Influence of Western Keivy Massif Rocks on the Chemical Composition of Natural Waters (Kola Peninsula, Russia)
Abstract
1. Introduction
Geological Structure of the River Ponoy Basin
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sandimirov, S.S.; Pozhilenko, V.I.; Mazukhina, S.I.; Drogobuzhskaya, S.V.; Shirokaya, A.A.; Tereshchenko, P.S. Chemical Composition of Natural Waters of the Lovozero Massif, Russia. Model. Earth Syst. Environ. 2022, 8, 4307–4315. [Google Scholar] [CrossRef]
- Mazukhina, S.; Drogobuzhskaya, S.; Masloboev, V.; Sandimirov, S.; Krasavtseva, E.; Pozhilenko, V. The Influence of Fluoride Ions on the Forms of Lanthanide Migration in Natural and Polluted Waters of the Lovozero Massif (The Kola Peninsula). Minerals 2024, 14, 1085. [Google Scholar] [CrossRef]
- Mazukhina, S.; Drogobuzhskaya, S.; Masloboev, V.; Safonov, A.; Shirokaya, A.; Sandimirov, S.; Rybachenko, V. Forms of Element Migration in Natural and Drinking Waters of Krasnoshchelye Village (Kola Peninsula, Russia) and Human Health Risk Assessment. Water 2025, 17, 3042. [Google Scholar] [CrossRef]
- Mikhailova, J.A.; Pakhomovsky, Y.A.; Ivanyuk, G.Y.; Bazai, A.V.; Yakovenchuk, V.N.; Elizarova, I.R.; Kalashnikov, A.O. REE mineralogy and geochemistry of the Western Keivy peralkaline granite massif, Kola Peninsula, Russia. Ore Geol. Rev. 2017, 82, 181–197. [Google Scholar] [CrossRef]
- Belkov, I.V. Kyanite Shales of the Cave Formation; USSR Academy of Sciences: Moscow, Russia, 1963; 322p. [Google Scholar]
- Zagorodny, V.G.; Radchenko, A.T. Tectonics of the Early Precambrian of the Kola Peninsula; Nauka: Leningrad, Russia, 1983; p. 93. [Google Scholar]
- Myskova, T.A.; Filippov, N.B.; Lvov, P.A. First U-Pb zircon age data for gabbro-dioritic dykes of the Keivsky domain of the Fennoscandinavian Shield. Proc. Fersman Sci. Sess. GI KSC RAS 2025, 22, 4–13. [Google Scholar]
- Mints, M.V. History and main patterns of formation of the Early Precambrian crust of the East European Craton. In Deep Structure, Evolution, and Minerals of the Early Precambrian Basement of the East European Platform: Interpretation of Materials from the 1-EB Support Profile, 4B and TATSEYS Profiles; GEOCART, GEOS: Moscow, Russia, 2010; Volume 2, pp. 309–334. [Google Scholar]
- Melezhik, V.A.; Hanski, E.J. The Early Palaeoproterozoic of Fennoscandia: Geological and tec-tonic settings. In Reading the Archive of Earth’s Oxygenation, Volume 1: The Palaeoproterozoic of Fennoscandia as Context for the Fennoscandian Arctic Russia—Drilling Early Earth Project; Springer: Berlin/Heidelberg, Germany, 2013; pp. 33–38. [Google Scholar]
- Belolipetsky, A.P.; Gaskelberg, V.G.; Gaskelberg, L.A.; Antonyuk, E.S.; Ilyin, Y.I. Geology and Geochemistry of Metamorphic Complexes of the Early Precambrian of the Kola Peninsula; Nauka: Leningrad, Russia, 1980; p. 240. [Google Scholar]
- Mudruk, S.V.; Balagansky, V.V.; Raevsky, A.B.; Rundkvist, O.V.; Matyushkin, A.V.; Gorbunov, I.A. Complex shape of the Palaeoproterozoic Serpovidny refolded mega-sheath fold in northern Fennoscandia revealed by magnetic and structural data. J. Struct. Geol. 2022, 154, 104492. [Google Scholar] [CrossRef]
- Mirskaya, D.D. New data on the rocks of the Lebyazhinsky formation. In Materials on Geology and Metallogeny of the Kola Peninsula; Is. 2.; Kola Branch of the USSR Academy of Sciences: Apatity, Russia, 1971; pp. 31–35. [Google Scholar]
- Balagansky, V.V.; Myskova, T.A.; Lvov, P.A.; Larionov, A.N.; Gorbunov, I.A. Neoarchean A-type acid metavolcanics in the Keivy Terrane, northeastern Fennoscandian Shield: Geochemistry, age, andorigin. Lithos 2021, 380–381, 105899. [Google Scholar] [CrossRef]
- Bayanova, T.B. The Age of the Reference Geological Complexes of the Kola Region and the Duration of Magmatism Processes; Nauka Publ.: St. Petersburg, Russia, 2004; p. 174. [Google Scholar]
- Batieva, I.D. Petrology of Alkaline Granitoids of the Kola Peninsula; Nauka: Leningrad, Russia, 1976; p. 224. [Google Scholar]
- Yudin, B.A. Gabbro-Labradorite Formation of the Kola Peninsula and Its Metallogeny; Nauka: Leningrad, Russia, 1980; p. 168. [Google Scholar]
- Mitrofanov, F.P.; Zozulya, D.R.; Bayanova, T.B.; Levkovich, N.V. The world’s oldest anorogenic alkaline granitic agmatism in the Keivy structure on the baltic shield. Dokl. Earth Sci. 2000, 374, 1145–1148. [Google Scholar]
- Vetrin, V.R.; Rodionov, N.V. Geology and geochronology of neoarchean anorogenic magmatism of the Keivy structure, Kola Peninsula. Petrology 2009, 17, 537–557. [Google Scholar] [CrossRef]
- Kudryashov, N.M.; Balagansky, V.V.; Udoratina, O.V.; Mokrushin, A.V.; Coble, M.A. The age of gabbro-anorthosites of the Achinsky complex: U-Pb (SHRIMP RG) isotope-geochronological study of zircon. Proc. Fersman Sci. Sess. GI KSC RAS 2019, 16, 318–322. [Google Scholar] [CrossRef]
- Vetrin, V.R.; Kremenetsky, A.A. Lu-Hf isotopic and geochemical systematics of zircon and the genesis of neoarchean alkaline granites cave megablock, Kola peninsula. Geochemistry 2020, 65, 533–547. [Google Scholar]
- GOST R 56219-2014 (ISO 17294-2:2003); Water. Determination of 62 Elements by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Method. Water Quality—Application of Inductively Coupled Plasma Mass Spectrometry (ICP-MS)—Part 2: Determination of 62 Elements (MOD). Standardinform: Moscow, Russia, 2015; 32p.
- CV 3.18.05-2005; Water Quality. Methodology for Measuring the Elemental Composition of Drinking Water, Natural Water, Wastewater, and Atmospheric Precipitation Using Mass Spectrometry with Inductively Coupled Plasma Ionization. JSC: Saint Petersburg, Russia, 2005; 22p.
- Chudnenko, K.V. Thermodynamic Modeling in Geochemistry: Theory, Algorithms, Software, Applications; Academic Publishing House “Geo”: Novosibirsk, Russia, 2010; p. 287. [Google Scholar]
- Wong, C.S.C.; Li, X.D.; Zhang, G.; Qi, S.H.; Peng, X.Z. Atmospheric deposition of heavy metals in the Pearl River Delta. China Atmos. Environ. 2003, 37, 767–776. [Google Scholar] [CrossRef]
- Saha, P.; ·Paul, B. Water Quality Assessment Techniques; Lichtfouse, E., Ed.; Sustainable Agriculture Reviews 40, Chapter 5; Springer Nature: Cham, Switzerland, 2020; pp. 179–216. [Google Scholar] [CrossRef]
- Edmunds, W.M.; Shand, P.; Hart, P.; Ward, R.S. The natural (baseline) quality of groundwater: A UK pilot study. Sci. Total Environ. 2003, 310, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Mazukhina, S.I.; Drogobuzhskaya, S.V.; Tereshchenko, P.S.; Novikov, A.I.; Shirokaya, A.A.; Kalashnikova, Y.A.; Sandimirov, S.S.; Zolnikov, M.A. Drinking water, influence on the chemical composition of gastric juice: Monitoring and modeling. In Biogenic—Abiogenic Interactions in Natural and Anthropogenic Systems; Frank-Kamenetskaya, O.V., Vlasov, D.Y., Panova, E.G., Alekseeva, T.V., Eds.; Springer Proceedings in Earth and Environmental Sciences; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Baranovskaya, N.V.; Mazukhina, S.I.; Panichev, A.M.; Vakh, E.A.; Tarasenko, I.A.; Seryodkin, I.V.; Ilenok, S.S.; Ivanov, V.V.; Ageeva, E.V.; Makarevich, R.A.; et al. Features of chemical elements migration in natural waters and their deposition in the form of neocrystallisations in living organisms (physico-chemical modeling with animal testing). Bull. Tomsk. Polytech. Univ. Geo Assets Eng. 2024, 335, 187–201. [Google Scholar] [CrossRef]
- Belisheva, N.K.; Drogobuzhskaya, S.V. Rare Earth Element Content in Hair Samples of Children Living in the Vicinity of the Kola Peninsula Mining Site and Nervous System Diseases. Biology 2024, 13, 626. [Google Scholar] [CrossRef] [PubMed]

| Element | Biotite Gneisses [10] | Acidic Metavolcanites [13] | Alkaline Granites [4] | Gabbro, Gabbro- Labradorites [16] | Subalkaline Granites [20] | |
| Ordinary Variety | REE-Rich Variety | |||||
| Aver., n = 5 | Aver., n = 72 | Aver., n = 70 | Aver., n = 19 | Aver. | Aver., n = 6 | |
| Mass fraction, % | ||||||
| SiO2 | 69.32 | 71.03 | 73.23 | 73.42 | 46.31 | 70.99 |
| TiO2 | 0.31 | 0.47 | 0.37 | 0.48 | 1.46 | 0.34 |
| ZrO2 | 0.09 | 0.92 | ||||
| Al2O3 | 14.50 | 12.52 | 11.09 | 7.87 | 20.04 | 13.16 |
| FeO | 3.25 | 5.95 | 4.50 | 8.37 | 12.27 | 4.50 |
| MnO | 0.07 | 0.10 | 0.07 | 0.11 | 0.13 | 0.06 |
| MgO | 1.30 | 0.41 | 0.04 | 0.05 | 3.89 | 0.30 |
| CaO | 2.82 | 1.51 | 0.41 | 0.29 | 10.34 | 1.34 |
| SrO | 0.008 | 0.028 | 0.027 | 0.010 | ||
| Zn | 0.02 | 0.07 | ||||
| Li2O | 0.01 | 0.01 | ||||
| Na2O | 3.99 | 3.56 | 4.16 | 2.81 | 3.19 | 3.57 |
| K2O | 3.47 | 3.62 | 4.71 | 3.76 | 0.55 | 4.49 |
| P2O5 | 0.10 | 0.03 | 0.02 | 0.09 | 0.08 | |
| H2O− | 0.13 | 0.14 | 0.18 | 0.10 | 0.18 | |
| l.o.i. | 0.58 | 0.51 | 0.48 | 0.46 | ||
| F− | 0.05 | 0.04 | ||||
| Cl− | 0.01 | 0.01 | ||||
| CO2 | 0.20 | 0.10 | 0.12 | 0.05 | ||
| Stotal | 0.04 | 0.06 | 0.05 | |||
| Mass fraction, ppm | ||||||
| Y | 63 | 42 | 586 | 47 | ||
| Zr | 553 | 900 | 386 | |||
| Nb | 27 | 20 | ||||
| Ba | 611 | 608 | ||||
| La | 76 | 38 | 644 | 107 | ||
| Ce | 133 | 98 | 1423 | 197 | ||
| Pr | 19 | 10 | 155 | 25 | ||
| Nd | 64 | 40 | 556 | 86 | ||
| Sm | 12 | 8 | 119 | 15 | ||
| Th | 22 | 0 | 17 | |||
| U | 5 | |||||
| Degree of Interaction, ξ | Gabbro | Monitoring Results | ||||
|---|---|---|---|---|---|---|
| Ca2+ | CaOH+ | CaCO3 | Ca(HCO3)+ | CaHSiO3+ | Ca2+ | |
| 1 | 0.738 | 1.90 × 10−7 | 5.52 × 10−5 | 1.40 × 10−3 | 1.13 × 10−6 | |
| 0.8 | 1.17 | 4.72 × 10−7 | 2.09 × 10−4 | 3.37 × 10−3 | 2.86 × 10−6 | |
| 0.6 | 1.85 | 1.26 × 10−6 | 8.79 × 10−4 | 8.44 × 10−3 | 1.19 × 10−5 | |
| 0.4 | 2.91 | 3.46 × 10−6 | 3.82 × 10−3 | 2.09 × 10−2 | 5.07 × 10−5 | 2.98–2.43 |
| 0.2 | 4.58 | 1.05 × 10−5 | 1.81 × 10−2 | 5.19 × 10−2 | 1.60 × 10−4 | 4.23 |
| 0 | 7.21 | 3.83 × 10−5 | 1.03 × 10−1 | 1.27 × 10−1 | 5.82 × 10−4 | |
| ξ | Mg2+ | MgOH+ | MgCO3 | Mg(HCO3)+ | MgHSiO3+ | Mg2+ |
| 1 | 0.234 | 1.61 × 10−6 | 1.33 × 10−5 | 5.96 × 10−4 | 1.03 × 10−6 | |
| 0.8 | 0.371 | 4.00 × 10−6 | 5.02 × 10−5 | 1.43 × 10−3 | 2.62 × 10−6 | |
| 0.6 | 0.588 | 1.07 × 10−5 | 2.12 × 10−4 | 3.59 × 10−3 | 1.09 × 10−5 | 0.67 |
| 0.4 | 0.931 | 2.96 × 10−5 | 9.28 × 10−4 | 8.95 × 10−3 | 4.68 × 10−5 | 0.74 |
| 0.2 | 1.47 | 8.96 × 10−5 | 4.42 × 10−3 | 2.23 × 10−2 | 1.48 × 10−4 | 1.07 |
| 0 | 2.32 | 3.29 × 10−4 | 2.52 × 10−2 | 5.46 × 10−2 | 5.42 × 10−4 | |
| ξ | Na+ | NaOH | NaAlO2 | NaHSiO3 | K+ | |
| 1 | 0.170 | 4.13 × 10−9 | 5.37 × 10−11 | 4.99 × 10−6 | 3.51 × 10−2 | |
| 0.8 | 0.189 | 7.17 × 10−9 | 8.37 × 10−11 | 8.83 × 10−6 | 2.90 × 10−2 | |
| 0.6 | 0.296 | 1.90 × 10−8 | 9.55 × 10−11 | 3.65 × 10−5 | 5.62 × 10−2 | |
| 0.4 | 0.465 | 5.23 × 10−8 | 1.15 × 10−10 | 1.56 × 10−4 | 1.05 × 10−1 | |
| 0.2 | 0.755 | 1.62 × 10−7 | 2.83 × 10−10 | 5.05 × 10−4 | 9.66 × 10−2 | |
| 0 | 1.22 | 6.10 × 10−7 | 8.92 × 10−10 | 1.89 × 10−3 | 7.16 × 10−2 | |
| Subalkaline granites | ||||||
| ξ | Ca2+ | CaOH+ | CaCO3 | Ca(HCO3)+ | CaHSiO3+ | |
| 1 | 0.0956 | 8.62 × 10−9 | 9.20 × 10−7 | 6.64 × 10−5 | 1.32 × 10−7 | |
| 0.8 | 0.152 | 2.00 × 10−8 | 3.11 × 10−6 | 1.53 × 10−4 | 3.07 × 10−7 | |
| 0.6 | 0.240 | 4.82 × 10−8 | 1.11 × 10−5 | 3.61 × 10−4 | 7.38 × 10−7 | |
| 0.4 | 0.380 | 1.19 × 10−7 | 4.16 × 10−5 | 8.68 × 10−4 | 1.82 × 10−6 | |
| 0.2 | 0.603 | 3.03 × 10−7 | 1.63 × 10−4 | 2.11 × 10−3 | 4.64 × 10−6 | |
| 0 | 0.954 | 8.10 × 10−7 | 6.82 × 10−4 | 5.24 × 10−3 | 1.24 × 10−5 | |
| ξ | Mg2+ | MgOH+ | MgCO3 | Mg(HCO3)+ | MgHSiO3+ | |
| 1 | 0.0182 | 4.38 × 10−8 | 1.33 × 10−7 | 1.69 × 10−5 | 7.26 × 10−8 | |
| 0.8 | 0.0288 | 1.02 × 10−7 | 4.49 × 10−7 | 3.89 × 10−5 | 1.69 × 10−7 | |
| 0.6 | 0.0457 | 2.45 × 10−7 | 1.61 × 10−6 | 9.20 × 10−5 | 4.06 × 10−7 | |
| 0.4 | 0.0724 | 6.04 × 10−7 | 6.01 × 10−6 | 2.21 × 10−4 | 1.00 × 10−6 | |
| 0.2 | 0.115 | 1.54 × 10−6 | 2.36 × 10−5 | 5.38 × 10−4 | 2.55 × 10−6 | |
| 0 | 0.182 | 4.11 × 10−6 | 9.85 × 10−5 | 1.33 × 10−3 | 6.82 × 10−6 | |
| ξ | Na+ | NaOH | NaAlO2 | NaHSiO3 | K+ | Na+ |
| 1 | 0.191 | 1.62 × 10−9 | 5.55 × 10−12 | 5.03 × 10−6 | 0.346 | |
| 0.8 | 0.351 | 4.37 × 10−9 | 1.31 × 10−11 | 1.36 × 10−5 | 0.357 | |
| 0.6 | 0.608 | 1.15 × 10−8 | 2.91 × 10−11 | 3.59 × 10−5 | 0.358 | |
| 0.4 | 1.02 | 3.01 × 10−8 | 6.66 × 10−11 | 9.37 × 10−5 | 0.343 | |
| 0.2 | 1.67 | 7.92 × 10−8 | 1.53 × 10−10 | 2.47 × 10−4 | 0.321 | |
| 0 | 2.68 | 2.15 × 10−7 | 3.34 × 10−10 | 6.70 × 10−4 | 0.365 | 2.42−2.57 |
| ξ | Concentration, mg/L | ||||||
|---|---|---|---|---|---|---|---|
| La3+ | LaCO3+ | LaF2+ | LaHCO32+ | LaOH2+ | LaSO4+ | ||
| 3.0 | 1.61 × 10−6 | 1.56 × 10−9 | 1.26 × 10−11 | 5.22 × 10−10 | 1.51 × 10−10 | 1.20 × 10−11 | |
| 2.0 | 6.60 × 10−6 | 1.21 × 10−8 | 5.11 × 10−10 | 2.95 × 10−9 | 8.55 × 10−10 | 4.87 × 10−10 | |
| 1.0 | 6.21 × 10−5 | 2.94 × 10−6 | 4.77 × 10−8 | 1.40 × 10−7 | 4.11 × 10−8 | 4.48 × 10−8 | |
| 0.6 | 1.35 × 10−4 | 3.73 × 10−5 | 2.57 × 10−7 | 7.22 × 10−7 | 2.18 × 10−7 | 2.39 × 10−7 | |
| 0.2 | 1.80 × 10−4 | 3.19 × 10−4 | 8.49 × 10−7 | 2.35 × 10−6 | 7.58 × 10−7 | 7.77 × 10−7 | |
| 0 | 1.51 × 10−4 | 6.99 × 10−4 | 1.09 × 10−6 | 3.08 × 10−6 | 1.06 × 10−6 | 1.01 × 10−6 | |
| ξ | Ce3+ | CeCO3+ | CeF2+ | CeHCO32+ | CeOH2+ | CeSO4+ | |
| 3.0 | 2.31 × 10−6 | 4.56 × 10−9 | 4.69 × 10−11 | 6.05 × 10−10 | 3.65 × 10−10 | 1.71 × 10−11 | |
| 2.0 | 1.43 × 10−5 | 5.37 × 10−8 | 2.87 × 10−9 | 5.16 × 10−9 | 3.12 × 10−9 | 1.05 × 10−9 | |
| 1.0 | 1.33 × 10−4 | 1.28 × 10−5 | 2.63 × 10−7 | 2.40 × 10−7 | 1.47 × 10−7 | 9.51 × 10−8 | |
| 0.6 | 2.54 × 10−4 | 1.44 × 10−4 | 1.26 × 10−6 | 1.10 × 10−6 | 6.89 × 10−7 | 4.49 × 10−7 | |
| 0.2 | 2.52 × 10−4 | 9.13 × 10−4 | 3.08 × 10−6 | 2.66 × 10−6 | 1.78 × 10−6 | 1.08 × 10−6 | |
| 0 | 1.86 × 10−4 | 1.76 × 10−3 | 3.48 × 10−6 | 3.06 × 10−6 | 2.19 × 10−6 | 1.24 × 10−6 | |
| ξ | Nd3+ | NdCO3+ | NdF2+ | NdHCO32+ | NdOH2+ | NdSO4+ | |
| 3.0 | 1.62 × 10−6 | 6.47 × 10−9 | 4.57 × 10−11 | 3.46 × 10−10 | 5.25 × 10−10 | 1.13 × 10−11 | |
| 2.0 | 5.71 × 10−6 | 4.34 × 10−8 | 1.59 × 10−9 | 1.68 × 10−9 | 2.55 × 10−9 | 3.98 × 10−10 | |
| 1.0 | 4.86 × 10−5 | 9.51 × 10−6 | 1.34 × 10−7 | 7.18 × 10−8 | 1.11 × 10−7 | 3.30 × 10−8 | |
| 0.6 | 7.66 × 10−5 | 8.77 × 10−5 | 5.26 × 10−7 | 2.70 × 10−7 | 4.26 × 10−7 | 1.28 × 10−7 | |
| 0.2 | 5.64 × 10−5 | 4.14 × 10−4 | 9.60 × 10−7 | 4.86 × 10−7 | 8.19 × 10−7 | 2.30 × 10−7 | |
| 0 | 3.81 × 10−5 | 7.30 × 10−4 | 9.93 × 10−7 | 5.12 × 10−7 | 9.24 × 10−7 | 2.41 × 10−7 | |
| ξ | Pr3+ | PrCO3+ | PrF2+ | PrHCO32+ | Li+ | Sr2+ | |
| 3.0 | 1.52 × 10−6 | 4.28 × 10−9 | 3.01 × 10−11 | 7.45 × 10−10 | 3.12 × 10−6 | 2.31 × 10−5 | |
| 2.0 | 1.79 × 10−6 | 9.55 × 10−9 | 3.48 × 10−10 | 1.20 × 10−9 | 3.11 × 10−5 | 2.28 × 10−4 | |
| 1.0 | 1.41 × 10−5 | 1.94 × 10−6 | 2.71 × 10−8 | 4.76 × 10−8 | 3.11 × 10−4 | 2.28 × 10−3 | |
| 0.6 | 2.47 × 10−5 | 1.99 × 10−5 | 1.18 × 10−7 | 1.99 × 10−7 | 7.82 × 10−4 | 5.73 × 10−3 | |
| 0.2 | 2.10 × 10−5 | 1.08 × 10−4 | 2.50 × 10−7 | 4.15 × 10−7 | 1.96 × 10−3 | 1.44 × 10−2 | |
| 0 | 1.47 × 10−5 | 1.99 × 10−4 | 2.69 × 10−7 | 4.54 × 10−7 | 3.11 × 10−3 | 2.28 × 10−2 | |
| ξ | HZrO3− | ZrO2+ | ZrO2 | Y3+ | YOH2+ | pH | |
| 3.0 | 8.96 × 10−5 | 1.02 × 10−6 | 8.40 × 10−4 | 7.88 × 10−7 | 8.92 × 10−10 | 5.635 | |
| 2.0 | 1.20 × 10−3 | 5.19 × 10−6 | 8.14 × 10−3 | 5.88 × 10−6 | 9.18 × 10−9 | 5.776 | |
| 1.0 | 4.20 × 10−2 | 1.33 × 10−6 | 5.51 × 10−2 | 5.82 × 10−5 | 4.63 × 10−7 | 6.488 | |
| 0.6 | 1.64 × 10−1 | 3.48 × 10−7 | 8.71 × 10−2 | 1.45 × 10−4 | 2.82 × 10−6 | 6.880 | |
| 0.2 | 5.38 × 10−1 | 6.24 × 10−8 | 1.08 × 10−1 | 3.54 × 10−4 | 1.80 × 10−5 | 7.302 | |
| 0 | 9.22 × 10−1 | 2.25 × 10−8 | 1.10 × 10−1 | 5.46 × 10−4 | 4.63 × 10−5 | 7.529 | |
| Composition of newly formed phases, % | |||||||
| ξ | MnO2 | Al(OH)3 | FeO(OH) | Msc | Apt | Mnt | SiO2 |
| 3 | 1.27 | 0.01 | 98.72 | ||||
| 2 | 1.17 | 9.11 | 89.72 | ||||
| 1 | 0.3 | 22.76 | 0 | 0 | 5.17 | 71.77 | |
| 0,6 | 0.19 | 14.85 | 3.42 | 0 | 0 | 81.54 | |
| 0,4 | 0.18 | 13.71 | 3.16 | 0 | 0 | 82.95 | |
| 0 | 0.17 | 12.71 | 2.93 | 0.03 | 0 | 84.17 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazukhina, S.; Masloboev, V.; Mudruk, S.; Drogobuzhskaya, S. Influence of Western Keivy Massif Rocks on the Chemical Composition of Natural Waters (Kola Peninsula, Russia). Minerals 2025, 15, 1197. https://doi.org/10.3390/min15111197
Mazukhina S, Masloboev V, Mudruk S, Drogobuzhskaya S. Influence of Western Keivy Massif Rocks on the Chemical Composition of Natural Waters (Kola Peninsula, Russia). Minerals. 2025; 15(11):1197. https://doi.org/10.3390/min15111197
Chicago/Turabian StyleMazukhina, Svetlana, Vladimir Masloboev, Sergey Mudruk, and Svetlana Drogobuzhskaya. 2025. "Influence of Western Keivy Massif Rocks on the Chemical Composition of Natural Waters (Kola Peninsula, Russia)" Minerals 15, no. 11: 1197. https://doi.org/10.3390/min15111197
APA StyleMazukhina, S., Masloboev, V., Mudruk, S., & Drogobuzhskaya, S. (2025). Influence of Western Keivy Massif Rocks on the Chemical Composition of Natural Waters (Kola Peninsula, Russia). Minerals, 15(11), 1197. https://doi.org/10.3390/min15111197

