Research Progress on the Extraction and Separation of Rare-Earth Elements from Waste Phosphors
Abstract
:1. Introduction
2. Extraction and Separation of REEs from Waste Phosphors
2.1. Physical Methods
2.1.1. Magnetic Separation Method
2.1.2. Flotation Method
2.1.3. Adsorption Method
2.1.4. Media Separation Method
2.2. Chemical Methods
2.2.1. Acid Leaching
2.2.2. Alkaline Fusion
- (1)
- NaOH for Alkaline Fusion
- (2)
- Carbonates and Bicarbonates for Alkaline Fusion
- (3)
- Other Agents for Alkaline Fusion
2.2.3. Acid Leaching with External Fields Enhanced Method
- (1)
- Addition of H2O2 Oxidant
- (2)
- Mechanical Activation
- (3)
- Microwave-Assisted Extraction and Separation
2.3. Green Solvent Leaching Method
2.4. Solvent Extraction
3. Conclusions and Perspective
- (1)
- Studying the reaction thermodynamics and kinetics of the process of extracting and separating REEs from waste phosphors. This should involve the thermodynamics of the reactions and the feasibility and pathways of multiphase reactions between REEs and impurity elements during alkaline fusion, machine activation, microwave-assisted, oxidant addition, and green solvent processing. It should also reveal the relevant reaction mechanisms under different conditions, especially the decomposition mechanisms of blue and green powders in pretreating (machine activation, alkaline fusion, and external field enhancement), leaching, and solvent extraction.
- (2)
- Much effort should made to account for the application of mechanical activation, alkaline fusion, ultrasound, microwave, oxidation, and other methods to disrupt the complex structure of the fluorescent powders and to promote the leaching efficiency of REEs and increase recovery efficiencies.
- (3)
- Developing new green solvents, such as ILs and DESs, for green and efficient extraction and separation. Reducing costs and viscosity while ensuring effectiveness is an important research direction for the future. DESs with a wide range of raw material sources, low prices, and relatively low viscosity are worth further development and have good application prospects. At the same time, the reagents balancing should be considered in the alkaline fusion-acid leaching method to avoid the excessive consumption of acid and alkaline and reduce the process costs.
- (4)
- Combining multiple extraction and separation methods to innovate and develop the new processes for green and efficient comprehensive utilization of waste fluorescent powder. Especially, improving the leaching efficiency of Ce, Tb, La, and Eu rare-earth elements in blue and green powders is the key point. More attention should also be paid to the behavior and direction of the REEs and the impurity elements of Al, Mg, and Sb in the system during processing to achieve efficient comprehensive recovery and high-value utilization as much as possible.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Gosen, B.S.; Verplanck, P.L.; Long, K.R.; Gambogi, J.; Seal, R.R. The Rare-Earth Elements: Vital to Modern Technologies and Lifestyles; US Geological Survey: Reston, VA, USA, 2014; pp. 245–249. [Google Scholar]
- Dong, B.; Cao, B.; He, Y.; Liu, Z.; Li, Z.; Feng, Z. Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides. Adv. Mater. 2012, 24, 1987–1993. [Google Scholar] [CrossRef] [PubMed]
- Alonso, E.; Sherman, A.M.; Wallington, T.J.; Everson, M.P.; Field, F.R.; Roth, R.; Kirchain, R.E. Evaluating rare-earth element availability: A case with revolutionary demand from clean technologies. Environ. Sci. Technol. 2012, 46, 3406–3414. [Google Scholar] [CrossRef] [PubMed]
- Singh, Y. Rare-Earth Element Resources: Indian Context; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 26–31. [Google Scholar]
- Jha, A.R. Rare-Earth Materials: Properties and Applications; CRC Press: Boca Raton, FL, USA, 2014; pp. 326–329. [Google Scholar]
- Atwood David, A. The Rare-Earth Elements: Fundamentals and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 6–9. [Google Scholar]
- Roesky Peter, W. Molecular Catalysis of Rare-Earth Elements; Springer: Berlin/Heidelberg, Germany, 2010; Volume 137, pp. 2–6. [Google Scholar]
- Rare Earths Statistics and Information. Available online: https://www.usgs.gov/centers/national-minerals-information-center/rare-earths-statistics-and-information (accessed on 30 December 2024).
- Tunsu, C.; Petranikova, M.; Gergorić, M.; Ekberg, C.; Retegan, T. Reclaiming rare-earth elements from end-of-life products: A review of the perspectives for urban mining using hydrometallurgical unit operations. Hydrometallurgy 2015, 156, 239–258. [Google Scholar] [CrossRef]
- Costis, S.; Mueller, K.K.; Coudert, L.; Neculita, C.M.; Reynier, N.; Blais, J.F. Recovery potential of rare-earth elements from mining and industrial residues: A review and cases studies. J. Geochem. Explor. 2021, 221, 106699. [Google Scholar] [CrossRef]
- Rebello, R.Z.; Lima, M.T.W.D.C.; Yamane, L.H.; Siman, R.R. Characterization of end-of-life LED lamps for the recovery of precious metals and rare-earth elements. Resour. Conserv. Recycl. 2020, 153, 104557. [Google Scholar] [CrossRef]
- Omodara, L.; Pitkäaho, S.; Turpeinen, E.M.; Saavalainen, P.; Oravisjärvi, K.; Keiski, R.L. Recycling and substitution of light rare-earth elements, cerium, lanthanum, neodymium, and praseodymium from end-of-life applications-A review. J. Clean. Prod. 2019, 236, 117573. [Google Scholar] [CrossRef]
- Rene, E.R.; Sethurajan, M.; Ponnusamy, V.K.; Kumar, G.; Dung, T.N.B.; Brindhadevi, K.; Pugazhendhi, A. Electronic waste generation, recycling and resource recovery: Technological perspectives and trends. J. Hazard. Mater. 2021, 416, 125664. [Google Scholar] [CrossRef]
- Pagano, G. Rare-Earth Elements in Human and Environmental Health: At the Crossroads Between Toxicity and Safety; CRC Press: Boca Raton, FL, USA, 2016; pp. 12–14. [Google Scholar]
- Tian, H.; Zhang, M.L.; Lai, L.; Zhao, Z. Treatment technology of waste phosphor by sulfation roasting-leaching. Chin. J. Process Eng. 2019, 19, 144–150. [Google Scholar]
- Dhawan, N.; Tanvar, H. A critical review of end-of-life fluorescent lamps recycling for recovery of rare-earth values. Sustain. Mater. Technol. 2022, 32, e00401. [Google Scholar] [CrossRef]
- Zhong, L.Q. Study on the cascade recover the rare earth from waste phosphors. Master’s Thesis, Jiangxi University of Science and Technology, Ganzhou, China, 2018. [Google Scholar]
- Innocenzi, V.; De Michelis, I.; Ferella, F.; Vegliò, F. Leaching of yttrium from cathode ray tube fluorescent powder: Kinetic study and empirical models. Int. J. Miner. Process. 2017, 168, 76–86. [Google Scholar] [CrossRef]
- Tang, Z.T. Study on Extraction of Rare-Earth Elements from Waste Phosphor by Sodium Carbonate Roasting and Molten Salts Chlorination. Master’s Thesis, Anhui University of Technology, Maanshan, China, 2017. [Google Scholar]
- Binnemans, K.; Jones, P.T. Perspectives for the recovery of rare earths from end-of-life fluorescent lamps. J. Rare Earths 2014, 32, 195–200. [Google Scholar] [CrossRef]
- Liao, C.F.; Zeng, Y.L.; Jiao, Y.F. The Latest Development of Rare-earth Recovery from Waste Rare-earth Phosphors. Rare Met. Cem. Carbides 2013, 41, 7–12. [Google Scholar]
- Zhao, Z.; Xu, G.L. Present Situation and Development Trend of Technology of Rare-earth Elements in Waste Phosphor. J. Chin. Soc. Rare Earths 2015, 33, 641–649. [Google Scholar]
- Xu, S.B.; Liu, C.; Sun, Z.X.; Li, Y.P.; Xie, Y.; Wang, X.G. Recovery of Rare-earth Elements in Waste Fluorescent Lamps: A Review. Chin. J. Rare Met. 2021, 45, 879–890. [Google Scholar]
- Zhang, W.J.; Du, Y.P.; Xie, X.; Feng, D.X.; Tong, X.; Cao, Y. A Review on Research of Rare-earth Element Recycling Technology in Waste Phosphor. Chin. J. Rare Met. 2023, 47, 1437–1452. [Google Scholar]
- Xu, H.; Hu, T.J.; Liu, Y.; Su, E.Y.; Xie, B.Y.; Wang, R.X.; Yan, K.; Xu, Z.F. Research progress on recovery of rare-earth elements from waste rare-earth phosphors. Nonferrous Met. (Extr. Metall.) 2024, 9, 25–36. [Google Scholar]
- He, L.; Ji, W.; Yin, Y.W.; Sun, W. Study on alkali mechanical activation for recovering rare-earth from waste fluorescent lamps. J. Rare Earths 2018, 36, 108–112. [Google Scholar] [CrossRef]
- Wang, W.B.; Guo, F.; Yan, S.R. The Technology Development and Research of Rare-earth Lamp Phosphor (I). China Light &Lighting. 2009, 6, 11–16. [Google Scholar]
- Tanaka, M.; Oki, T.; Koyama, K.; Narita, H.; Oishi, T. Recycling of rare earths from scrap. In Handbook on the Physics and Chemistry of Rare Earths; Bunzli, J.C.G., Pecharsky, V.K., Eds.; Elsevier B.V.: Amsterdam, The Netherlands, 2013; Volume 43, pp. 159–211. [Google Scholar]
- Masaru, Y.; Tomoko, A.; Masaki, M.; Tatsuya, O. Recovery of LaPO4: Ce, Tb from waste phosphors using high-gradient magnetic separation. Waste Manag. 2018, 7, 164. [Google Scholar]
- Nishijima, S. Magnetic force control technology and its industrial applications. J. Mag. Soc. Jpn. 2013, 37, 333. [Google Scholar] [CrossRef]
- Yamashita, M.; Akai, T.; Imamura, T.; Murakami, M.; Oki, T. Recycling of waste phosphors using high gradient magnetic separation method. Trans. Mater. Res. Soc. 2014, 39, 35. [Google Scholar] [CrossRef]
- Wada, K.; Mishoma, F.; Akiyama, Y.; Nishijima, S. Fundamental study of phosphor separation by controlling magnetic force. Physics C 2013, 494, 217. [Google Scholar] [CrossRef]
- Wada, K.; Mishoma, F.; Akiyama, Y.; Nishijima, S. The development of the separation apparatus of phosphor by controlling the magnetic force. Phys. Procedia 2014, 58, 252. [Google Scholar] [CrossRef]
- Kuger, L.; Franzreb, M. Design of a magnetic field-controlled chromatography process for efficient and selective fractionation of rare-earth phosphors from end-of-life fluorescent lamps. ACS Sustain. Chem. Eng. 2024, 12, 2988–2999. [Google Scholar] [CrossRef]
- Hirajima, T.; Bissombolo, A.; Sasaki, K.; Nakayam, K.; Hirai, H.; Tsunekawa, M. Floatability of rare-earth phosphors from waste fluorescent lamps. Int. J. Miner. Process. 2005, 77, 187. [Google Scholar] [CrossRef]
- Otuski, A.; Dodbiba, G.; Shibayama, A.; Fujita, T. Separation of rare-earth flourescent powders by tow-liquid flotation using organic solvents. Jpn. J. Appl. Phys. 2008, 47, 5093. [Google Scholar] [CrossRef]
- Mei, G.J.; Rao, P.; Mitsuaki, M.; Toyohisa, F. Separation of red (Y2O3:Eu3+), blue (Sr,Ca,Ba)10(PO4)6Cl2:Eu2+ and green (LaPO4:Tb3+,Ce3+) rare-earth phosphors by liquid/liquid extraction. J. Wuhan Univ. Technol.-Mater 2009, 24, 418–423. [Google Scholar] [CrossRef]
- Mei, G.J.; Rao, P.; Mitsuaki, M.; Toyohisa, F. Separation of red (Y2O3:Eu3+), blue (Sr,Ca,Ba)10(PO4)6Cl2:Eu2+ and green (CeMgAl10O17:Tb3+) rare-earth phosphors by liquid/liquid extraction. J. Wuhan Univ. Technol.-Mater. 2009, 24, 603–607. [Google Scholar] [CrossRef]
- Wu, M.; Yu, M.M.; Cheng, Q.; Yuan, Q.; Mei, G.; Liang, Q.; Wang, L. Flotation recovery of Y2O3 from waste phosphors using ionic liquids as collectors. Chem. Phys. Lett. 2023, 825, 140608. [Google Scholar] [CrossRef]
- Bai, R.X.; Yang, F.; Zhang, Y.; Yuan, Q.; Mei, G.; Liang, Q.; Wang, L. Preparation of elastic diglycolamic-acid modified chitosan sponges and their application to recycling of rare-earth from waste phosphor powder. Carbohydr. Polym. 2018, 190, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Arunraj, B.; Rajesh, V.; Rajesh, N. Potential application of graphene oxide and Aspergillus niger spores with high adsorption capacity for recovery of europium from red phosphor, compact fluorescent lamp and simulated radioactive waste. J. Rare earths 2023, 41, 157–166. [Google Scholar] [CrossRef]
- Artiushenko, O.; Rojano, W.S.; Nazarkovsky, M.; Azevedo, M.F.M.; Saint’Pierre, T.D.; Kai, J.; Zaitsev, V. Recovery of rare-earth elements from waste phosphors using phosphonic acid-functionalized silica adsorbent. Sep. Purif. Technol. 2024, 330, 125525. [Google Scholar] [CrossRef]
- Takahashi, T.; Takano, A.; Saito, T. Separation and recovery of rare-earth elements from phosphors in waste fluorescent lamp (part III)-separation and recovery of rare-earth elements by multistage countercurrent extraction. Rep. Hokkaido Ind. Res. Inst. 1991, 298, 37. [Google Scholar]
- Hirajima, T.; Sasaki, K.; Bissombolo, A.; Hira, H.; Hamada, M.; Tsunekawa, M. Feasibility of an efficient recovery of rare-earth-activated phosphors from waste fluorescent lamps through dense-medium centrifugation. Sep. Purif. Technol. 2005, 44, 197. [Google Scholar] [CrossRef]
- Patil, A.B.; Tarik, M.; Struis, R.P.W.J.; Ludwig, C. exploiting end-of-life lamps fluorescent powder e-waste as a secondary resource for critical rare-earth metals. Resour. Conserv. Recycl. 2020, 164, 105153. [Google Scholar] [CrossRef]
- Luidold, S.; Poscher, A.; Antrekowitsch, H. Concepts for the extraction of rare earths from spent phosphors. In Proceedings of the 51st Annual Conference of Metallurgists, Niagara Falls, NY, USA, 30 September–3 October 2012. [Google Scholar]
- Ida, D.M.; Ferella, F.; Ennio, F.V.; Veglio, F. Treatment of exhaust fluorescent lamps to recover yttrium: Experimental and process analyses. Waste Manag. 2011, 31, 2559. [Google Scholar]
- Yang, F.; Kubota, F.; Baba, Y.; Kamiya, N.; Goto, M. Selective extraction and recovery of rare-earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system. J. Hazard. Mater. 2013, 254, 79. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, S.G.; Pan, D.; Tian, J.; Yang, M.; Wu, M.; Volinsky, A.A. Rare-earth elements recycling from waste phosphor by dual hydrochloric acid dissolution. J. Hazard. Mater. 2014, 272, 96–101. [Google Scholar] [CrossRef]
- Tunsu, C.; Ekberg, C.; Retegan, T. Characterization and leaching of real fluorescent lamp waste for the recovery of rare-earth metals and mercury. Hydrometallurgy 2014, 144, 91–98. [Google Scholar] [CrossRef]
- Innocenzi, V.; Ippolito, N.M.; De Michelis, I.; Medici, F.; Vegliò, F. A hydrometallurgical process for the recovery of terbium from fluorescent lamps: Experimental design, optimization of acid leaching process and process analysis. J. Environ. Manag. 2016, 184, 552–559. [Google Scholar] [CrossRef]
- Lie, J.N.; Shuwanto, H.; Abdullah, H.; Soetaredjo, F.E.; Ismadji, S.; Wijaya, C.J.; Gunarto, C. Optimization of intensified leaching and selective recovery of Y and Eu from waste cathode ray tube phosphor. Miner. Eng. 2024, 209, 108620. [Google Scholar] [CrossRef]
- Zhang, S.G.; Liu, H.; Pan, D.A.; Tian, J.J. Complete recovery of Eu from BaMgAl10O17:Eu2+ by alkaline fusion and its mechanism. Rsc Adv. 2015, 5, 1113. [Google Scholar] [CrossRef]
- Zhang, Z.X. Process Research on Recovery of Rare-Earth of Waste Rare-Earth Fluorescent Powders by Alkali Fusion-Washing-Reduction Acid Leaching. Master’s Thesis, Jiangxi University of Science and Technology, Ganzhou, China, 2016. [Google Scholar]
- Liao, C.F.; Li, Z.Y.; Zeng, Y.L. Selective extraction and recovery of rare-earth metals from waste fluorescent powder using alkaline roasting-leaching process. J. Rare Earths 2017, 10, 1008. [Google Scholar] [CrossRef]
- Yu, M.M.; Mei, G.J.; Chen, X.D. Recovering rare earths and aluminum from waste BaMgAl10O17:Eu2+ and CeMgAl11O19:Tb3+ phosphors using NaOH sub-molten salt method. Miner. Eng. 2018, 117, 1. [Google Scholar] [CrossRef]
- Liu, H.; Li, S.; Wang, B.; Wang, K.; Alex, A.V. Multiscale recycling rare-earth elements from real waste trichromatic phosphors containing glass. J. Clean. Prod. 2019, 238, 117998. [Google Scholar] [CrossRef]
- Shao, L.B. Study on Rare-Earth Extraction of Waste Rare-Earth Phosphor Based on Phase Regulation. Master’s Thesis, Jiangxi University of Science and Technology, Ganzhou, China, 2019. [Google Scholar]
- Xie, B.Y.; Liu, C.X.; Wei, B.H.; Wang, R.; Ren, R. Recovery of rare-earth elements from waste phosphors via alkali fusion roasting and controlled potential reduction leaching. Waste Manag. 2023, 163, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Pramanik, S.; Kumari, A.; Sinha, M.K.; Munshi, B.; Sahu, S.K. Valorization of phosphor powder of waste fluorescent tubes with an emphasis on the recovery of terbium oxide (Tb4O7). Sep. Purif. Technol. 2023, 322, 124332. [Google Scholar] [CrossRef]
- Liu, H. Study on the Recycling and Alkali Melting Mechanism of Waste Rare-Earth Fluorescent Powder. Master’s Thesis, Beijing University of Science and Technology, Beijing, China, 2015. [Google Scholar]
- Liu, C.X. Research on Comprehensive Recovery of Rare-earth Elements from Waste Rare-earth Phosphor. Master’s Thesis, Jiangxi University of Science and Technology, Ganzhou, China, 2022. [Google Scholar]
- Hua, Z.S.; Geng, A.; Tang, Z.T.; Zhao, Z.; Liu, H.; Yao, Y.L.; Yang, Y.X. Decomposition behavior and reaction mechanism of Ce0.67Tb0.33MgAl11O19 during Na2CO3 assisted roasting: Toward efficient recycling of Ce and Tb from waste phosphor. J. Environ. Manag. 2019, 249, 109383. [Google Scholar] [CrossRef] [PubMed]
- Yurramendi, L.; Gijsemans, L.; Forte, F.; Aldana, J.L.; Río, C.d.; Binnemans, K. Enhancing rare-earth recovery from lamp phosphor waste. Hydrometallurgy 2019, 187, 38–44. [Google Scholar] [CrossRef]
- Zeng, Y.L. Study on the Process of Enhanced Leaching of Rare earths from Waste Rare-earth Fluorescent Powder. Master’s Thesis, Jiangxi University of Science and Technology, Ganzhou, China, 2014. [Google Scholar]
- Wu, Y.; Wang, B.; Zhang, Q.; Tian, J.J. Recovery of rare-earth elements from waste fluorescent phosphors: Na2O2 molten salt decomposition. J. Mater. Cycles Waste Manag. 2014, 16, 635. [Google Scholar] [CrossRef]
- Wu, Y.F.; Wang, B.L.; Zhang, Q.J.; Li, Q.; Yu, J.M. A novel process for high efficiency recovery of rare-earth metals from waste phosphors using a sodium peroxide system. RSC Adv. 2014, 4, 7927. [Google Scholar] [CrossRef]
- Ippolito, N.M.; Innocenzi, V.; De Michelis, I.; Medici, F.; Vegliò, F. Rare-earth elements recovery from fluorescent lamps: A new thermal pretreatment to improve the efficiency of the hydrometallurgical process. J. Clean. Prod. 2017, 153, 287–298. [Google Scholar] [CrossRef]
- Guo, D.D. Study on the Extraction of Rare-earth from Waste Rare-earth Phosphor Iron Powder by Alkali Fusion-Acid Leaching. Master’s Thesis, Jiangxi University of Science and Technology, Ganzhou, China, 2016; p. 1. [Google Scholar]
- Liang, Y.; Liu, Y.X.; Lin, R.D.; Guo, D.D.; Liao, C.F. Leaching of rare-earth elements from waste lamp phosphor mixtures by reduced alkali fusion followed by acid leaching. Hydrometallurgy 2016, 163, 99. [Google Scholar] [CrossRef]
- Yao, Z.; Li, J.; Zhao, X. Molten salt oxidation: A versatile and promising technology for the destruction of organic containing wastes. Chemosphere 2011, 84, 1167. [Google Scholar] [CrossRef]
- Choi, S.; Ilyas, S.; Kim, H. Intensive leaching of red phosphor rare-earth metals from waste fluorescent lamp: Parametric optimization and kinetic studies. JOM 2022, 74, 1054–1060. [Google Scholar] [CrossRef]
- Tian, X.M.; Yin, X.F.; Gong, Y.; Wu, Y.; Tan, Z.; Xu, P. Characterization, recovery potentiality, and evaluation on recycling major metals from waste cathode-ray tube phosphor powder by using sulphuric acid leaching. J. Clean. Prod. 2016, 135, 1210–1217. [Google Scholar] [CrossRef]
- Miskufova, A.; Kochmanova, A.; Havlik, T.; Horvathova, H.; Kuruc, P. Leaching of yttrium, europium and accompanying elements from phosphor coatings. Hydrometallurgy 2018, 176, 216–228. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Q.; Zuo, T. Selective recovery of Y and Eu from rare-earth tricolored phosphorescent powders waste via a combined acid-leaching and photo-reduction process. J. Clean. Prod. 2019, 226, 858–865. [Google Scholar] [CrossRef]
- Yin, X.; Tian, X.; Wu, Y.; Zhang, Q.; Wang, W.; Li, B.; Gong, Y.; Zuo, T. Recycling rare-earth elements from waste cathode ray tube phosphors: Experimental study and mechanism analysis. J. Clean. Prod. 2018, 205, 58–66. [Google Scholar] [CrossRef]
- Lee, C.; Jeong, M.; Fatih, K.M.; Lee, J.; Hong, H.; Hong, S. Recovery of indium from used lcd panel by a time efficient and environmentally sound method assisted Hebm. Waste Manag. 2013, 33, 730. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, H.; Rahman, I.M.M.; Egawa, Y.; Sawai, H.; Begum, Z.A.; Teruya, M.; Satoshi, M. Recovery of indium from end-of-life liquid-crystal display panels using aminopolycarboxylate chelants with the aid of mechanochemical treatment. Microchem. J. 2013, 106, 289. [Google Scholar] [CrossRef]
- Ou, Z.; Li, J. Synergism of mechanical activation and sulfurization to recover copper from waste printed circuit boards. RSC Adv. 2014, 4, 51970. [Google Scholar] [CrossRef]
- Zhang, Q.; Saito, F. Non-thermal extraction of rare-earth elements from fluorescent powder means of its mechanochemical treatment. Shigen-Sozai 1998, 114, 253. [Google Scholar] [CrossRef]
- Mio, H.; Lee, J.; Nakagawa, T.; Kano, J.; Saito, F. Estimation of extraction rate of yttrium from fluorescent powder by ball milling. Mater. Trans. 2001, 42, 2460. [Google Scholar] [CrossRef]
- Li, Y.; Xu, X.X.; Lei, Y.; Gao, Z.F. Research on the mechanical activation leaching of REOs from waste fluorescent powder. Chin. Rare Earths 2016, 37, 72–78. [Google Scholar]
- Tan, Q.Y.; Deng, C.; Li, J.H. Enhanced recovery of rare-earth elements from waste phosphors by mechanical activation. J. Clean. Prod. 2017, 142, 2187. [Google Scholar] [CrossRef]
- Song, G.H.; Yuan, W.Y.; Zhu, X.F.; Wang, X.Y.; Zhang, C.L.; Li, J.H.; Bai, J.F.; Wang, J.W. Improvement in rare-earth element recovery from waste trichromatic phosphors by mechanical activation. J. Clean. Prod. 2017, 151, 361. [Google Scholar] [CrossRef]
- Van Loy, S.; Binnemans, K.; Van Gerven, T. Mechanochemical-assisted leaching of lamp phosphors: A green engineering approach for rare-earth recovery. Engineering 2018, 4, 398–405. [Google Scholar] [CrossRef]
- Ippolito, N.M.; Ferella, F.; Innocenzi, V.; Trapasso, F.; Passeri, D.; Belardi, G.; Vegliò, F. Effect of mechanical activation on terbium dissolution from waste fluorescent powders. Miner. Eng. 2021, 167, 106906. [Google Scholar] [CrossRef]
- Chen, P.; Yang, F.; Liao, Q.; Zhao, Z.; Zhang, Y.; Zhao, P.; Guo, W.; Bai, R. Recycling and separation of rare-earth resources lutetium from LYSO scraps using the diglycol amic acid functional XAD-type resin. Waste Manag. 2017, 62, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Lie, J.; Ismadji, S.; Liu, J.C. Microwave-assisted leaching of rare-earth elements (Y and Eu) from waste cathode ray tube phosphor. J. Chem. Technol. Biotechnol. 2019, 94, 3859–3865. [Google Scholar] [CrossRef]
- Shukla, N.; Agrawal, S.; Dhawan, N. Microwave acid baking process for recovery of rare-earth concentrate from phosphor of end-of-life fluorescent lamps. J. Clean. Prod. 2021, 307, 127235. [Google Scholar] [CrossRef]
- Lie, J.N.; Liu, J.C. Recovery of Y and Eu from waste CRT phosphor using closed-vessel microwave leaching. Sep. Purif. Technol. 2021, 277, 119448. [Google Scholar] [CrossRef]
- Bilen, A.; Birol, B.; Saridede, M.N.; Kaplan, Ş.; Sönmez, M. Direct microwave leaching conditions of rare-earth elements in fluorescent wastes. J. Rare Earths 2024, 42, 1165–1174. [Google Scholar] [CrossRef]
- Tian, G.C.; Li, J.; Hua, Y. Application of ionic liquids in hydrometallurgy of nonferrous metals. Trans. Nonferrous Met. Soc. China (Engl. Ed.) 2010, 20, 513–520. [Google Scholar] [CrossRef]
- Li, R.X. Green Solvents: Synthesis and Application of Ionic Liquids; Chemical Industry Engineering Press: Beijing, China, 2004; pp. 27–39. [Google Scholar]
- Deng, Y.Q. Ionic Liquids: Properties, Preparation and Application; China SINOPEC Press: Beijing, China, 2006; pp. 20–45. [Google Scholar]
- Zhang, S.J.; Lv, X.M. Ionic Liquids from Fundamental Study to Industrial Application; Science Press: Beijing, China, 2006; pp. 35–95. [Google Scholar]
- Welton, T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 2002, 99, 2071–2083. [Google Scholar] [CrossRef]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep eutectic solvents (DESs) and their applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef]
- Dupont, D.; Binnemans, K. Rare-earth recycling using a functionalized ionic liquid for the selective dissolution and revalorization of Y2O3:Eu3+ from lamp phosphor waste. Green Chem. 2015, 17, 856–868. [Google Scholar] [CrossRef]
- Schaeffer, N.; Feng, X.; Grimes, S.; Cheeseman, C. Recovery of an yttrium europium oxide phosphor from waste fluorescent tubes using a Brønsted acidic ionic liquid, 1-methylimidazolium hydrogen sulfate. J. Chem. Technol. Biotechnol. 2017, 92, 2731–2738. [Google Scholar] [CrossRef]
- Pateli, I.M.; Abbott, A.P.; Binnemans, K.; Rodriguez, N.R. Recovery of yttrium and europium from spent fluorescent lamps using pure levulinic acid and the deep eutectic solvent levulinic acid–choline chloride. RSC Adv. 2020, 10, 28879–28890. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, N.R.; Grymonprez, B.; Binnemans, K. Integrated process for recovery of rare-earth elements from lamp phosphor waste using methanesulfonic acid. Ind. Eng. Chem. Res. 2021, 60, 10319–10326. [Google Scholar] [CrossRef]
- Jiang, T.; Singh, S.; Dunn, K.A.; Liang, Y. Optimizing Leaching of Rare-earth Elements from Red Mud and Spent Fluorescent Lamp Phosphors Using Levulinic Acid. Sustainability 2022, 14, 9682. [Google Scholar] [CrossRef]
- Asadollahzadeh, M.; Torkaman, R.; Torab-Mostaedi, M. Recovery of yttrium ions from fluorescent lamp waste through supported ionic liquid membrane: Process optimisation via response surface methodology. Int. J. Environ. Anal. Chem. 2022, 102, 3161–3174. [Google Scholar] [CrossRef]
- Hu, M.; Zhao, Z.G.; Du, J.M.; Yang, F. Recovery of Rare-earth Elements from Wasted Lamp Phosphor Using Deep Eutectic Solvents. Chin. Rare Earths 2024, 45, 1–11. [Google Scholar] [CrossRef]
- Kinga, P.M.; Katarzyna, G.; Zbigniew, W. Potential management of waste phosphogypsum with particular focus on recovery of rare-earth metals. Pol. J. Chem. Technol. 2015, 17, 55. [Google Scholar]
- Daejin, K.; Lawrence, E.P.; Lætitia, H.D.; Eric, S.P.; Jim, H.; Ramesh, R.B. Selective extraction of rare-earth elements from permanent magnet scraps with membrane solvent extraction. Environ. Sci. Technol. 2015, 49, 9452. [Google Scholar]
- Rout, A.; Binnemans, K. Influence on the ionic liquid cation on the solvent extraction of trivalent rare-earth ions by mixtures of Cyanex 923 and ionic liquids. Dalton Trans. 2015, 44, 1379. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Nishihama, S.; Yoshizuka, K. Separation and recovery process for rare-earth metals from fluorescence material wastes using solvent extraction. Solvent Extr. Res. Dev. Jpn. 2007, 14, 105. [Google Scholar]
- Tunsu, C.; Lapp, J.B.; Ekberg, C.; Retegan, T. Selective separation of yttrium and europium using Cyanex 572 for applications in fluorescent lamp waste processing. Hydrometallurgy 2016, 166, 98. [Google Scholar] [CrossRef]
- Innocenzi, V.; Ippolito, N.M.; Pietrelli, L.; Centofanti, M.; Piga, L.; Vegliò, F. Application of solvent extraction operation to recover rare earths from fluorescent lamps. J. Clean. Prod. 2018, 172, 2840. [Google Scholar] [CrossRef]
- Innocenzi, V.; De Michelis, I.; Ferella, F.; Vegliò, F. Secondary yttrium from spent fluorescent lamps: Recovery by leaching and solvent extraction. Int. J. Miner. Process. 2017, 168, 87–94. [Google Scholar] [CrossRef]
- Mishra, B.B.; Devi, N.; Sarangi, K. Yttrium and europium recycling from phosphor powder of waste tube light by combined route of hydrometallurgy and chemical reduction. Miner. Eng. 2019, 136, 43–49. [Google Scholar] [CrossRef]
- Yang, H.; Wang, W.; Cui, H.; Zhang, D.; Liu, Y.; Chen, J. Recovery of rare-earth elements from simulated fluorescent powder using bifunctional ionic liquid extractants (Bif-ILEs). J. Chem. Technol. Biotechnol. 2012, 87, 198–205. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, C.; Li, F.; Dong, Y.; Zhao, Z.; Sun, X. The development of sustainable yttrium separation process from rare-earth enrichments using bifunctional ionic liquid. Sep. Purif. Technol. 2016, 162, 106–113. [Google Scholar] [CrossRef]
- Tunsu, C.; Petranikova, M.; Ekberg, C.; Retegan, T. A hydrometallurgical process for the recovery of rare-earth elements from fluorescent lamp waste fractions. Sep. Purif. Technol. 2016, 161, 172–186. [Google Scholar] [CrossRef]
Phosphors | Chemical Formula | Wavelength/nm | Color Coordinates (x, y) |
---|---|---|---|
Red powder | Y2O3:Eu3+ | 611 ± 2 | 0.650 ± 0.02, 0.345 ± 0.02 |
Green powder | CeMgAl11O19:Tb3+ Y2SiO3:Ce3+, Tb3+ LaPO4:Ce2+, Tb3+ GdMgB5O10:Ce3+, Tb3+ | 543 ± 2 | 0.335 ± 0.02, 0.595 ± 0.02 |
Blue powder | BaMgAl10O17:Eu2+ BaZrSi3O9:Eu2+ (Ba, Sr, Ca)5(PO4)3Cl:Eu3+ Ca2B5O8Cl:Eu2+ | 450 ± 2 | 0.145 ± 0.02, 0.065 ± 0.02 0.145 ± 0.02, 0.145 ± 0.02 |
Physical Methods | Advantages | Disadvantages |
---|---|---|
Magnetic separation | Only requires physical means. A single fluorescent powder can be separated. Environmentally friendly. | High cost. Difficult to apply in large-scale commerce. |
Flotation | The process is relatively simple. Low consumption of chemical reagents. | The purity of the product is not high. The quality of the fluorescent powder is lower. |
Adsorption method | Significantly improves the sustainability of the rare-earth recycling process and enables the adsorbent to be reused without causing environmental pollution. | The adsorption separation effect is far inferior to chemical methods, and most adsorbents cannot be used on a large scale, making it difficult to apply them in practical engineering. |
Media separation | The process and technology are relatively simple, high cost, and can effectively separate calcium halide phosphate and tricolor rare-earth fluorescent powder. | Organic media (diiodomethane, CH2I2). Environmental pollution. |
Methods | Chemical Reagents | Advantages | Disadvantages |
---|---|---|---|
Acid leaching methods | HCl, H2SO4, HNO3. | Obvious recovery effect. | Acid consumption is large, large amount of waste liquid, environmental pollution, and increased costs. |
Alkaline fusion methods | NaOH, KOH, Na2O2, Na2CO3, NaHCO3, and iron powder used for alkaline fusion. HCl, H2SO4, and HNO3 used for leaching. | Significantly improve the recovery rate of rare earths in blue and green powder. | High energy consumption, the leaching liquid easily becomes viscous, not conducive to production, the process is more complicated, the equipment requirements are higher, and the operating workshop environment is poor. |
Solvent extractant methods | P204, P507, D2EH-PA, TBP, Cyanex272, Cyanex572, and TODGA. | Able to obtain a single rare-earth product. | Th extractant is volatile, pollutes the environment, and has high toxicity. |
External field-enhanced methods | NaOH is always used in machine activation. The HCl, H2SO4, and HNO3 are used for the leaching process. | Significantly improve the recovery rate of rare earths. | High energy consumption. |
Green solvent | [Hmim]HSO4, [Hmim]HSO4/H2O, [Hbet]NTf2, [Hbet]NTf2 [C6mim]NTf2, MSA, and LevA/choline chloride used for leaching. [A336]P204, [A336]P507, and [N1888]CA12 used for extraction. | High selectivity, non-volatile, recyclable, environmentally friendly. | High viscosity and high costs. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, G.; Xu, Z.; Li, X.; Hu, Z.; Zhou, B. Research Progress on the Extraction and Separation of Rare-Earth Elements from Waste Phosphors. Minerals 2025, 15, 61. https://doi.org/10.3390/min15010061
Tian G, Xu Z, Li X, Hu Z, Zhou B. Research Progress on the Extraction and Separation of Rare-Earth Elements from Waste Phosphors. Minerals. 2025; 15(1):61. https://doi.org/10.3390/min15010061
Chicago/Turabian StyleTian, Guocai, Zhongbin Xu, Xiaofen Li, Zhiqiang Hu, and Baichuan Zhou. 2025. "Research Progress on the Extraction and Separation of Rare-Earth Elements from Waste Phosphors" Minerals 15, no. 1: 61. https://doi.org/10.3390/min15010061
APA StyleTian, G., Xu, Z., Li, X., Hu, Z., & Zhou, B. (2025). Research Progress on the Extraction and Separation of Rare-Earth Elements from Waste Phosphors. Minerals, 15(1), 61. https://doi.org/10.3390/min15010061