef]
- Bai, R.L.; Hu, J.R.; Chen, X.F.; Fan, L.F.; Guo, D.B.; Zhang, Y.K.; Feng, F.; Cao, H.W. Zircon, wolframite and helvite U-Pb geochronology and geochemistry of the Hongjianbingshan tungsten polymetallic deposit: Implications for the Triassic critical metal mineralization in the Beishan orogenic belt, China. Acta Petrol. Sin. 2025, 41, 260–288. [Google Scholar] [CrossRef]
- Thomas, H.V.; Large, R.R.; Bull, S.W.; Maslennikov, V.; Berry, R.F.; Fraser, R.; Froud, S.; Moye, R. Pyrite and pyrrhotite textures and composition in sediments, laminated quartz veins, and reefs at Bendigo gold mine, Australia: Insights for ore genesis. Econ. Geol. 2011, 106, 1–31. [Google Scholar] [CrossRef]
- Zhou, L.L.; Zeng, Q.D.; Sun, G.T.; Duan, X.X.; Bonnetti, C.; Riegler, T.; Long, D.G.F.; Kamber, B. Laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) elemental mapping and its applications in ore geology. Acta Petrol. Sin. 2019, 35, 1964–1978. [Google Scholar]
- Caraballo, E.; Beaudoin, G.; Dare, S.; Genna, D.; Petersen, S.; Relvas, J.M.R.S.; Piercey, S.J. Trace Element Composition of Chalcopyrite from Volcanogenic Massive Sulfide Deposits: Variation and Implications for Provenance Recognition. Econ. Geol. 2023, 118, 1923–1958. [Google Scholar] [CrossRef]
- Large, R.R.; Danyushevsky, L.; Hollit, C.; Maslennikov, V.; Meffre, S.; Gilbert, S.; Bull, S.; Scott, R.; Emsbo, P.; Thomas, H. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits. Econ. Geol. 2009, 104, 635–668. [Google Scholar] [CrossRef]
- Holley, E.A.; Jilly-Rehak, C.; Sack, P.; Phillips, D.L.; Gopon, P. Nanoscale Characteristics of Carlin-Type Auriferous Pyrite from the Nadaleen Trend, Yukon. Econ. Geol. 2024, 119, 1643–1666. [Google Scholar] [CrossRef]
- Deng, Y.; Zhang, J.; Zhong, R.C.; He, X.H.; Wang, X.Y. Application of principal component analysis method based on machine learning to gold deposit type discrimination: A case study of the geochemical characteristics of pyrite. Acta Petrol. Sin. 2024, 40, 1801–1816. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Xie, G.Q.; Olin, P. Texture, in-situ geochemical, and S isotopic analyses of pyrite and arsenopyrite from the Longshan Sb-Au deposit, southern China: Implications for the genesis of intrusion-related Sb-Au deposit. Ore. Geol. Rev. 2022, 143, 104781. [Google Scholar] [CrossRef]
- Cai, W.Y.; Song, M.C.; Santosh, M.; Li, J. The gold-telluride connection: Evidence for multiple fluid pulses in the Jinqingding telluride-rich gold deposit of Jiaodong Peninsula, Eastern China. Geosci. Front. 2024, 15, 101795. [Google Scholar] [CrossRef]
- Li, X.H.; Liang, G.Z.; Wu, J.J.; Yang, K.F.; Fan, H.R.; Zeng, Q.D.; Zhang, Z.M.; Hu, F.F. Two periods of gold mineralization-magmatism-tectonism in the East Kunlun metallogenic belt. Acta Petrol. Sin. 2025, 41, 526–543. [Google Scholar]
- Wu, Y.F.; Evans, K.; Li, J.W.; Fougerouse, D.; Large, R.R.; Guagliardo, P. Metal remobilization and ore-fluid perturbation during episodic replacement of auriferous pyrite from an epizonal orogenic gold deposit. Geochim. Cosmochimca Acta 2019, 245, 98–117. [Google Scholar] [CrossRef]
- Cao, G.S.; Zhang, Y.; Chen, H.Y. Trace elements in pyrite from orogenic gold deposits: Implications for metallogenic mechanism. Acta Petrol. Sin. 2023, 39, 2330–2346. [Google Scholar] [CrossRef]
- Martin, A.J.; McDonald, I.; Jamieson, J.; Jenkin, G.R.T.; McFall, K.A.; Piercey, G.; MacLeod, C.J.; Layne, G.D. Mineral-scale variation in the trace metal and sulfur isotope composition of pyrite: Implications for metal and sulfur sources in mafic VMS deposits. Miner. Depos. 2022, 57, 911–933. [Google Scholar] [CrossRef]
- Sun, Z.Y.; Deng, X.H.; Pirajno, F. Textures, trace element compositions, and sulfur isotopes of pyrite from the Honghai volcanogenic massive sulfide deposit: Implications for ore genesis and mineral exploration. Sci. China Earth Sci. 2023, 66, 738–764. [Google Scholar] [CrossRef]
- Reich, M.; Deditius, A.; Chryssoulis, S.; Li, J.W.; Ma, C.Q.; Parada, M.A.; Barra, F.; Mittermayr, F. Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: A SIMS/EPMA trace element study. Geochim. Cosmochimca Acta 2013, 104, 42–62. [Google Scholar] [CrossRef]
- Keith, M.; Haase, K.M.; Chivas, A.R.; Klemd, R. Phase separation and fluid mixing revealed by trace element signatures in pyrite from porphyry systems. Geochim. Cosmochimca Acta 2022, 329, 185–205. [Google Scholar] [CrossRef]
- Wu, C.; Cooke, D.R.; Baker, M.J.; Zhang, L.J.; Liang, P.; Fang, J.; Olin, P.; Danyushevsky, L.V.; Chen, H.Y. Using pyrite composition to track the multi-stage fluids superimposed on a porphyry Cu system. Am. Mineral. 2024, 109, 827–845. [Google Scholar] [CrossRef]
- Cooke, D.R.; Wilkinson, J.J.; Baker, M.; Agnew, P.; Phillips, J.; Chang, Z.S.; Chen, H.Y.; Wilkinson, C.C.; Inglis, S.; Hollings, P.; et al. Using Mineral Chemistry to Aid Exploration: A Case Study from the Resolution Porphyry Cu-Mo Deposit, Arizona. Econ. Geol. 2020, 115, 813–840. [Google Scholar] [CrossRef]
- Chen, P.W.; Liu, B.; Wang, T.S.; Zhou, L.L.; Wang, Y.B.; Sun, G.T.; Hou, K.J.; Weng, S.F.; Zeng, Q.D.; Long, Z.; et al. Genesis of the Danping bauxite deposit in northern Guizhou, Southwest China: Constraints from in-situ elemental and sulfur isotope analyses in pyrite. Ore. Geol. Rev. 2022, 148, 105056. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Chen, S.Y.; Tian, H.; Zhao, J.N.; Tong, X.; Chen, X.S. Trace element and S isotope characterization of sulfides from skarn Cu ore in the Laochang Sn-Cu deposit, Gejiu district, Yunnan, China: Implications for the ore-forming process. Ore. Geol. Rev. 2021, 134, 104155. [Google Scholar] [CrossRef]
- Zhao, L.J.; Shao, Y.J.; Zhang, Y.; Liu, L.Y.; Zhang, S.T.; Zhao, H.T.; Li, H.B. Pyrite geochemical fingerprinting on skarn ore-forming processes: A case study from the Huangshaping W-Sn-Cu-Pb-Zn deposit in the Nanling Range, South China. J. Geochem. Explor. 2024, 262, 107474. [Google Scholar] [CrossRef]
- Tan, Z.J.; Zheng, Y.; Yu, P.P.; Li, R.J.; Huang, Y.; Ding, W.; Wu, Y.H.; Chen, M.X.; Sun, L.H.; Wang, Z.K.; et al. Indium concentrations as a potential indicator of orebody-intrusion distance in a skarn Pb-Zn system, elucidated by the Fozichong Orefield (South China). Ore. Geol. Rev. 2024, 165, 105912. [Google Scholar] [CrossRef]
- Seal, R.R. Sulfur Isotope Geochemistry of Sulfide Minerals. Rev. Mineral. Geochem. 2006, 61, 633–677. [Google Scholar] [CrossRef]
- Fan, H.R.; Li, X.H.; Zuo, Y.B.; Chen, L.; Liu, S.; Hu, F.F.; Feng, K. In-situ LA-(MC)-ICPMS and (Nano) SIMS trace elements and sulfur isotope analyses on sulfides and application to confine metallogenic process of ore deposit. Acta Petrol. Sin. 2018, 34, 3479–3496. [Google Scholar]
- Sun, G.T.; Zeng, Q.D.; Zhou, L.L.; Philip Hollis, S.; Zhou, J.X.; Chen, K.Y. Mechanisms for invisible gold enrichment in the Liaodong Peninsula, NE China: In situ evidence from the Xiaotongjiapuzi deposit. Gondwana Res. 2022, 103, 276–296. [Google Scholar] [CrossRef]
- Chen, P.W.; Zeng, Q.D.; Zhou, L.L.; Liu, B.; Fu, Y.; Sun, G.T.; Yu, B.; Long, Z. Genesis and prospecting significance of the Buziwannan gold-polymetallic ore deposit in the West Kunlun Orogen Belt, China: Constraints from mineral geochemistry and in situ S–Pb isotope analyses of sulfides. J. Geochem. Explor. 2023, 244, 107125. [Google Scholar] [CrossRef]
- Li, X.H.; Fan, H.R.; Zhu, R.X.; Yang, K.F.; Yu, X.F.; Li, D.P.; Zhang, Y.W.; Ma, W.D.; Feng, K. In-situ monazite Nd and pyrite S isotopes as fingerprints for the source of ore-forming fluids in the Jiaodong gold province. Ore. Geol. Rev. 2022, 147, 104965. [Google Scholar] [CrossRef]
- Wu, J.J.; Zeng, Q.D.; Santosh, M.; Fan, H.R.; Bai, R.; Li, X.H.; Zhang, Z.M.; Zhang, Y.W.; Huang, L.L. Deep ore-forming fluid characteristics of the Jiaodong gold province: Evidence from the Qianchen gold deposit in the Jiaojia gold belt. Ore. Geol. Rev. 2022, 145, 104911. [Google Scholar] [CrossRef]
- Yu, B.; Zeng, Q.D.; Frimmel, H.E.; Fan, H.R.; Xue, J.L.; Yang, J.H.; Wu, J.J.; Bao, Z.A. Spatio-temporal fluid evolution of gold deposit in the Jiaodong Peninsula, China: A case study of the giant Xiling deposit. J. Geochem. Explor. 2024, 260, 107455. [Google Scholar] [CrossRef]
- Zhou, Y. The Mineralization of Sansheng W-Mo Deposit in Huade, Inner Mongolia. Master’s Thesis, Chinese Academy of Geological Science, Beijing, China, 2013. [Google Scholar]
- Li, J.J.; Zhou, Y.; Dang, Z.C.; Zhao, Z.L.; Li, C.; Qu, W.J.; Cao, Z.C.; Yang, G.J.; Fu, C.; Tang, W.L. Re-Os isotopic dating of molybdenites from the Sansheng W-Mo deposit in Huada County, Inner Mongolia, and its geological significance. Geol. Bull. China 2016, 35, 531–536. [Google Scholar]
- Xie, W.; Zeng, Q.D.; Lan, T.G.; Zhou, L.L.; Wang, R.L.; Wu, J.J. Genetic link between the Late Mesozoic granitic magmatism and W mineralization in NE China: Constraints from in-situ U-Pb geochronology and geochemistry of wolframite, and whole-rocks geochemistry analyses of W-bearing granites from the Sansheng W-Mo deposit. Ore. Geol. Rev. 2022, 144, 104868. [Google Scholar]
- Xie, W.; Zeng, Q.D.; Huang, L.L.; Zhou, L.L.; Fan, H.R.; Wu, J.J.; Wang, R.L.; Zhu, H.P. Composition and evolution of ore-forming fluids in the Sansheng porphyry W-Mo deposit, Inner Mongolia, NE China: Evidence from LA-ICP-MS analysis of fluid inclusions. Ore. Geol. Rev. 2023, 158, 105481. [Google Scholar]
- Sengör, A.M.C.; Natal’in, B.A.; Burtman, V.S. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature 1993, 364, 299–307. [Google Scholar] [CrossRef]
- Xiao, W.J.; Windley, B.F.; Hao, J.; Zhai, M.G. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics 2003, 22, 288–308. [Google Scholar] [CrossRef]
- Liu, Y.J.; Li, W.M.; Feng, Z.Q.; Wen, Q.B.; Neubauer, F.; Liang, C.Y. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt. Gondwana Res. 2017, 43, 123–148. [Google Scholar] [CrossRef]
- Zhou, J.B.; Wilde, S.A. The crustal accretion history and tectonic evolution of the NE China segment of the Central Asian Orogenic Belt. Gondwana Res. 2013, 23, 1365–1377. [Google Scholar] [CrossRef]
- Zeng, Q.D.; Liu, J.M.; Yu, C.M.; Ye, J.; Liu, H.T. Metal deposits in the Da Hinggan Mountains, NE China: Styles, characteristics, and exploration potential. Int. Geol. Rev. 2011, 53, 846–878. [Google Scholar] [CrossRef]
- Ouyang, H.G.; Mao, J.W.; Zhou, Z.H.; Su, H.M. Late Mesozoic metallogeny and intracontinental magmatism, southern Great Xing’an Range, northeastern China. Gondwana Res. 2015, 27, 1153–1172. [Google Scholar]
- Qin, K.Z.; Zhai, M.G.; Li, G.M.; Zhao, J.X.; Zeng, Q.D.; Gao, J.; Xiao, W.J.; Li, J.L.; Sun, S. Links of collage orogenesis of multiblocks and crust evolution to characteristic metallogeneses in China. Acta Petrol. Sin. 2017, 33, 305–325. [Google Scholar]
- Wang, R.L.; Zeng, Q.D.; Zhang, Z.C.; Zhou, L.L.; Qin, K.Z. Extensive mineralization in the eastern segment of the Xingmeng orogenic belt, NE China: A regional view. Ore. Geol. Rev. 2021, 135, 104204. [Google Scholar]
- Xie, W.; Zeng, Q.D.; Wang, R.L.; Wu, J.J.; Zhang, Z.M.; Li, F.C.; Zhang, Z. Spatial-temporal distribution and tectonic setting of Mesozoic W-mineralized granitoids in the Xing-Meng Orogenic Belt, NE China. Int. Geol. Rev. 2022, 64, 1845–1884. [Google Scholar] [CrossRef]
- IMBGMR. Regional Geology of Inner Mongolia; Geological Publishing House: Beijing, China, 1991. [Google Scholar]
- Wu, F.Y.; Sun, D.Y.; Ge, W.C.; Zhang, Y.B.; Grant, M.L.; Wilde, S.A.; Jahn, B.M. Geochronology of the Phanerozoic granitoids in northeastern China. J. Asian Earth Sci. 2011, 41, 1–30. [Google Scholar] [CrossRef]
- Wan, L.; Lu, C.D.; Zeng, Z.X.; Mohammed, A.S.; Liu, Z.H.; Dai, Q.Q.; Chen, K.L. Nature and significance of the late Mesozoic granitoids in the southern Great Xing’an range, eastern Central Asian Orogenic Belt. Int. Geol. Rev. 2019, 61, 584–606. [Google Scholar] [CrossRef]
- Xiao, W.J.; Huang, B.C.; Han, C.M.; Sun, S.; Li, J.L. A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens. Gondwana Res. 2010, 18, 253–273. [Google Scholar] [CrossRef]
- Ma, X.H.; Zeng, Q.W.; Tao, S.Y.; Cao, R.; Zhou, Z.H. Mineralogical Characteristics and in-situ Sulfur Isotopic Analysis of Gold-Bearing Sulfides from the Qilishan Gold Deposit in the Jiaodong Peninsula, China. J. Earth Sci.-China 2021, 32, 116–126. [Google Scholar] [CrossRef]
- Xiong, Y.Q.; Shao, Y.J.; Zhou, H.D.; Wu, Q.H.; Liu, J.P.; Wei, H.T.; Zhao, R.C.; Cao, J.Y. Ore-forming mechanism of quartz-vein-type W-Sn deposits of the Xitian district in SE China: Implications from the trace element analysis of wolframite and investigation of fluid inclusions. Ore. Geol. Rev. 2017, 83, 152–173. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Gao, S.; Günther, D.; Xu, J.; Gao, C.G.; Chen, H.H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Liu, Y.S.; Gao, S.; Hu, Z.C.; Gao, C.G.; Zong, K.Q.; Wang, D.B. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J. Petrol. 2010, 51, 537–571. [Google Scholar] [CrossRef]
- Zong, K.Q.; Klemd, R.; Yuan, Y.; He, Z.Y.; Guo, J.L.; Shi, X.L.; Liu, Y.S.; Hu, Z.C.; Zhang, Z.M. The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB). Precambrian Res. 2017, 290, 32–48. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. 3.01−Composition of the continental crust. Treatise Geochem. 2003, 3, 1–64. [Google Scholar]
- Ohmoto, H.; Rye, R.O. Isotope of sulfur and carbon. In Geochemistry of Hydrothermal Ore Deposits, 2nd ed.; Barnes, H.L., Ed.; John Wiley and Sons: New York, NY, USA, 1979. [Google Scholar]
- Ohmoto, H. Stable isotope geochemistry of ore deposits. Rev. Mineral. Geochem. 1986, 16, 491–559. [Google Scholar]
- Böttcher, M.E.; Smock, A.M.; Cypionka, H. Sulfur isotope fractionation during experimental precipitation of iron(II) and manganese(II) sulfide at room temperature. Chem. Geol. 1998, 146, 127–134. [Google Scholar] [CrossRef]
- De Moor, J.M.; Fischer, T.P.; Sharp, Z.D.; King, P.L.; Wilke, M.; Botcharnikov, R.E.; Cottrell, E.; Zelenski, M.; Marty, B.; Klimm, K.; et al. Sulfur degassing at Erta Ale (Ethiopia) and Masaya (Nicaragua) volcanoes: Implications for degassing processes and oxygen fugacities of basaltic systems. Geochem. Geophys. Geosystems 2013, 14, 4076–4108. [Google Scholar] [CrossRef]
- Qiu, W.J.; Zhou, M.F.; Li, X.C.; Huang, F.; Malpas, J. Constraints of Fe-S-C stable isotopes on hydrothermal and microbial activities during formation of sediment-hosted stratiform sulfide deposits. Geochim. Cosmochimca Acta 2021, 313, 195–213. [Google Scholar] [CrossRef]
- Xu, J.H.; He, Z.L.; Shen, S.L.; Yang, Z.L.; Du, J.F. Stable isotope geology of the Dongchuang and the Wenyu gold deposits and the source of ore-forming fluids and materials. Contrib. Geol. Miner. Resour. Res. 1993, 8, 87–100. [Google Scholar]
- Sakai, H.; Des Marais, D.J.; Ueda, A.; Moore, J.G. Concentrations and isotope ratios of carbon, nitrogen and sulfur in ocean-floor basalts. Geochim. Cosmochimca Acta 1984, 48, 2433–2441. [Google Scholar] [CrossRef]
- Xie, W.; Jin, C.; Zeng, Q.D.; Zhou, L.L.; Wu, J.J.; Wang, R.L.; Liu, J.; Chen, W.J. Ore genesis of the large Narenwula W polymetallic deposit, NE China: Evidence from mineral geochemistry and in-situ S isotope analyses of sulfides. Ore. Geol. Rev. 2025, 184, 106732. [Google Scholar] [CrossRef]
- Jiang, S.H.; Nie, F.J.; Liu, Y.F.; Yun, F. Sulfur and lead isotopic compositions of Bairendaba and Weilasituo silver-polymetallic deposits, Inner Mongolia. Miner. Depos. 2010, 29, 101–112. [Google Scholar]
- Ouyang, H.G.; Mao, J.W.; Santosh, M.; Wu, Y.; Hou, L.; Wang, X.F. The Early Cretaceous Weilasituo Zn–Cu–Ag vein deposit in the southern Great Xing’an Range, northeast China: Fluid inclusions, H, O, S, Pb isotope geochemistry and genetic implications. Ore. Geol. Rev. 2014, 56, 503–515. [Google Scholar] [CrossRef]
- Wang, L.J.; Wang, J.B.; Wang, Y.W.; Mao, Q. Fluid-melt inclusions in fluorite of the Huanggangliang skarn iron-tin deposit and their significance to mineralization. Acta Geol. Sin. 2001, 75, 204–211. [Google Scholar]
- Zhou, Z.H.; Wang, A.S.; Li, T. Fluid inclusion characteristics and metallogenic mechanism of Huanggang Sn-Fe deposit in Inner Mongolia. Miner. Depos. 2011, 30, 867–889. [Google Scholar]
- Mei, W.; Lu, X.B.; Cao, X.F.; Liu, Z.; Zhao, Y.; Ai, Z.L.; Tang, R.K.; Abfaua, M.M. Ore genesis and hydrothermal evolution of the Huanggang skarn iron-tin polymetallic deposit, southern Great Xing’an Range: Evidence from fluid inclusions and isotope analyses. Ore. Geol. Rev. 2015, 64, 239–252. [Google Scholar] [CrossRef]
- Yao, M.J.; Liu, J.J.; Zhai, D.G.; Wang, J.P.; Xing, Y.L. Sulfur and lead isotopic compositions of the polymetallic deposits in the southern Daxing’anling: Implications for metal sources. J. Jilin Univ. (Earth Sci. Ed.) 2012, 42, 362–373. [Google Scholar]
- Yang, Z.H.; Wang, J.P.; Liu, J.J.; Wang, S.G.; Wang, Q.Y.; Kang, S.G.; Zhang, J.X.; Zhao, Y. Isotope geochemistry of the Wurinitu W-Mo deposit in Sunid Zuoqi, Inner Mongolia, China. Geoscience 2013, 27, 13–23. [Google Scholar]
- Wang, Y.H.; Zhang, F.F.; Liu, J.J.; Xue, C.J.; Zhang, Z.C. Genesis of the Wurinitu W-Mo deposit, Inner Mongolia, northeast China: Constraints from geology, fluid inclusions and isotope systematics. Ore. Geol. Rev. 2018, 94, 367–382. [Google Scholar] [CrossRef]
- Chen, W.J.; Chu, S.X.; Liu, J.M.; Liu, H.T.; Zeng, Q.D. S and Pb isotopic composition of the Jiguanshan porphyry molybdenum deposit in Inner Mongolia: Indication to the source of ore-forming material. Geol. Explor. 2020, 56, 68–77. [Google Scholar]
- Zhai, D.G.; Liu, J.J.; Tombros, S.; Williams-Jones, A.E. The genesis of the Hashitu porphyry molybdenum deposit, Inner Mongolia, NE China: Constraints from mineralogical, fluid inclusion, and multiple isotope (H, O, S, Mo, Pb) studies. Miner. Depos. 2017, 53, 377–397. [Google Scholar] [CrossRef]
- Sun, J.Y. Geology, ore genesis and the source of ore-forming materials in the Xiaodonggou Mo deposit, Inner Mongolia. Xinjiang Nonferrous Met. 2017, 40, 54–60. [Google Scholar]
- Ma, X.H.; Chen, B. The source of hydrothermal fluids and mineralization in the Aolunhua porphyry Mo-Cu deposit, southern Da Hinggan Mountains: Constraints from stable (C, H, O and S) and radiogenic (Pb) isotopes. J. Jilin Univ. (Earth Sci. Ed.) 2011, 41, 1770–1783. [Google Scholar]
- Zou, T.; Wang, J.B.; Wang, Y.W.; Yuan, J.M.; Lin, L.J.; Dou, J.L.; Jiang, W.; Li, W.; Ma, X.H. Geological characteristics and genesis of the Aolunhua porphyry Mo-Cu deposit, Inner Mongolia. Geol. Explor. 2011, 47, 737–747. [Google Scholar]
- Li, X.; Fu, L.J.; Huang, G.H.; Cui, Z.L.; Wang, K.Y.; Sun, Q.F. Source of ore-forming fluids and metallogenic mechanism in Aolunhua Mo- Cu deposit, Inner Mongolia. Gold 2021, 42, 1–7. [Google Scholar]
- Zhang, Z.L.; Zhou, Q.Z.; Liu, J.M.; Zeng, Q.D. Sulfur isotope composition of the Yangchang molybdenum—Copper deposit in Inner Mongolia and its geological significance. Geol. Explor. 2018, 54, 544–551. [Google Scholar]
- Leng, C.B.; Zhang, X.C.; Huang, Z.L.; Huang, Q.Y.; Wang, S.X.; Ma, D.Y.; Luo, T.Y.; Li, C.; Li, W.B. Geology, Re-Os ages, sulfur and lead isotopes of the Diyanqinamu porphyry Mo deposit, Inner Mongolia, NE China. Econ. Geol. 2015, 110, 557–574. [Google Scholar] [CrossRef]
- Wang, R.L.; Zhang, Z.C.; Zeng, Q.D.; Wang, Y.B.; Guo, Q.; Chu, H.Y.; Guo, Y.P.; Guo, L.X. The characteristics of ore-forming fluids and ore-forming mechanism of the Diyanqinamu super-large molybdenum deposit, Inner Mongolia. Acta Petrol. Sin. 2018, 34, 3582–3596. [Google Scholar]
- Liu, J.; Wu, G.; Wang, F.; Luo, D.F.; Hu, Y.Q.; Li, T.G. Fluid inclusions and stable isotope characteristics of the Chalukou porphyry Mo deposit in Heilongjiang Province. Geol. China 2013, 40, 1231–1251. [Google Scholar]
- Liu, J.; Mao, J.W.; Wu, G.; Wang, F.; Luo, D.F.; Hu, Y.Q.; Li, T.G. Fluid inclusions and H-O-S-Pb isotope systematics of the Chalukou giant porphyry Mo deposit, Heilongjiang Province, China. Ore. Geol. Rev. 2014, 59, 83–96. [Google Scholar] [CrossRef]
- Hu, X.L.; Yao, S.Z.; He, M.C.; Ding, Z.J.; Liu, M.; Cui, Y.B.; Shen, J. Sulfur and lead isotopic characteristics of Chalukou and Daheishan porphyry Mo deposits in northern segment of Da Hinggan Mountains. Miner. Depos. 2014, 33, 776–784. [Google Scholar]
- Zhao, Q.Q.; Zhai, D.G.; Williams-Jones, A.E.; Liu, J.J. Trace element and isotopic (S, Pb) constraints on the formation of the giant Chalukou porphyry Mo deposit, NE China. Am. Mineral. 2023, 108, 160–177. [Google Scholar] [CrossRef]
- Qi, X.J. Geological, Geochemical Characteristics and Mineralization of Taipinggou Molybdenum Deposit, Inner Mongolia. Doctor’s Thesis, China University of Geosciences (Beijing), Beijing, China, 2009. [Google Scholar]
- Zhang, G.L.; Xie, W.; Wen, S.Q.; Zeng, Q.D.; Zhou, L.L.; Wang, H.; Zhang, K.L.; Tang, T.Q.; Ma, P.C. Ore genesis of the Lower Urgen porphyry molybdenum deposit in the northern Great Xing’an Range, Northeast China: Constraints from molybdenite Re-Os dating, fluid inclusions, and H-O-S-Pb isotopes. Minerals 2023, 13, 1189. [Google Scholar]
- Sun, Y.G.; Li, B.L.; Chen, X.S.; Meng, F.B.; Ding, Q.F.; Qian, Y.; Wang, L.L. Fluid Inclusions and C–H–O–S–Pb Isotopes of the Huoluotai Porphyry Cu (Mo) Deposit in the Northern Great Xing’an Range, NE China: Implications for Ore Genesis. Minerals 2022, 12, 1072. [Google Scholar] [CrossRef]
- Sun, Y.G.; Yang, Z.J.; Wang, M.L.; Xie, C.C.; Chen, X.S.; Meng, F.B. Overprinting Mineralization in the Huoluotai Porphyry Cu (Mo) Deposit, NE China: Evidence from K-Feldspar Ar-Ar Geochronology and S-Pb Isotopes. Minerals 2024, 14, 859. [Google Scholar] [CrossRef]
- Bau, M. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib. Mineral. Petr. 1996, 123, 323–333. [Google Scholar] [CrossRef]
- Dostal, J.; Chatterjee, A.K. Contrasting behavior of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton (Nova Scotia, Canada). Chem. Geol. 2000, 163, 207–218. [Google Scholar] [CrossRef]
- Bajwah, Z.U.; Seccombe, P.K.; Offler, R. Trace element distribution Co: Ni ratios and genesis of the Big Cadia iron-copper deposit, New South Wales, Australia. Miner. Depos. 1987, 22, 292–300. [Google Scholar] [CrossRef]
- Gregory, D.D.; Large, R.R.; Halpin, J.A.; Baturina, E.L.; Lyons, T.W.; Wu, S.; Danyushevsky, L.; Sack, P.J.; Chappaz, A.; Maslennikov, V.V.; et al. Trace element content of sedimentary pyrite in black shales. Econ. Geol. 2015, 110, 1389–1410. [Google Scholar] [CrossRef]
- Reich, M.; Simon, A.; Deditius, A.; Barra, F.; Chryssoulis, S.; Lagas, G.; Tardani, D.; Knipping, J.; Bilenker, L.; Sanchez-Alfaro, P.; et al. Trace element signature of pyrite from the Los Colorados iron oxide-apatite (IOA) deposit, Chile: A missing link between Andean IOA and iron oxide copper-gold systems? Econ. Geol. 2016, 11, 743–761. [Google Scholar] [CrossRef]
- Polya, D.A. Compositional variation in wolframites from the Barroca Grande mine, Portugal: Evidence for fault-controlled ore formation. Mineral. Mag. 1988, 52, 497–503. [Google Scholar] [CrossRef]
- Tindle, A.G.; Webb, P.C. Niobian wolframite from Glen Gairn in the Eastern Highlands of Scotland: A microprobe investigation. Geochim. Cosmochimca Acta 1989, 53, 1921–1935. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Abraitis, P.K.; Pattrick, R.A.D.; Vaughan, D.J. Variations in the compositional, textural and electrical properties of natural pyrite: A review. Int. J. Miner. Process. 2004, 74, 41–59. [Google Scholar] [CrossRef]
- Reich, M.; Kesler, S.E.; Utsunomiya, S.; Palenik, C.S.; Chryssoulis, S.L.; Ewing, R.C. Solubility of gold in arsenian pyrite. Geochim. Cosmochimca Acta 2005, 69, 2781–2796. [Google Scholar] [CrossRef]
- Liu, J.J.; Zhai, D.G.; Wang, D.Z.; Gao, S.; Yin, C.; Liu, Z.J.; Wang, J.P.; Wang, Y.H.; Zhang, F.F. Classification and mineralization of the Au-(Ag)-Te-Se deposit. Earth Sci. Front. 2020, 27, 79–98. [Google Scholar]
- George, L.L.; Cook, N.J.; Ciobanu, C.L. Partitioning of trace elements in cocrystallized sphalerite–galena–chalcopyrite hydrothermal ores. Ore. Geol. Rev. 2016, 77, 97–116. [Google Scholar] [CrossRef]
- George, L.L.; Cook, N.J.; Crowe, B.B.P.; Ciobanu, C.L. Trace elements in hydrothermal chalcopyrite. Mineral. Mag. 2018, 82, 59–88. [Google Scholar] [CrossRef]
- Cave, B.; Lilly, R.; Barovich, K. Textural and geochemical analysis of chalcopyrite, galena and sphalerite across the Mount Isa Cu to Pb-Zn transition: Implications for a zoned Cu-Pb-Zn system. Ore. Geol. Rev. 2020, 124, 103647. [Google Scholar] [CrossRef]
- Maslennikov, V.V.; Maslennikova, S.P.; Large, R.R.; Danyushevsky, L.V. Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasay volcanic-hosted massive sulfide deposit (southern Urals, Russia) using laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS). Econ. Geol. 2009, 104, 1111–1141. [Google Scholar] [CrossRef]
- Duran, C.J.; Dubé–Loubert, H.; Pagé, P.; Barnes, S.; Roy, M.; Savard, D.; Cave, B.J.; Arguin, J.; Mansur Etheridge, E.T. Applications of trace element chemistry of pyrite and chalcopyrite in glacial sediments to mineral exploration targeting: Example from the Churchill Province, northern Quebec, Canada. J. Geochem. Explor. 2019, 196, 105–130. [Google Scholar] [CrossRef]
- Keith, M.; Smith, D.J.; Jenkin, G.R.T.; Holwell, D.A.; Dye, M.D. A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits: Insights into oreforming processes. Ore. Geol. Rev. 2018, 96, 269–282. [Google Scholar]
- Ballouard, C.; Poujol, M.; Boulvais, P.; Branquet, Y.; Tartèse, R.; Vigneresse, J.L. Nb-Ta fractionation in peraluminous granites: A marker of the magmatic-hydrothermal transition. Geology 2016, 44, 231–234. [Google Scholar] [CrossRef]
- Migdisov, A.A.; Zezin, D.; Williams-Jones, A.E. An experimental study of cobalt(II) complexation in Cl− and H2S-bearing hydrothermal solutions. Geochim. Cosmochimca Acta 2011, 75, 4065–4079. [Google Scholar] [CrossRef]
- Williams-Jones, A.E.; Norman, C. Controls of mineral parageneses in the system Fe–Sb–S–O. Econ. Geol. 1997, 92, 308–324. [Google Scholar] [CrossRef]
- Yang, J.H.; Kang, L.F.; Liu, L.; Peng, J.T.; Qi, Y.Q. Tracing the origin of ore-forming fluids in the Piaotang tungsten deposit, South China: Constraints from in-situ analyses of wolframite and individual fluid inclusion. Ore. Geol. Rev. 2019, 111, 102939. [Google Scholar] [CrossRef]
- Dewaele, S.; Clercq, F.D.; Hulsbosch, N.; Piessens, K.; Boyce, A.; Burgess, R.; Muchez, P. Genesis of the vein-type tungsten mineralization at Nyakabingo (Rwanda) in the Karagwe-Ankole belt, Central Africa. Miner. Depos. 2016, 51, 283–307. [Google Scholar] [CrossRef]
- Huang, X.D.; Huang, D.; Lu, J.J.; Zhang, R.Q.; Ma, D.S.; Jiang, Y.H.; Chen, H.W.; Liu, J.X. Neoproterozoic tungsten mineralization: Geology, chronology, and genesis of the Huashandong W deposit in northwestern Jiangxi, South China. Miner. Depos. 2023, 58, 771–796. [Google Scholar] [CrossRef]
- Gong, L.; Guo, C.L.; Yu, M.; Zheng, Y.; Zhang, B.W.; Chen, Z.Y.; Ma, X.H.; Xu, Y.M. Difference study of greisen formation between open and closed magmatic systems: Example from four representative W- and Li-bearing deposits in the Nanling metallogenic belt. Acta Petrol. Sin. 2024, 40, 2905–2924. [Google Scholar] [CrossRef]
- Liu, L.J.; Stegman, D.R. Origin of Columbia River flood basalt controlled by propagating rupture of the Farallon slab. Nature 2012, 482, 386–389. [Google Scholar] [CrossRef]
- Ouyang, H.G.; Mao, J.W.; Santosh, M.; Zhou, J.; Zhou, Z.H.; Wu, Y.; Hou, L. Geodynamic setting of Mesozoic magmatism in NE China and surrounding regions: Perspectives from spatio-temporal distribution patterns of ore deposits. J. Asian Earth Sci. 2013, 78, 222–236. [Google Scholar] [CrossRef]
- Lehmann, B.; Ishihara, S.; Michel, H.; Miller, J.; Rapela, C.; Sanchez, A.; Tistl, M.; Winkelmann, L. The Bolivian tin province and regional tin distribution in the Cental Andes: A reassessment. Econ. Geol. 1990, 85, 1044–1058. [Google Scholar] [CrossRef]
- Han, S.J.; Wang, X.; Wang, X.; Wang, Y.; Zhang, Y. Geochronology and geochemistry of late Jurassic–Early Cretaceous volcanic rocks in the southern Great Xing’an range, NE China: Constraints for late Mesozoic tectono-magmatic evolution. Int. Geol. Rev. 2021, 63, 1366–1388. [Google Scholar] [CrossRef]















Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, W.; Jin, C.; Zeng, Q.; Wang, R.; Wu, J.; Dong, R.; Wang, Z. Ore Genesis of the Sansheng W-Mo Deposit, Inner Mongolia, NE China: Constraints from Mineral Geochemistry and In Situ S Isotope Analyses of Sulfides. Minerals 2025, 15, 1283. https://doi.org/10.3390/min15121283
Xie W, Jin C, Zeng Q, Wang R, Wu J, Dong R, Wang Z. Ore Genesis of the Sansheng W-Mo Deposit, Inner Mongolia, NE China: Constraints from Mineral Geochemistry and In Situ S Isotope Analyses of Sulfides. Minerals. 2025; 15(12):1283. https://doi.org/10.3390/min15121283
Chicago/Turabian StyleXie, Wei, Chao Jin, Qingdong Zeng, Ruiliang Wang, Jinjian Wu, Rui Dong, and Zhao Wang. 2025. "Ore Genesis of the Sansheng W-Mo Deposit, Inner Mongolia, NE China: Constraints from Mineral Geochemistry and In Situ S Isotope Analyses of Sulfides" Minerals 15, no. 12: 1283. https://doi.org/10.3390/min15121283
APA StyleXie, W., Jin, C., Zeng, Q., Wang, R., Wu, J., Dong, R., & Wang, Z. (2025). Ore Genesis of the Sansheng W-Mo Deposit, Inner Mongolia, NE China: Constraints from Mineral Geochemistry and In Situ S Isotope Analyses of Sulfides. Minerals, 15(12), 1283. https://doi.org/10.3390/min15121283

