Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = in-situ sulfur isotope

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7085 KiB  
Article
In-Situ Geochemical and Rb–Sr Dating Analysis of Sulfides from a Gold Deposit Offshore of Northern Sanshandao, Jiaodong Peninsula, North China: Implications for Gold Mineralization
by Jiepeng Tian, Jinhui Wang, Tongliang Tian, Ligong Wang, Yingpeng Wang, Xiaowei Yu, Wen Zhang, Tianlong Ren and Bin Sun
Minerals 2024, 14(5), 456; https://doi.org/10.3390/min14050456 - 26 Apr 2024
Cited by 1 | Viewed by 1427
Abstract
The gold deposit offshore of Northern Sanshandao is an ultra-large-scale gold deposit discovered in the Jiaodong ore area in recent years. This deposit is a fractured-zone altered-rock-type gold deposit; however, its ore genesis and precise mineralization processes are still highly controversial. Based on [...] Read more.
The gold deposit offshore of Northern Sanshandao is an ultra-large-scale gold deposit discovered in the Jiaodong ore area in recent years. This deposit is a fractured-zone altered-rock-type gold deposit; however, its ore genesis and precise mineralization processes are still highly controversial. Based on petrographical observation, the trace elements, sulfur isotopes, and rubidium–strontium isotopes of the gold-bearing pyrite were analyzed using LA-MC-ICP-MS to obtain the source of the ore-forming fluids and ore genesis. The results show that Au has a good positive correlation with Ag, As, and Cu. It is speculated that the As in the pyrite of the gold deposit offshore of Northern Sanshandao is in the form of As, replacing S and entering the pyrite, causing its lattice defects, and thus promoting the entry of Au+ into the gold-bearing pyrite. The Co/Ni ratios mainly range between 0.1 and 10, indicating that the mineralization process has experienced different forms of hydrothermal evolution and the mixing of different fluids. The results of the in-situ sulfur isotope analysis show that pyrite δ34S in the mineralization period is characterized by a high sulfur value. The authors of this study believe that the initial sulfur isotope composition has mantle-derived components. The large-scale, deep cutting, and high degree of fragmentation in the Sanshandao fault zone are conducive to the interaction between fluids and rocks, as well as the mixing and addition of seawater, resulting in the characteristic high δ34S value. The Sr isotopic compositions indicate a crust–mantle mixing attribute of the mineralized material source. The Rb–Sr isochron age of the pyrite is 118.5 ± 0.65 Ma, which represents the age of gold mineralization. According to the characteristics of the trace elements and sulfur isotopes, it is inferred that the gold deposit minerals offshore of Northern Sanshandao originated from deep magmatic-hydrothermal reservoirs, and the mixing of seawater and Au–As-rich hydrothermal fluids was the formation mechanism of huge amounts of gold precipitation. Full article
Show Figures

Figure 1

16 pages, 10181 KiB  
Article
Origin of the Yinshan Pb-Zn-Ag Deposit in the Edong District Section of the Middle–Lower Yangtze River Metallogenic Belt: Insights from In-Situ Sulfur Isotopes
by Dengfei Duan, Haobo Jia and Yue Wu
Minerals 2023, 13(6), 810; https://doi.org/10.3390/min13060810 - 14 Jun 2023
Cited by 1 | Viewed by 1520
Abstract
The investigation into the enigmatic origin of Pb-Zn mineralization within the Middle-Lower Yangtze River Metallogenic Belt has long been marred by a paucity of prior studies. Seeking to alleviate this dearth of knowledge, our study meticulously scrutinizes the Yinshan Pb-Zn-Ag deposit nestled within [...] Read more.
The investigation into the enigmatic origin of Pb-Zn mineralization within the Middle-Lower Yangtze River Metallogenic Belt has long been marred by a paucity of prior studies. Seeking to alleviate this dearth of knowledge, our study meticulously scrutinizes the Yinshan Pb-Zn-Ag deposit nestled within the Edong district of the belt, endeavoring to cast an illuminating spotlight upon its enigmatic genesis. We identify two distinct epochs: (1) the pre-mineralization pyrite epoch (Epoch I) mainly characterized by colloform and massive pyrite, and (2) the hydrothermal mineralization epoch (Epoch II) which can be further divided into three stages: pyrite-arsenopyrite (stage 1), galena-sphalerite (stage 2), and vein pyrite (stage 3). We conduct in-situ sulfur isotope analyses on sulfide minerals from both epochs, revealing δ34S values ranging from −0.5 to 4.8‰ for Epoch I and varying from 2.2–4.9‰ (stage 1), 1.1–3.0‰, 4.2–7.1‰ (stage 2), and 2.1–3.8‰ (stage 3) for Epoch II. Integrating our sulfur isotope data with the geological characteristics of the deposit, we infer that Pb-Zn mineralization was related to a granite of ~130 Ma age. Additionally, our study suggests the possibility of coexisting Mo mineralization beneath the Pb-Zn mineralization. Our findings contribute to a better understanding of the origin of Pb-Zn mineralization in the Middle-Lower Yangtze River Metallogenic Belt. Full article
(This article belongs to the Special Issue Genesis and Evolution of Pb-Zn-Ag Polymetallic Deposits)
Show Figures

Figure 1

28 pages, 8001 KiB  
Review
Sources of Hydrothermal Fluids Inferred from Oxygen and Carbon Isotope Composition of Calcite, Keweenaw Peninsula Native Copper District, Michigan, USA
by Thomas J. Bodden, Theodore J. Bornhorst, Florence Bégué and Chad Deering
Minerals 2022, 12(4), 474; https://doi.org/10.3390/min12040474 - 13 Apr 2022
Cited by 2 | Viewed by 4167
Abstract
The Mesoproterozoic North American Midcontinent Rift hosts the world’s largest accumulation of native copper in Michigan’s Keweenaw Peninsula. During a regional metamorphogenic-hydrothermal event, native copper was deposited along with spatially zoned main-stage minerals in a thermal high. This was followed by deposition of [...] Read more.
The Mesoproterozoic North American Midcontinent Rift hosts the world’s largest accumulation of native copper in Michigan’s Keweenaw Peninsula. During a regional metamorphogenic-hydrothermal event, native copper was deposited along with spatially zoned main-stage minerals in a thermal high. This was followed by deposition of late-stage minerals including minor copper sulfide. Inferences from the oxygen and carbon isotopic composition of main-stage hydrothermal fluids, as calculated from 296 new and compiled isotopic measurements on calcite, are consistent with existing models that low-sulfur saline native copper ore-forming fluids were dominantly derived by burial metamorphic processes from the very low sulfur basalt-dominated rift fill at depth below the native copper deposits. Co-variation of oxygen and carbon isotopic compositions are consistent with mixing of metamorphic-derived fluids with two additional isotopically different fluids. One of these is proposed to be evolved seawater that provided an outside source of salinity. This fluid mixed at depth and participated in the formation of a well-mixed hybrid metamorphic-dominated ore-forming fluid. Secondary Ion Mass Spectrometry in-situ isotopic analyses of calcite demonstrate a high degree of variability within samples that is attributed to variable degrees of shallow mixing of the hybrid ore-forming fluid with sulfur-poor, reduced evolved meteoric water in the zone of precipitation. The oxygen and carbon isotopic compositions of 100 new and compiled measurements on late-stage calcite are mostly isotopically different than the main-stage hydrothermal fluids. The late-stage hydrothermal fluids are interpreted as various proportions of mixing of evolved meteoric water, main-stage hybrid ore-forming fluid, and shallow, evolved seawater in the relatively shallow zone of precipitation. Full article
(This article belongs to the Special Issue Economic Mineral Deposits: A Review)
Show Figures

Figure 1

18 pages, 5949 KiB  
Article
Trace Elements and Sulfur Isotopes of Sulfides in the Zhangquanzhuang Gold Deposit, Hebei Province, China: Implications for Physicochemical Conditions and Mineral Deposition Mechanisms
by Shimin Zhen, Dazhao Wang, Xiaofei Yu, Qingfei Wang, Yongsheng Li, Zhongjian Zha and Jiang Wang
Minerals 2020, 10(12), 1089; https://doi.org/10.3390/min10121089 - 6 Dec 2020
Cited by 4 | Viewed by 2911
Abstract
The Zhangquanzhuang gold deposit is a special deposit in the Zhangjiakou district, on the northern margin of the North China Craton. It is characterized by the enrichment of sulfides, the scarcity of tellurides and zero to positive sulfur isotope compositions compared with the [...] Read more.
The Zhangquanzhuang gold deposit is a special deposit in the Zhangjiakou district, on the northern margin of the North China Craton. It is characterized by the enrichment of sulfides, the scarcity of tellurides and zero to positive sulfur isotope compositions compared with the famous Dongping and Xiaoyingpan Te-Au-Ag deposit types of the same district. In this paper, we use the in-situ LA-(MC)-ICP-MS and bulk trace element concentrations of pyrite, and in-situ sulfur isotope compositions of sulfides, to study physicochemical conditions and mechanisms of mineral deposition in the Zhangquanzhuang deposit. Pyrite from stage I (PyI) contains high Te contents, pyrite from stage II (PyII) has the highest Co and Ni contents, and pyrite from stage III (PyIII) contains high Cr, Zn, Pb, Ag, Cu, Sb, Bi and Au contents. The calculated in-situ δ34SH2S values range from 0.9‰ to 6.1‰, and the values for stages I and II are higher than those for stage III. The mineral assemblages and trace element contents in pyrite show that large amounts of metals precipitated during stage III, in which the pH and logfO2 were constrained within the range of 4.1 to 5.2 and −36.9 to −32.1, respectively. Sulfidation and boiling derived from decreasing pressure may be the main mechanisms leading to mineral deposition in stage III. The Zhangquanzhuang gold deposit was formed in a mineral system that was different from the one that formed the Dongping and Xiaoyingpan Te-Au-Ag deposits, and should thus be called the “Zhangquanzhuang−type” deposit and considered a third gold deposit type in the Zhangjiakou ore field. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

Back to TopTop