Fatty Acid Biomarkers in the Fe-Mn Nodules from the Kara Sea, Arctic Ocean
Abstract
1. Introduction
2. Materials and Methods
2.1. Regional Settings
2.2. Field Sampling
2.3. Sample Storage and TOC Analysis
2.4. Lipid Extraction and GC–MS
3. Results
3.1. Fe-Mn Nodules and Crusts
3.2. Underlying Sediments
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Glasby, G.P. Manganese: Predominant Role of Nodules and Crusts. In Marine Geochemistry; Shulz, H.D., Zabel, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 371–427. [Google Scholar]
- Glasby, G.P.; Stoffers, P.; Sioulas, A.; Thijssen, T.; Friedrich, G. Manganese Nodule Formation in the Pacific Ocean: A General Theory. Geo-Mar. Lett. 1982, 2, 47–53. [Google Scholar] [CrossRef]
- Halbach, P.; Friedrich, G.; von Stackelberg, U. The Manganese Nodule Belt of the Pacific Ocean: Geological Environment, Nodule Formation, and Mining Aspects; von Stackelberg, U., Ed.; Enke: Stutgart, Germany, 1988. [Google Scholar]
- Hein, J.R.; Mizell, K.; Koschinsky, A.; Conrad, T.A. Deep-Ocean Mineral Deposits as a Source of Critical Metals for High- and Green-Technology Applications: Comparison with Land-Based Resources. Ore Geol. Rev. 2013, 51, 1–14. [Google Scholar] [CrossRef]
- Baturin, G.N. Geochemistry of Oceanic Ferromanganese Nodules; Nauka: Moscow, Ressia, 1986. [Google Scholar]
- Hein, J.R.; Koschinsky, A. Deep-Ocean Ferromanganese Crusts and Nodules. In Treatise on Geochemistry, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2014; Volume 13, pp. 273–291. ISBN 9780080983004. [Google Scholar]
- Josso, P.; Pelleter, E.; Pourret, O.; Fouquet, Y.; Etoubleau, J.; Cheron, S.; Bollinger, C. A New Discrimination Scheme for Oceanic Ferromanganese Deposits Using High Field Strength and Rare Earth Elements. Ore Geol. Rev. 2017, 87, 3–15. [Google Scholar] [CrossRef]
- Dymond, J.; Lyle, M.; Finney, B.; Piper, D.Z.; Murphy, K.; Conard, R.; Pisias, N. Ferromanganese Nodules from MANOP Sites H, S, and R—Control of Mineralogical and Chemical Composition by Multiple Accretionary Processes. Geochim. Cosmochim. Acta 1984, 48, 931–949. [Google Scholar] [CrossRef]
- Price, N.B. Some Geochemical Observations on Manganese-Iron Oxide Nodules from Different Depth Environments. Mar. Geol. 1967, 5, 511–538. [Google Scholar] [CrossRef]
- Glasby, G.P.; Emelyanov, E.M.; Zhamoida, V.A.; Baturin, G.N.; Leipe, T.; Bahlo, R.; Bonacker, P. Environments of Formation of Ferromanganese Concretions in the Baltic Sea: A Critical Review. Manganese Miner. Geochem. Mineral. Terr. Mar. Depos. 1997, 119, 213–237. [Google Scholar] [CrossRef]
- Hlawatsch, S.; Neumann, T.; Van Den Berg, C.M.G.; Kersten, M.; Harff, J.; Suess, E. Fast-Growing, Shallow-Water Ferro-Manganese Nodules from the Western Baltic Sea: Origin and Modes of Trace Element Incorporation. Mar. Geol. 2002, 182, 373–387. [Google Scholar] [CrossRef]
- Blöthe, M.; Wegorzewski, A.; Müller, C.; Simon, F.; Kuhn, T.; Schippers, A. Manganese-Cycling Microbial Communities Inside Deep-Sea Manganese Nodules. Environ. Sci. Technol. 2015, 49, 7692–7700. [Google Scholar] [CrossRef] [PubMed]
- Shulga, N.; Abramov, S.; Klyukina, A.; Ryazantsev, K.; Gavrilov, S. Fast-Growing Arctic Fe–Mn Deposits from the Kara Sea as the Refuges for Cosmopolitan Marine Microorganisms. Sci. Rep. 2022, 12, 21967. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Schröder, H.C.; Schloßmacher, U.; Müller, W.E.G. Organized Bacterial Assemblies in Manganese Nodules: Evidence for a Role of S-Layers in Metal Deposition. Geo-Mar. Lett. 2009, 29, 85–91. [Google Scholar] [CrossRef]
- Lindh, M.V.; Maillot, B.M.; Shulse, C.N.; Gooday, A.J.; Amon, D.J.; Smith, C.R.; Church, M.J. From the Surface to the Deep-Sea: Bacterial Distributions across Polymetallic Nodule Fields in the Clarion-Clipperton Zone of the Pacific Ocean. Front. Microbiol. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Yli-Hemminki, P.; Jørgensen, K.S.; Lehtoranta, J. Iron–Manganese Concretions Sustaining Microbial Life in the Baltic Sea: The Structure of the Bacterial Community and Enrichments in Metal-Oxidizing Conditions. Geomicrobiol. J. 2014, 31, 263–275. [Google Scholar] [CrossRef]
- Shulse, C.N.; Maillot, B.; Smith, C.R.; Church, M.J. Polymetallic Nodules, Sediments, and Deep Waters in the Equatorial North Pacific Exhibit Highly Diverse and Distinct Bacterial, Archaeal, and Microeukaryotic Communities. Microbiologyopen 2017, 6, e00428. [Google Scholar] [CrossRef] [PubMed]
- Lai, M.; Liu, Q.; Wang, X.; Sun, D.; Ran, L.; Li, X.; Yang, C.; Lu, B.; Xu, X.-W.; Wang, C.-S. Heterogeneous Marine Environments Diversify Microbial-Driven Polymetallic Nodule Formation in the South China Sea. Front. Mar. Sci. 2024, 11, 1430572. [Google Scholar] [CrossRef]
- Molari, M.; Janssen, F.; Vonnahme, T.R.; Wenzhöfer, F.; Boetius, A. The Contribution of Microbial Communities in Polymetallic Nodules to the Diversity of the Deep-Sea Microbiome of the Peru Basin (4130–4198 m Depth). Biogeosciences 2020, 17, 3203–3222. [Google Scholar] [CrossRef]
- Wu, Y.H.; Liao, L.; Wang, C.S.; Ma, W.L.; Meng, F.X.; Wu, M.; Xu, X.W. A Comparison of Microbial Communities in Deep-Sea Polymetallic Nodules and the Surrounding Sediments in the Pacific Ocean. Deep Res. Part I Oceanogr. Res. Pap. 2013, 79, 40–49. [Google Scholar] [CrossRef]
- Jiang, X.-D.; Sun, X.-M.; Guan, Y. Biogenic Mineralization in the Ferromanganese Nodules and Crusts from the South China Sea. J. Asian Earth Sci. 2019, 171, 46–59. [Google Scholar] [CrossRef]
- Kato, S.; Okumura, T.; Uematsu, K.; Hirai, M.; Iijima, K.; Usui, A.; Suzuki, K. Heterogeneity of Microbial Communities on Deep-Sea Ferromanganese Crusts in the Takuyo-Daigo Seamount. Microbes Environ. 2018, 33, 366–377. [Google Scholar] [CrossRef]
- Shiraishi, F.; Mitsunobu, S.; Suzuki, K.; Hoshino, T.; Morono, Y.; Inagaki, F. Dense Microbial Community on a Ferromanganese Nodule from the Ultra-Oligotrophic South Pacific Gyre: Implications for Biogeochemical Cycles. Earth Planet. Sci. Lett. 2016, 447, 10–20. [Google Scholar] [CrossRef]
- Tully, B.J.; Heidelberg, J.F. Microbial Communities Associated with Ferromanganese Nodules and the Surrounding Sediments. Front. Microbiol. 2013, 4, 1–10. [Google Scholar] [CrossRef]
- Wang, X.; Müller, W.E.G. Marine Biominerals: Perspectives and Challenges for Polymetallic Nodules and Crusts. Trends Biotechnol. 2009, 27, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gan, L.; Wiens, M.; Schloßmacher, U.; Schröder, H.C.; Müller, W.E.G. Distribution of Microfossils Within Polymetallic Nodules: Biogenic Clusters Within Manganese Layers. Mar. Biotechnol. 2012, 14, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, H.L.; Newman, D.K.; Kappler, A. Geomicrobiology. Dekker, M., Ed.; CRC Press: Boca Raton, FL, USA, 2002; ISBN 0824707648. [Google Scholar]
- Shi, L.; Dong, H.; Reguera, G.; Beyenal, H.; Lu, A.; Liu, J.; Yu, H.-Q.; Fredrickson, J.K. Extracellular Electron Transfer Mechanisms between Microorganisms and Minerals. Nat. Rev. Microbiol. 2016, 14, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Romankevich, E.A. Geochemistry of Organic Matter in the Ocean; Springer: Berlin/Heidelberg, Germany, 1984; ISBN 978-3-642-49966-1. [Google Scholar]
- Wakeham, S.G.; Canuel, E.A. Degradation and Preservation of Organic Matter in Marine Sediments. In Marine Organic Matter: Biomarkers, Isotopes and DNA; Springer: Berlin/Heidelberg, Germany, 2006; pp. 295–321. [Google Scholar]
- Sunda, W.G.; Kieber, D.J. Oxidation of Humic Substances by Manganese Oxides Yields Low-Molecular-Weight Organic Substrates. Nature 1994, 367, 62–64. [Google Scholar] [CrossRef]
- Greenwood, P.F.; Brocks, J.J.; Grice, K.; Schwark, L.; Jaraula, C.M.B.; Dick, J.M.; Evans, K.A. Organic Geochemistry and Mineralogy. I. Characterisation of Organic Matter Associated with Metal Deposits. Ore Geol. Rev. 2013, 50, 1–27. [Google Scholar] [CrossRef]
- Aleksandrova, O.A.; Poluyaktov, V.F. Fatty Acid Composition of the Iron-Manganese Nodules and Surrounding Sediments in the Pacific and Indian Oceans Abstract. Saturated, Monosaturated, Polyunsaturated, and Iso Fatty Acids Have Been Investigated in Iron-Manganese Nodules and Surrounding. Okeanologiya 1996, 35, 630–637. [Google Scholar]
- González, F.J.; Somoza, L.; Lunar, R.; Martínez-Frías, J.; Rubí, J.A.M.; Torres, T.; Ortiz, J.E.; Díaz-del-Río, V. Internal Features, Mineralogy and Geochemistry of Ferromanganese Nodules from the Gulf of Cadiz: The Role of the Mediterranean Outflow Water Undercurrent. J. Mar. Syst. 2010, 80, 203–218. [Google Scholar] [CrossRef]
- Shulga, N.A. Characteristics of Alkanes in Ferromanganese Nodules of the Clarion–Clipperton Fracture Zone. Oceanology 2018, 58, 672–678. [Google Scholar] [CrossRef]
- Shulga, N.A. Distribution of N-Alkanes in the Ferromanganese Nodule–Sediment–Pore Water System (Clarion–Clipperton Fracture Zone). Lithol. Miner. Resour. 2017, 52, 435–441. [Google Scholar] [CrossRef]
- Van Dongen, B.E.; Ashton, N.J.; Pattrick, R.A.D. The Formation of Ferromanganese Nodules in the Southwest Indian Ocean; an Abiotic Process. Mineral. Mag. 2014, 78, 941–955. [Google Scholar] [CrossRef]
- Peters, K.E.; Walters, C.C.; Moldowan, J.M. The Biomarker Guide; Cambridge University Press: Cambridge, UK, 2005; ISBN 0521837626/9780521837620. [Google Scholar]
- Volkman, J.K.; Johns, R.B.; Gillan, F.T.; Perry, G.J.; Bavor, H.J. Microbial Lipids of an Intertidal Sediment—I. Fatty Acids and Hydrocarbons. Geochim. Cosmochim. Acta 1980, 44, 1133–1143. [Google Scholar] [CrossRef]
- Prahl, F.G.; Muehlhausen, L.A.; Lyle, M. An Organic Geochemical Assessment of Oceanographic Conditions at Manop Site C over the Past 26,000 Years. Paleoceanography 1989, 4, 495–510. [Google Scholar] [CrossRef]
- Niggemann, J.; Schubert, C.J. Fatty Acid Biogeochemistry of Sediments from the Chilean Coastal Upwelling Region: Sources and Diagenetic Changes. Org. Geochem. 2006, 37, 626–647. [Google Scholar] [CrossRef]
- Wakeham, S.G.; Hedges, J.I.; Lee, C.; Peterson, M.L.; Hernes, P.J. Compositions and Transport of Lipid Biomarkers through the Water Column and Surficial Sediments of the Equatorial Pacific Ocean. Deep Res. Part II Top. Stud. Oceanogr. 1997, 44, 2131–2162. [Google Scholar] [CrossRef]
- Budge, S.M.; Parrish, C.C. Lipid Biogeochemistry of Plankton, Settling Matter and Sediments in Trinity Bay, Newfoundland. II. Fatty Acids. Org. Geochem. 1998, 29, 1547–1559. [Google Scholar] [CrossRef]
- Stein, R.; Macdonald, R.W.; Stein, R.; MacDonald, R.W. The Organic Carbon Cycle in the Arctic Ocean; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Stein, R.; Fahl, K.; Fütterer, D.K.; Galimov, E.M.; Stepanets, O.V. Siberian River Run-off in the Kara Sea: Characterisation, Quantification, Variability, and Environmental Significance; Elsevier: Amsterdam, The Netherlands, 2003; ISBN 0080951422. [Google Scholar]
- Hörner, T.; Stein, R.; Fahl, K. Paleo-Sea Ice Distribution and Polynya Variability on the Kara Sea Shelf during the Last 12 Ka. arktos 2018, 4, 1–16. [Google Scholar] [CrossRef]
- Potts, P.J.; Tindle, A.G.; Webb, P.C. Geochemical Reference Material Compositions: Rocks, Minerals, Sediments, Soils, Carbonates, Refractories & Ores Used in Research & Industry; Taylor & Francis: Abingdon, UK, 1992; ISBN 1870325400. [Google Scholar]
- Menendez, A.; James, R.; Shulga, N.; Connelly, D.; Roberts, S. Linkages between the Genesis and Resource Potential of Ferromanganese Deposits in the Atlantic, Pacific, and Arctic Oceans. Minerals 2018, 8, 197. [Google Scholar] [CrossRef]
- Vereshchagin, O.S.; Perova, E.N.; Brusnitsyn, A.I.; Ershova, V.B.; Khudoley, A.K.; Shilovskikh, V.V.; Molchanova, E.V. Ferro-Manganese Nodules from the Kara Sea: Mineralogy, Geochemistry and Genesis. Ore Geol. Rev. 2019, 106, 192–204. [Google Scholar] [CrossRef]
- Legeżyńska, J.; Kędra, M.; Walkusz, W. Identifying Trophic Relationships within the High Arctic Benthic Community: How Much Can Fatty Acids Tell? Mar. Biol. 2014, 161, 821–836. [Google Scholar] [CrossRef]
- Volkman, J.K.; Jeffrey, S.W.; Nichols, P.D.; Rogers, G.I.; Garland, C.D. Fatty Acid and Lipid Composition of 10 Species of Microalgae Used in Mariculture. J. Exp. Mar. Biol. Ecol. 1989, 128, 219–240. [Google Scholar] [CrossRef]
- Mansour, M.P.; Volkman, J.K.; Jackson, A.E.; Blackburn, S.I. THE FATTY ACID AND STEROL COMPOSITION OF FIVE MARINE DINOFLAGELLATES. J. Phycol. 1999, 35, 710–720. [Google Scholar] [CrossRef]
- Sukhanova, I.N.; Flint, M.V.; Sergeeva, V.M.; Kremenetskiy, V.V. Phytoplankton of the South-Western Part of the Kara Sea. Oceanology 2011, 51, 978–992. [Google Scholar] [CrossRef]
- Zhitina, L.S.; Ilyash, L.V. Composition and Abundance of Phytoplankton in the Baidarata Inlet of the Kara Sea in Summer and Autumn. Moscow Univ. Biol. Sci. Bull. 2013, 68, 110–114. [Google Scholar] [CrossRef]
- Scribe, P.; Fillaux, J.; Laureillard, J.; Denant, V.; Saliot, A. Fatty Acids as Biomarkers of Planktonic Inputs in the Stratified Estuary of the Krka River, Adriatic Sea: Relationship with Pigments. Mar. Chem. 1991, 32, 299–312. [Google Scholar] [CrossRef]
- Keweloh, H.; Heipieper, H.J. Trans Unsaturated Fatty Acids in Bacteria. Lipids 1996, 31, 129–137. [Google Scholar] [CrossRef]
- Parkes, R.J.; Taylor, J. The Relationship between Fatty Acid Distributions and Bacterial Respiratory Types in Contemporary Marine Sediments. Estuar. Coast. Shelf Sci. 1983, 16, 173–189. [Google Scholar] [CrossRef]
- Gong, C.; Hollander, D.J. Differential Contribution of Bacteria to Sedimentary Organic Matter in Oxic and Anoxic Environments, Santa Monica Basin, California. Org. Geochem. 1997, 26, 545–563. [Google Scholar] [CrossRef]
- Perry, G.J.; Volkman, J.K.; Johns, R.B.; Bavor, H.J., Jr. Fatty Acids of Bacterial Origin in Contemporary Marine Sediments. Geochim. Cosmochim. Acta 1979, 43, 1715–1725. [Google Scholar] [CrossRef]
- Saliot, A.; Goutx, M.; Fevrier, A.; Tusseau, D.; Andrie, C. Organic Sedimentation in the Water Column in the Arabian Sea: Relationship between the Lipid Composition of Small and Large-Size, Surface and Deep Particles. Mar. Chem. 1982, 11, 257–278. [Google Scholar] [CrossRef]
- Goutx, M.; Saliot, A. Relationship between Dissolved and Particulate Fatty Acids and Hydrocarbons, Chlorophyll a and Zooplankton Biomass in Villefranche Bay, Mediterranean Sea. Mar. Chem. 1980, 8, 299–318. [Google Scholar] [CrossRef]
- Nayak, B.; Das, S.K.; Munda, P. Biogenic Signature and Ultra Microfossils in Ferromanganese Nodules of the Central Indian Ocean Basin. J. Asian Earth Sci. 2013, 73, 296–305. [Google Scholar] [CrossRef]
- Reykhard, L.Y.; Shulga, N.A. Fe-Mn Nodule Morphotypes from the NE Clarion-Clipperton Fracture Zone, Pacific Ocean: Comparison of Mineralogy, Geochemistry and Genesis. Ore Geol. Rev. 2019, 110, 102933. [Google Scholar] [CrossRef]
- Lovley, D.R.; Holmes, D.E.; Nevin, K.P. Dissimilatory Fe (Iii) and Mn (Iv) Reduction. Adv. Microb. Physiol. 2004, 49, 219–286. [Google Scholar] [PubMed]
- Burdige, D.J. Geochemistry of Marine Sediments; Princeton University Press: Princeton, NJ, USA, 2006; ISBN 069109506X. [Google Scholar]
- Zegouagh, Y.; Derenne, S.; Largeau, C.; Bardoux, G.; Mariotti, A. Organic Matter Sources and Early Diagenetic Alterations in Arctic Surface Sediments (Lena River Delta and Laptev Sea, Eastern Siberia), II.: Molecular and Isotopic Studies of Hydrocarbons. Org. Geochem. 1998, 28, 571–583. [Google Scholar] [CrossRef]
- Karlsson, E.S.; Charkin, A.; Dudarev, O.; Semiletov, I.; Vonk, J.E.; Sánchez-García, L.; Andersson, A.; Gustafsson, Ö. Carbon Isotopes and Lipid Biomarker Investigation of Sources, Transport and Degradation of Terrestrial Organic Matter in the Buor-Khaya Bay, SE Laptev Sea. Biogeosciences 2011, 8, 1865–1879. [Google Scholar] [CrossRef]
- Belyaeva, A.N.; Eglinton, G. Lipid Biomarker Accumulation in the Kara Sea Sediments. Oceanology 1997, 37, 634–642. [Google Scholar]
- Fahl, K.; Stein, R. Modern Organic Carbon Deposition in the Laptev Sea and the Adjacent Continental Slope: Surface Water Productivity vs. Terrigenous Input. Org. Geochem. 1997, 26, 379–390. [Google Scholar] [CrossRef]
- Killops, S.; Killops, V. Introduction to Organic Geochemistry; Blackwell Publishing Ltd.: Malden, MA USA, 2004; ISBN 9781118697214. [Google Scholar]
- Rusakov, V.Y.; Kuzmina, T.G.; Toropchenova, E.S.; Zhilkina, A.V. Modern Sedimentation in the Kara Sea: Evidence from the Lithological–Geochemical Investigation of Surface Bottom Sediments. Geochem. Int. 2018, 56, 1189–1208. [Google Scholar] [CrossRef]
- Martens, J.; Romankevich, E.; Semiletov, I.; Wild, B.; van Dongen, B.; Vonk, J.; Tesi, T.; Shakhova, N.; Dudarev, O.V.; Kosmach, D.; et al. CASCADE—The Circum-Arctic Sediment CArbon DatabasE. Earth Syst. Sci. Data 2021, 13, 2561–2572. [Google Scholar] [CrossRef]
- Belyaev, N.A.; Fedulov, V.Y.; Kravchishina, M.D.; Shchuka, S.A. Organic Carbon Content in Dissolved and Particulated Forms in the Kara Sea Water. Oceanology 2024, 64, 217–272. [Google Scholar] [CrossRef]
- Stepanova, S.V.; Kivva, K.K.; Polukhin, A.A. Application of Statistical Data Analysis Methods for Zoning Kara Sea Waters. Oceanology 2024, 64, 670–680. [Google Scholar] [CrossRef]
- Sea Ice Maps. AARI Official Web-Site. Available online: https://www.aari.ru/data/realtime/ledovye-karty-2 (accessed on 20 December 2024).
Sampling Site | Latitude, N | Longitude, E | Depth, m | Sampling Device | Description | |
---|---|---|---|---|---|---|
AMK76-6236 | start | 76°38.04′ | 71°14.61′ | 237 | Trawl | Crusts: irregular in shape; 0.4–1.2 cm thick; smooth surface with holes filled with sediments; dark orange in color |
finish | 76°38.14′ | 71°13.51′ | 233 | |||
76°37.98′ | 71°15.10′ | 237 | Box corer | Sediments (0–2 cm): terrigenous sandy silt, oxidized | ||
AMK76-6238 | start | 76°46.13′ | 70°54.33′ | 392 | Trawl | Crusts: irregular in shape; 0.4–1.2 cm thick; smooth surface with holes filled with sediments; dark orange in color |
finish | 76°46.33′ | 70°56.20′ | 370 | |||
AMK76-6258 | start | 73°19.94′ | 65°38.63′ | 62 | Trawl | Nodules: discoidal in shape, concave, with a diameter of up to 11 cm and a thickness of up to 2.5 cm; samples of a small (S) size (around 6 cm), a medium (M) size (up to 9 cm), and a large (L) size (up to 12 cm); top surface is dark orange, and bottom surface is black in color |
finish | 73°20.21′ | 65°39.71′ | 64 | |||
73°20.10′ | 65°39.30′ | 64 | Box corer | Sediments (0–2 cm): terrigenous silty sand, oxidized | ||
AMK76-6259 | start | 72°24.64′ | 65°31.27′ | 91 | Trawl | Nodules: discoidal in shape, with a diameter of up to 12 cm and a thickness of up to 3.5 cm; samples of a small (S) size were flat, and samples of medium (M) and large (L) sizes were concave; top surface is dark orange, bottom surface is black in color |
finish | 72°24.40′ | 65°30.81′ | 92 | |||
PSh129-64 | 72°32.0′ | 64°57.3′ | 85 | Box corer | Nodules: discoidal in shape and concave; diameter of up to 10 cm; samples of a small (S) size are approximately 4–5 cm in diameter and 1.0–1.2 cm in thickness (analyzed in this study); top surface is dark orange, and bottom surface is black in color | |
PSh129-40 | 71°43.0′ | 63°55.0′ | 88 | Box corer | Nodules: discoidal in shape, concave; diameter of up to 11 cm; the sample of a small (S) size is 5 cm in diameter and 1.3 cm thick (analyzed in this study) | |
PSh128-35 | start | 77°12.03′ | 85°27.00′ | 140 | Trawl | Nodules: discoidal in shape, flat; diameter of approximately 5–6 cm and thickness of 0.5–0.7 cm; top surface is dark orange, and bottom surface is black in color |
finish | 77°11.20′ | 85°28.40′ | 65 | |||
PSh128-64 | start | 72°32.7′ | 55°30.0′ | 49 | Trawl | Nodules: spheroidal in shape with gravel nuclei a diameter of up to 1.2 cm; black in color |
finish | 72°32.7′ | 55°30.0′ | 49 |
Sample | Type | TOC, % | TFA | SAFA | MUFA | PUFA | Diatom | Dino | Bacteria | Terr | Det | SAFA, % | MUFA, % | PUFA, % | U/S |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AMK76-6236 | bulk | 0.26 | 0.78 | 0.64 | 0.13 | 0.01 | 0.11 | 0.07 | 0.08 | 0.06 | 0.38 | 82.4 | 16.2 | 1.37 | 0.21 |
AMK76-6238 | bulk | 0.57 | 1.75 | 1.37 | 0.38 | n.d. | 0.25 | 0.12 | 0.41 | 0.06 | 0.68 | 78.4 | 21.6 | n.d. | 0.28 |
AMK76-6258(M2) | i.n.s. | 0.56 | 0.81 | 0.67 | 0.14 | n.d. | 0.19 | 0.03 | 0.08 | 0.02 | 0.41 | 82.7 | 17.3 | n.d. | 0.21 |
AMK76-6258(L) | i.n.s. | 1.04 | 4.34 | 2.40 | 1.94 | n.d. | 1.36 | 0.58 | 0.23 | 0.09 | 1.61 | 55.2 | 44.8 | n.d. | 0.81 |
AMK76-6259(S) | i.n.s. | 0.41 | 2.35 | 1.89 | 0.45 | n.d. | 0.56 | 0.14 | 0.22 | 0.06 | 1.15 | 80.7 | 19.3 | n.d. | 0.24 |
AMK76-6259(M1) | i.n.s. | 0.36 | 1.63 | 1.22 | 0.41 | n.d. | 0.37 | 0.13 | 0.13 | 0.06 | 0.84 | 74.8 | 25.2 | n.d. | 0.34 |
AMK76-6259(M2) | i.n.s. | 0.54 | 0.86 | 0.75 | 0.11 | n.d. | 0.14 | 0.05 | 0.09 | 0.06 | 0.44 | 87.5 | 12.5 | n.d. | 0.14 |
AMK76-6259 (L) | i.n.s. | 0.69 | 4.73 | 2.48 | 2.25 | n.d. | 1.97 | 0.35 | 0.25 | 0.06 | 1.48 | 52.4 | 47.6 | n.d. | 0.91 |
PSh129-64(1) | i.n.s. | 0.44 | 1.45 | 1.17 | 0.27 | 0.02 | 0.14 | 0.24 | 0.10 | 0.09 | 0.80 | 80.3 | 18.6 | 1.13 | 0.25 |
PSh129-64(2) | i.n.s. | 0.53 | 0.96 | 0.86 | 0.10 | 0.01 | 0.13 | 0.07 | 0.11 | 0.07 | 0.50 | 89.3 | 10.0 | 0.64 | 0.12 |
PSh129-64(3) | i.n.s. | 0.42 | 1.21 | 1.08 | 0.13 | 0.01 | 0.14 | 0.10 | 0.11 | 0.07 | 0.71 | 89.0 | 10.3 | 0.68 | 0.12 |
PSh129-40(1) | i.n.s. | 0.47 | 2.69 | 2.24 | 0.42 | 0.03 | 0.31 | 0.30 | 0.30 | 0.21 | 1.02 | 83.3 | 15.8 | 0.95 | 0.20 |
PSh128-35(1) | i.n.s. | 0.90 | 2.51 | 1.82 | 0.70 | n.d. | 0.50 | 0.34 | 0.21 | 0.07 | 1.15 | 72.3 | 27.7 | n.d. | 0.38 |
PSh128-35(2) | i.n.s. | 0.99 | 3.52 | 2.61 | 0.91 | n.d. | 0.74 | 0.28 | 0.20 | 0.07 | 1.82 | 74.1 | 25.9 | n.d. | 0.35 |
PSh128-35(3) | i.n.s. | 0.96 | 2.20 | 1.75 | 0.45 | n.d. | 0.48 | 0.13 | 0.14 | 0.05 | 1.20 | 79.6 | 20.4 | n.d. | 0.26 |
PSh128-64 | bulk | 0.95 | 2.89 | 2.33 | 0.56 | n.d. | 0.64 | 0.18 | 0.32 | 0.17 | 1.35 | 80.5 | 19.5 | n.d. | 0.24 |
AMK76-6236 (0–2 cm) | sediment | 1.44 | 10.7 | 3.97 | 5.88 | 0.85 | 4.94 | 2.02 | 0.28 | 0.05 | 2.68 | 37.1 | 55.0 | 7.91 | 1.69 |
AMK76-6258 (0–2 cm) | sediment | 1.24 | 16.8 | 6.70 | 8.83 | 1.32 | 8.28 | 2.23 | 0.53 | 0.13 | 4.09 | 39.8 | 52.4 | 7.83 | 1.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shulga, N. Fatty Acid Biomarkers in the Fe-Mn Nodules from the Kara Sea, Arctic Ocean. Minerals 2025, 15, 64. https://doi.org/10.3390/min15010064
Shulga N. Fatty Acid Biomarkers in the Fe-Mn Nodules from the Kara Sea, Arctic Ocean. Minerals. 2025; 15(1):64. https://doi.org/10.3390/min15010064
Chicago/Turabian StyleShulga, Natalia. 2025. "Fatty Acid Biomarkers in the Fe-Mn Nodules from the Kara Sea, Arctic Ocean" Minerals 15, no. 1: 64. https://doi.org/10.3390/min15010064
APA StyleShulga, N. (2025). Fatty Acid Biomarkers in the Fe-Mn Nodules from the Kara Sea, Arctic Ocean. Minerals, 15(1), 64. https://doi.org/10.3390/min15010064