Petrophysical Characterisation and Suitability of Serpentinites from the Monteferrato Area (Tuscany, Italy) for Architectural Restoration
Abstract
1. Introduction
2. Overview of Serpentinite
3. Geological Overview of the Bagnolo Quarry
Sampling and Sample Preparation
4. Analytical Methods
4.1. Physical Analyses
4.2. Polarising Microscope Observations
4.3. X-Ray Powder Diffraction Analysis
4.4. Electron Probe Micro-Analysis
4.5. ICP-MS Whole Rock Analysis
4.6. Fibre Quantification
5. Analytical Results
5.1. Physical Analyses
5.2. Minero-Petrographic Analyses
5.2.1. Polarising Microscope Observations
5.2.2. X-Ray Powder Diffraction Analysis
5.2.3. Electron Probe Micro-Analysis
5.2.4. ICP-MS Whole Rock Analysis
5.2.5. Fibre Quantification
6. Discussion
7. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Přikryl, R.; Smith, B.J. Building Stone Decay: From Diagnosis to Conservation; Special Publication 271; Geological Society of London Press: London, UK, 2007; pp. 55–62. [Google Scholar]
- Snethlage, R. Natural Stone in Architecture: Introduction. In Stone in Architecture. Properties, Durability; Siegesmund, S., Snethlage, R., Eds.; Springer Press: Berlin, Germany, 2014. [Google Scholar]
- Bagnato, V.P.; Spartaco, P. The quarries’ landscape: Environmental and productional valorization, between extraction and building. TECHNE 2013, 5, 123–129. [Google Scholar]
- Semeraro, T.; Arzeni, S.; Turco, A.; Margiotta, S.; La Gioia, G.; Aretano, R.; Medagli, P. Landscape Project for the Environmental Recovery of a Quarry. IOP Conf. Ser. Mater. Sci. Eng. 2019, 603, 032020. [Google Scholar] [CrossRef]
- Talento, K.; Amado, M.; Kullberg, J.C. Quarries: From Abandoned to Renewed Places. Land 2020, 9, 136. [Google Scholar] [CrossRef]
- Fubini, B.; Fenoglio, I. Toxic potential of mineral dusts. Elements 2007, 3, 407–414. [Google Scholar] [CrossRef]
- Stayner, L.T.; Dankovic, D.A.; Lemen, R.A. Occupational exposure to chrysotile asbestos and cancer risk: A review of the amphibole hypothesis. Am. J. Public Health 1996, 86, 179–186. [Google Scholar] [CrossRef]
- Bernstein, D.M.; Dunnigan, J.; Hesterberg, T.; Brown, R.; Velasco, J.A.L.; Barrera, R.; Hoskins, J.; Gibbs, A. Health risk of chrysotile revisited. Crit. Rev. Toxicol. 2013, 43, 154–183. [Google Scholar] [CrossRef]
- Bernstein, D.M. The health risk of chrysotile asbestos. Curr. Opin. Pulm. Med. 2014, 20, 366–370, Erratum in Curr. Opin. Pulm. Med. 2014, 20, 525; Erratum in Curr. Opin. Pulm. Med. 2015, 21, 109. [Google Scholar] [CrossRef] [PubMed]
- Paustenbacha, D.; Brewa, D.; Ligasa, S.; Heywoodb, J. A critical review of the 2020 EPA risk assessment for chrysotile and its many shortcomings. Crit. Rev. Toxicol. 2021, 51, 509–539. [Google Scholar] [CrossRef]
- Capitani, G.; Mellini, M. The modulated crystal structure of antigorite: The m = 17 polysome. Am. Min. 2004, 89, 147–158. [Google Scholar] [CrossRef]
- Evans, B.W.; Hattori, K.; Baronnet, A. Serpentinite: What, Why, Where? Elements 2013, 9, 99–106. [Google Scholar] [CrossRef]
- Aston, B.G.; Harrel, J.A.; Shaw, I. Stones. In Ancient Egyptian Materials and Technology; Nicholson, P.T., Shaw, I., Eds.; University of Cambridge Press: Cambridge, UK, 2000; pp. 5–77. [Google Scholar]
- Harrell, J.A. Stone in Ancient Egypt. In Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures; Selin, H., Ed.; Springer Press: Dordrecht, The Netherlands, 2014. [Google Scholar]
- Blanco, J.A.; Fallick, A.; Peinado, M.; Pereira, D.; Thomas, H.; Upton, B.; Yenes, M. Characterization of serpentinites to define their appropriate use as building stones. Geophys. Res. Abstr. 2005, 7, 02344. [Google Scholar]
- Ismael, I.S.; HassanChin, M.S. Characterization of some Egyptian serpentinites used as ornamental stones. J. Geochem. 2008, 27, 140–149. [Google Scholar] [CrossRef]
- Santo, A.P.; Pecchioni, E.; Garzonio, C.A. The San Giovanni Baptistery in Florence (Italy): Characterisation of the serpentinite floor. IOP Conf. Ser. Mater. Sci. Eng. 2018, 364, 012069. [Google Scholar] [CrossRef]
- Bortolotti, V.; Principi, G.; Treves, B. Ophiolites, Ligurides and the tectonic evolution from spreading to convergence of a Mesozoic Western Tethys segment. In Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basins; Vai, G.B., Martini, I.P., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; pp. 151–164. [Google Scholar]
- Principi, G.; Bortolotti, V.; Chiari, M.; Cortesogno, L.; Gaggero, L.; Marcucci, M.; Saccani, E.; Treves, B. The pre-orogenic volcano-sedimentary covers of the western tethys oceanic basin: A review. Ofioliti 2004, 29, 177–211. [Google Scholar]
- Cortesogno, L.; Gaggero, L.; Molli, G. Ocean floor metamorphism in the Piedmont-Ligurian Jurassic basin: A review. Mem. Soc. Geol. It. 1994, 48, 151–163. [Google Scholar]
- Cortesogno, L.; Galbiati, B.; Principi, G. Le brecce serpentinitiche giurassiche della Liguria orientale. Arch. Sci. Genève 1980, 33, 185–200. [Google Scholar]
- Abbate, E.; Bortolotti, V.; Marcucci, M.; Passerini, P.; Principi, G. Genetic models for the Northern Apennines ophiolites: A discussion on the light of radiolarian biostratigraphy. Ofioliti 1994, 19, 333–347. [Google Scholar]
- Villani, G.; Cronica, N.; Porta, G. (Eds.) Vol. 2 (Libri IX–XI), Vol. 3 (Libri XII–XIII); Fondazione Pietro Bembo/Ugo Guanda Press: Parma, Italy, 1991. [Google Scholar]
- Vasari, G. Le Vite Dè Più Eccellenti Pittori, Scultori e Architettori 1568; G. Milanesi Press: Firenze, Italy, 1878–1885. [Google Scholar]
- Del Riccio, A. Istoria delle Pietre, 1597. In Anastatic Copy of Document MS 230 of the Riccardiana Library Care; Barocchi, P., Ed.; S.P.E.S. Press: Firenze, Italy, 1979. [Google Scholar]
- Targioni Tozzetti, G. Relazioni D’alcuni Viaggi Fatti in Diverse Parti Della Toscana Per Osservare Le Produzioni Naturali e Gli Antichi Monumenti di Essa; Stamperia Granducale: Firenze, Italy, 1768; Volume II, p. 540.
- Repetti, E. Dizionario Geografico Fisico Storico della Toscana, 1835—Anastatic Copy; Officine Grafiche F.lli Stianti Press: San Casciano Firenze, Italy, 1972. [Google Scholar]
- Guasti, C.S. Maria del Fiore. In La Costruzione Della Chiesa e Del Campanile Secondo i Documenti Tratti Dall’archivio Dell’opera Secolare e da Quelli di Stato 1887; Anastatic Copy, A; Forni Press: Bologna, Italy, 1974. [Google Scholar]
- Santo, A.P.; Agostini, B.; Garzonio, C.A.; Pecchioni, E.; Salvatici, T. Decay Process of Serpentinite: The Case of the San Giovanni Baptistery (Florence, Italy) Pavement. Appl. Sci. 2022, 12, 861. [Google Scholar] [CrossRef]
- UNI-EN 1925; Metodi di Prova per Pietre Naturali. Determinazione del Coefficiente di Assorbimento D’acqua per Capillarità. Ente Italiano di Normazione: Milano, Italy, 2000.
- UNI EN 13755; Metodi di Prova per Pietre Naturali-Determinazione Dell’assorbimento D’acqua a Pressione Atmosferica. Ente Italiano di Normazione: Milano, Italy, 2008.
- UNI EN 1936; Metodi di prova per Pietre Naturali—Determinazione Della Massa Volumica Reale e Apparente e Della Porosità Totale e Aperta. Ente Italiano di Normazione: Milano, Italy, 2007.
- UNI EN 12407; Natural Stone Test Methods Petrographic Examination. Ente Nazionale Italiano di Normazione: Milano, Italy, 2007.
- UNI EN 13925-1; Non-Destructive Testing X-Ray Diffraction from Polycrystalline and Amorphous Material. Part 1: General Principles. Ente Nazionale Italiano di Normazione: Milano, Italy, 2006.
- UNI EN 13925-2; Non-Destructive Testing X-Ray Diffraction from Polycrystalline and Amorphous Materials. Part 2: Procedures. Ente Nazionale Italiano di Normazione: Milano, Italy, 2006.
- UNI-EN 13925-3; Non-Destructive Testing X-Ray Diffraction from Polycrystalline and Amorphous Materials. Part 3: Instruments. Ente Nazionale Italiano di Normazione: Milano, Italy, 2006.
- Pouchou, J.L.; Pichoir, F. Basic expressions of “PAP” computation for quantitative EPMA. In Proceeding of the International Conference on X-Ray Optics and Microanalysis ICXOM, London, UK, 4–8 August 1986; University Western Ontario Press: London, ON, Canada; pp. 249–253. [Google Scholar]
- Pereira, D.; Yenes, M.; Sánche, J.A.B.; Peinado Moreno, M.M. Characterization of serpentinites to define their appropriate use as dimension stone. Geol. Soc. Spec. Pub. 2007, 271, 55–62. [Google Scholar] [CrossRef]
- Pereira, D.; Peinado, M. Serpentinite. Geol. Today 2012, 28, 152–156. [Google Scholar] [CrossRef]
- Diamantis, K.; Gartzos, E.; Migiros, G. Study on uniaxial compressive strength, point load strength index, dynamic and physical properties of serpentinites from Central Greece: Test results and empirical relations. Eng. Geol. 2009, 108, 199–207. [Google Scholar] [CrossRef]
- Pecchioni, E.; Cantisani, E.; Fratini, F. The city of Florence: An open-air lithology museum. In Il Museo di Storia Naturale dell’Università Degli Studi di Firenze, Le Collezioni Mineralogiche e Litologiche; Pratesi, G., Ed.; University Press: Firenze, Italy, 2012; Volume IV, pp. 245–267. [Google Scholar]
- Fratini, F.; Rescic, S.; Pittaluga, D. Serpentinite and ophicalcite in the architecture of eastern Liguria and as decoration of Tuscan religious buildings. Resour. Policy 2022, 75, 102505. [Google Scholar] [CrossRef]
- Punturo, R.; Cirrincione, R.; Pappalardo, G.; Mineo, S.; Fazio, E.; Bloise, A. Preliminary laboratory characterization of serpentinite rocks from Calabria (southern Italy) employed as stone material. JMES 2018, 10, 79–87. [Google Scholar]
- Corti, M. Il Verde di Prato: Una Risorsa Naturale e Storica Dell’ Area Protetta Del Monteferrato; Prato Centro di Scienze Naturali Press: Prato, Italy, 2006; p. 158. [Google Scholar]
- Coli, M.; Compagnoni, R.; Cossio, R.; Del Ventisette, C.; Vannucchi, P. The Monteferrato Serpentinized Peridotite (Figline di Prato, Prato) in the Northern Apennines, Italy: A Witness Of The Ligurian Ocean Margin in the Monumental Religious Buildings of Tuscany. Ofioliti 2023, 48, 105–120. [Google Scholar]
- Linton, A.; Shane McArdle, S.; Brislane, K.; Yates, D. Chrysotile asbestos—The deadly consequences of a retreat from national bans. Lancet Respir. Med. 2025, 13, 875–876. [Google Scholar] [CrossRef]
- Landrigan, P.J.; Nicholson, W.J.; Suzuki, Y.; Ladou, J. The hazards of chrysotile asbestos: A critical review. Ind. Health 1999, 37, 271–280. [Google Scholar] [CrossRef]
- Italian Law No. 257 of 27 March 1992. In Rules on the Cessation of the Use of Asbestos; No. 87; Gazzetta Ufficiale della Repubblica Italiana: Roma, Italy, 1992.
- Italian Legislative Decree No. 81 of 9 April 2008. In Consolidated Act on Health and Safety at Work, Art. 254—Limit value; No. 101; Gazzetta Ufficiale della Repubblica Italiana: Roma, Italy, 2008.
- European Union. Directive (EU) 2023/2668 of the European Parliament and of the Council of 22 November 2023 on the Protection of Workers from the Risks Related to Exposure to Asbestos at Work; Official Journal of the European Union: Luxembourg; Volume L 2023/2668, 2023. [Google Scholar]
- Cattaneo, A.; Gemmi, M.; Cavallo, D.M.; Bertazzi, P.A. Airborne Concentrations of Chrysotile Asbestos in Serpentine Quarries and Stone Processing Facilities in Valmalenco, Italy. Ann. Work Expo. Health 2012, 56, 671–683. [Google Scholar]
- Cavallo, A.; Rimoldi, B. Chrysotile Asbestos in Serpentinite Quarries: A Case Study in Valmalenco, Central Alps, Northern Italy. Environ. Sci. Process. Impacts 2013, 15, 2040–2050. [Google Scholar] [CrossRef]
- Marzini, L.; Iannini, M.; Giorgetti, G.; Bonciani, F.; Conti, P.; Salvini, R.; Viti, C. Asbestos Hazard in Serpentinite Rocks: Influence of Mineralogical and Structural Characteristics on Fiber Potential Release. Geosciences 2024, 14, 210. [Google Scholar] [CrossRef]





| Sample | Capillarity Water Absorption (g/m2·s0.5) | Sample | Open Porosity (%) | Apparent Density (g/cm3) | Imbibition Coefficient (%) |
|---|---|---|---|---|---|
| CB1_A | 3.74 | CB1_C | 6.52 | 2.52 | 2.64 |
| CB1_B | 3.83 | CB1_D | 6.41 | 2.52 | 2.60 |
| CB2_A | 3.27 | CB2_C | 7.83 | 2.49 | 3.23 |
| CB2_B | 3.32 | CB2_D | 7.65 | 2.49 | 3.16 |
| CB3_A | 3.86 | CB3_C | 5.25 | 2.54 | 2.35 |
| CB3_B | 3.62 | CB3_D | 5.66 | 2.54 | 2.28 |
| CB4_A | 4.70 | CB4_C | 5.43 | 2.56 | 2.16 |
| CB4_B | 4.42 | CB4_D | 5.98 | 2.55 | 2.40 |
| CB5_A | 5.27 | CB5_C | 8.93 | 2.49 | 3.71 |
| CB5_B | 5.14 | CB5_D | 8.63 | 2.50 | 3.56 |
| SF | 3.46 | SF | 5.59 | 2.55 | 2.24 |
| Bpt | 3.18 | Bpt | 7.14 | 2.51 | 2.92 |
| Sample | CB1-1 | CB1-2 | CB2-1 | CB2-2 | CB3-1 | CB3-2 | CB4-1 | CB4-2 | CB5-1 | CB5-2 | SF * | Bpt * |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Texture | bastite | mesh | mesh | bastite | bastite | mesh | mesh | mesh | bastite | mesh | #10 | #25 |
| SiO2 | 38.3 | 40.7 | 40.9 | 39.2 | 40.2 | 41.3 | 36.4 | 41.9 | 40.5 | 38.8 | 39.7 | 39.1 |
| TiO2 | 0.07 | 0.02 | - | 0.04 | 0.01 | - | 0.11 | - | - | 0.03 | 0.04 | 0.15 |
| Al2O3 | 5.09 | 0.90 | 1.62 | 3.56 | 4.07 | 1.22 | 9.18 | 2.16 | 2.41 | 1.86 | 1.96 | 3.11 |
| FeO | 5.98 | 10.7 | 5.71 | 6.57 | 3.71 | 2.86 | 4.92 | 1.78 | 4.49 | 10.2 | 5.61 | 5.47 |
| Cr2O3 | 1.36 | bdl | 0.03 | 0.96 | 1.63 | 0.04 | 0.44 | 0.23 | 0.92 | bdl | 0.70 | 1.00 |
| MnO | 0.15 | 0.14 | 0.08 | 0.11 | 0.07 | 0.05 | 0.10 | 0.01 | 0.09 | 0.15 | 0.11 | 0.13 |
| MgO | 28.8 | 30.9 | 34.5 | 35.6 | 38.2 | 37.9 | 34.4 | 31.7 | 27.2 | 35.8 | 37.5 | 36.2 |
| CaO | 0.10 | 0.05 | 0.05 | bdl | bdl | 0.08 | 0.08 | 0.14 | 0.06 | bdl | 0.07 | 0.06 |
| Na2O | bdl | 0.09 | 0.07 | bdl | 0.02 | 0.01 | 0.13 | 0.06 | bdl | bdl | 0.03 | 0.06 |
| K2O | 0.01 | bdl | bdl | bdl | 0.06 | bdl | bdl | 0.01 | 0.05 | 0.01 | 0.01 | 0.02 |
| NiO | 0.28 | 0.10 | 0.20 | 0.03 | 0.01 | 0.42 | 0.04 | 0.13 | 0.29 | 0.05 | na | na |
| H2O ** | 11.6 | 11.6 | 12.1 | 12.4 | 12.8 | 12.3 | 12.5 | 11.7 | 11.2 | 12.2 | 12.4 | 12.3 |
| Mg# | 0.83 | 0.74 | 0.86 | 0.84 | 0.91 | 0.93 | 0.87 | 0.95 | 0.86 | 0.78 | 0.87 | 0.87 |
| Cations per 14 O | ||||||||||||
| Si | 3.95 | 4.13 | 4.05 | 3.80 | 3.76 | 4.01 | 3.50 | 4.28 | 4.33 | 3.80 | 3.84 | 3.80 |
| Ti | 0.01 | - | - | - | - | - | 0.01 | - | - | - | - | 0.01 |
| Al | 0.62 | 0.11 | 0.19 | 0.41 | 0.45 | 0.14 | 1.04 | 0.26 | 0.30 | 0.21 | 0.22 | 0.36 |
| Fe2+ | 0.52 | 0.92 | 0.47 | 0.53 | 0.29 | 0.23 | 0.40 | 0.15 | 0.40 | 0.83 | 0.45 | 0.44 |
| Mn | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | - | 0.01 | - | 0.01 | 0.01 | 0.01 | 0.01 |
| Mg | 4.43 | 4.62 | 5.10 | 5.14 | 5.33 | 5.49 | 4.93 | 4.83 | 4.33 | 5.22 | 5.41 | 5.25 |
| Ca | 0.01 | 0.01 | 0.01 | - | - | 0.01 | 0.01 | 0.02 | 0.01 | - | 0.01 | 0.01 |
| Na | - | 0.02 | 0.01 | - | - | - | 0.02 | 0.01 | - | - | 0.01 | 0.01 |
| K | - | - | - | - | 0.01 | - | - | - | 0.01 | - | - | - |
| Cr | 0.11 | - | - | 0.07 | 0.12 | - | 0.03 | 0.02 | 0.08 | - | 0.05 | 0.08 |
| Ni | 0.02 | 0.01 | 0.02 | - | - | 0.03 | - | 0.01 | 0.02 | - | - | - |
| sum | 9.68 | 9.82 | 9.86 | 9.96 | 9.96 | 9.92 | 9.96 | 9.58 | 9.49 | 10.09 | 10.02 | 9.98 |
| Sample | CB | SF * | Bpt * |
|---|---|---|---|
| SiO2 | 38.9 | 37.7 | 37.8 |
| TiO2 | 0.05 | 0.03 | 0.04 |
| Al2O3 | 1.70 | 0.85 | 1.60 |
| Fe2O3 | 8.14 | 8.30 | 7.60 |
| MnO | 0.13 | 0.07 | 0.12 |
| MgO | 37.5 | 39.1 | 38.6 |
| CaO | 0.06 | 0.02 | 0.03 |
| Na2O | 0.01 | <0.01 | 0.02 |
| K2O | <0.01 | <0.01 | <0.01 |
| P2O5 | <0.01 | <0.01 | <0.01 |
| LOI | 13.7 | 13.6 | 13.9 |
| Sc | 11 | 7 | 11 |
| V | 43 | 32 | 51 |
| Cr | 2440 | 2480 | 2380 |
| Co | 92 | 106 | 97 |
| Ni | 2120 | 2230 | 1970 |
| Rb | <1 | <1 | <1 |
| Sr | 2 | 2 | <2 |
| Y | 1.1 | <0.5 | 1.1 |
| Zr | 4 | 1 | <1 |
| Nb | 0.3 | <0.2 | <0.2 |
| Cs | <0.1 | <0.1 | <0.1 |
| Ba | 8 | <2 | <2 |
| La | <0.05 | <0.05 | <0.05 |
| Ce | <0.06 | 0.08 | <0.05 |
| Pr | <0.01 | 0.02 | <0.01 |
| Nd | <0.05 | 0.11 | <0.05 |
| Sm | 0.09 | 0.03 | 0.04 |
| Eu | 0.070 | 0.018 | 0.014 |
| Gd | 0.19 | 0.06 | 0.09 |
| Tb | 0.03 | 0.01 | 0.02 |
| Dy | 0.28 | 0.06 | 0.18 |
| Ho | 0.04 | 0.02 | 0.04 |
| Er | 0.11 | 0.04 | 0.12 |
| Tm | <0.005 | 0.006 | 0.020 |
| Yb | 0.09 | 0.04 | 0.14 |
| Lu | 0.018 | 0.005 | 0.022 |
| Hf | <0.1 | <0.1 | <0.1 |
| Ta | 0.04 | 0.04 | <0.01 |
| Th | <0.05 | <0.05 | <0.05 |
| U | 0.01 | <0.01 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santo, A.P.; Garzonio, C.A.; Pecchioni, E.; Salvatici, T. Petrophysical Characterisation and Suitability of Serpentinites from the Monteferrato Area (Tuscany, Italy) for Architectural Restoration. Minerals 2025, 15, 1105. https://doi.org/10.3390/min15111105
Santo AP, Garzonio CA, Pecchioni E, Salvatici T. Petrophysical Characterisation and Suitability of Serpentinites from the Monteferrato Area (Tuscany, Italy) for Architectural Restoration. Minerals. 2025; 15(11):1105. https://doi.org/10.3390/min15111105
Chicago/Turabian StyleSanto, Alba P., Carlo Alberto Garzonio, Elena Pecchioni, and Teresa Salvatici. 2025. "Petrophysical Characterisation and Suitability of Serpentinites from the Monteferrato Area (Tuscany, Italy) for Architectural Restoration" Minerals 15, no. 11: 1105. https://doi.org/10.3390/min15111105
APA StyleSanto, A. P., Garzonio, C. A., Pecchioni, E., & Salvatici, T. (2025). Petrophysical Characterisation and Suitability of Serpentinites from the Monteferrato Area (Tuscany, Italy) for Architectural Restoration. Minerals, 15(11), 1105. https://doi.org/10.3390/min15111105

