Geological Characteristics and Paleoenvironmental Evolution of Fine-Grained Sediments in the Third Member of the Xujiahe Formation in the Western Sichuan Depression, SW China
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Methods
4. Results
4.1. Petrological and Mineralogical Characteristics
4.2. Geochemical Characteristics
4.2.1. Distribution of Major Elements
4.2.2. Characteristics of Trace Elements and Rare Earth Elements
4.3. Total Organic Carbon Characteristics
4.4. Data Validity Discrimination
5. Discussion
5.1. Paleoclimate and Paleo-Productivity
5.2. Paleo-Salinity Analysis
5.3. Paleo-Redox Conditions
5.4. Chemical Weathering Degree
5.5. Depositional Pattern
6. Conclusions
- (1)
- The composition of fine-grained sediments in the Xu-3 Member of the Western Sichuan Depression can be classified into two main types of fine-grained felsic sedimentary rocks: clayey and lime fine-grained felsic sedimentary rocks. The Xu-3 Member is characterized by lower TOC contents.
- (2)
- According to the characteristics of major elements, most rocks can be divided into two similar categories. Among trace elements, large ion lithophile elements and high field strength elements are relatively enriched. The REE distribution pattern of the TGM section is gentle, while the Jinhe section has two types of patterns: gentle and heavy REEs enrichment type.
- (3)
- The paleoclimate experienced a transition from hot–arid to warm–humid, and it was hotter in the central and southern parts of the depression than in the northern part. The paleo-productivity was consistent with the change trend of the paleoclimate, with relatively low levels in the central and southern parts of the depression, which may be related to the higher input of debris from the continental margin. The paleo-salinity primarily reflected brackish water to saline water, with fresh water injection in the southern part of the depression. The paleo-redox conditions of the waters were sub-oxidation to sub-reduction types.
- (4)
- The degree of chemical weathering in the provenance area was moderate, and the paleoclimate was warm and humid, essentially consistent with the sedimentary area. The parent rock type was mainly felsic rocks, but they were not completely identical between the northern and south-central parts of the depression.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Potter, P.E.; Maynard, J.B.; Depetris, P.J. Mud and Mudstone; Springer Verlag: Berlin, Germany, 2005; pp. 1–297. [Google Scholar]
- Aplin, A.C.; Macquaker, J.H.S. Mudstone diversity: Origin and implications for source, seal, and reservoir properties in petroleum systems. AAPG Bull. 2011, 95, 2031–2059. [Google Scholar] [CrossRef]
- Liu, H.M.; Sun, S.Y.; Cao, Y.C.; Liang, C.; Zhang, C.C. Lithofacies characteristics and distribution model of fine-grained sedimentary rock in the lower Es3 member, Dongying Sag. Petro. Geol. Recovery Effic. 2017, 24, 1–10. [Google Scholar] [CrossRef]
- Peng, J.; Zeng, Y.; Yang, Y.M.; Yu, L.T.; Xu, T.Y. Discussion on classification and naming scheme of fine-grained sedimentary rocks. Pet. Explor. Dev. 2022, 49, 121–132. [Google Scholar] [CrossRef]
- Jiang, Z.X.; Zhang, W.Z.; Liang, C.; Wang, S.Y.; Liu, H.M.; Chen, X. Characteristics and evaluation elements of shale oil reservoir. Acta Pet. Sin. 2014, 35, 184–196. [Google Scholar] [CrossRef]
- Li, Y.; Liu, K.Y.; Pu, X.G.; Chen, S.Y.; Han, W.Z.; Zhang, W.; Wang, H.; Liang, C.; Zhao, J.H. Lithologic characteristics and Formation environments of mixed fine-grained sedimentary rocks in second member of Kongdian Formation in Cangdong Depression, Bohai Bay Basin. Earth Sci. China Univ. Geosci. 2020, 45, 3779–3796. [Google Scholar] [CrossRef]
- Loucks, R.G.; Ruppel, S.C. Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas. AAPG Bull. 2007, 91, 579–601. [Google Scholar] [CrossRef] [Green Version]
- Armstrong-Altrin, J.S. Evaluation of two multidimensional discrimination diagrams from beach and deep-sea sediments from the Gulf of Mexico and their application to Precambrian clastic sedimentary rocks. Int. Geol. Rev. 2015, 57, 1446–1461. [Google Scholar] [CrossRef]
- Babu, K. Geochemical characteristics of sandstones from cretaceous Garudamangalam Area of Ariyalur, Tamilnadu, India: Implications of provenance and tectonic setting. J. Earth Syst. Sci. 2017, 126, 45. [Google Scholar] [CrossRef] [Green Version]
- Liang, Q.S.; Tian, J.C.; Zhang, X.; Sun, X.; Yang, C.Y. Elemental geochemical characteristics of lower-middle Permian mudstones in Taikang Uplift, Southern North China Basin: Implications for the FOUR-PALEO conditions. Geosci. J. 2020, 24, 17–33. [Google Scholar] [CrossRef]
- Lin, X.W.; Zhang, Z.K.; Liu, X.D.; Chen, N.; Wu, T.; Zhang, Y.F.; Zhao, P.B.; Ma, X.Q.; Zhou, Z.Z. Geochemical characteristics of Late Triassic sandstones in the western part of Bayan Har Basin, Northern Tibetan Plateau, Western China: Constraints on provenance, source weathering, tectonic setting, and paleoenvironment. Geol. J. 2020, 55, 5275–5293. [Google Scholar] [CrossRef]
- Chen, X.L.; Ji, Y.L.; Yang, K.M. Sedimentary Characteristics Within Sequence Stratigraphic Framework of the Fourth Member of Xujiahe Formation in Middle Area of Western Sichuan Depression. J. Jilin Univ. Earth Sci. Ed. 2020, 50, 1615–1627. [Google Scholar] [CrossRef]
- Huang, J.L.; Zou, C.N.; Li, J.Z.; Dong, D.Z.; Wang, S.L.; Wang, S.Q.; Cheng, K.M. Shale gas generation and potential of the Lower Cambrian Qiongzhusi Formation in the Southern Sichuan Basin, China. Pet. Explor. Dev. 2012, 39, 75–81. [Google Scholar] [CrossRef]
- Li, S.F.; Wang, S.L.; Bi, J.X.; Zeng, Z.Q.; He, Y.M. Characteristics of Xujiahe Formation source rock and process of hydrocarbon-generation evolution in Puguang Area. Earth Sci. 2016, 41, 843–852. [Google Scholar]
- Yu, Y.; Lin, L.B.; Nan, H.L. Trace and rare-earth element characteristics of fine-grained sediments in the Upper Triassic Xujiahe Formation in the western Sichuan Basin, SW China: Implications for the provenance and depositional environment. Carbonates Evaporites 2021, 36, 1–13. [Google Scholar] [CrossRef]
- Xu, Z.H.; Hu, S.Y.; Wang, Z.C. Restoration of Paleoclimate and Its Geological Significance: As an Example from Upper Triassic Xujiahe Formation in Sichuan Basin. Acta Sedimentol. Sin. 2011, 29, 235–244. [Google Scholar]
- Chen, D.X.; Liu, Y.C.; Pang, X.Q. Reservoir characteristics and its control on gas bearing properties of the 5th Member of the Triassic Xujiahe Formation continental shale in the Sichuan Basin of China. Earth Sci. Front. 2016, 23, 174–184. [Google Scholar]
- Chen, Y.; Liu, S.G.; Li, Z.W.; Deng, B.; Zeng, X.L.; Lin, J. LA-ICP-MS detrital zircon U-Pb geochronology approaches to the sediment provenance of the Western Sichuan Foreland Basin and limited uplift of the Longmen Mountains during the early stage of Late Triassic. Geotecton. Et Metallog. 2011, 35, 315–323. [Google Scholar] [CrossRef]
- Dai, Z.C.; Zheng, R.C.; Ren, J.P.; Zhu, R.K. Provenance analysis of Xujiahe Formation of Upper Triassic in Sichuan Foreland Basin and its geology implications. J. Jilin. Univ. Earth Sci. Ed. 2014, 44, 1085–1096. [Google Scholar] [CrossRef]
- Shao, T.B.; Cheng, N.F.; Song, M.S. Provenance and tectonic-paleogeographic evolution: Constraints from detrital zircon U-Pb ages of Late Triassic-Early Jurassic deposits in the Northern Sichuan Basin, Central China. J. Asian Earth Sci. 2016, 127, 12–31. [Google Scholar] [CrossRef]
- Fu, Z.K.; Wang, X.L.; Song, R.Q.; Xu, W.; Zhuo, J.C.; Zhang, L.; Yi, J.D. The characteristics and main controlling factors of high-quality tight sandstone reservoir in the 3th Member of Xujiahe Formation in West Sichuan Depression. Geol. China. 2022, 49, 298–310. [Google Scholar]
- Pan, K. Characteristic and Controlling Effect on Natural Gas Accumulating of Xujiahe Formation Source Rock in Northeast Sichuan Basin. Sch. Geosci. China Univ. Pet. East China 2019. [Google Scholar] [CrossRef]
- Wu, X.Q.; Chen, Y.B.; Liu, Q.Y.; Wang, P.; Zeng, H.S.; Wang, Y.Q.; Hu, Y.; Li, H.J. Molecular geochemical characteristics of source rocks in the 5th Member of Upper Triassic Xujiahe Formation, Xinchang Gas Field, West Sichuan Depression. Earth Sci. China Univ. Geosci. 2019, 44, 859–871. [Google Scholar] [CrossRef]
- Xu, H.; Liu, M.J.; Zhang, Z.; Ye, S.J.; Yang, Y.T.; Wu, L.; Nan, H.L.; Tan, X.C.; Zeng, W.; Lian, C.B. Diagenesis and porosity evolution of the 3rd Member of Xujiahe Formation tight sandstone reservoir in Western Sichuan depression, Sichuan Basin. Nat. Gas. Geosci. 2022, 33, 344–357. [Google Scholar]
- Huang, L.S.; Yan, J.P.; Liu, M.J.; Zhang, Z.; Ye, S.J.; Zhang, F.; Zhong, G.H.; Wang, M.; Wang, J.; Geng, B. Diagenetic facies logging identification and application of deep tight sandstone gas reservoir: A case study of the Third member of Xujiahe Formation in Dayi area of western Sichuan depression. J. China Univ. Min. Technol. 2022, 51, 107–123. [Google Scholar] [CrossRef]
- Wang, L.H.; Zhao, H.; Wu, L.; Tian, J. Geochemical characteristics of hydrocarbon source rock of the member 3 of Xujiahe Formation in the south area of Langzhong, Sichuan, China. J. Chengdu Univ. Technol. Sci. Technol. Ed. 2020, 47, 169–177. [Google Scholar] [CrossRef]
- Ye, S.J.; Yang, Y.T.; Zhang, L. Characteristics and distribution of “sweet spot” reservoirs in the third and fifth members of Upper Triassic Xujiahe Formation, Western Sichuan Depression, Sichuan Basin. Oil Gas Geol. 2021, 42, 829–840, 862. [Google Scholar] [CrossRef]
- Chen, B.; Li, Y.; Wang, W.M.; Li, H.B.; Su, D.C.; Yan, Z.K. The Provenance and Tectonic Setting of Late Triassic Xujianhe Formation in the Longmenshan Foreland Basin, SW China. Acta Geol. Sin. 2016, 90, 857–872. [Google Scholar]
- Li, Y.; Allen, P.A.; Zhou, R.J.; Densmore, A.L.; Ellis, M.A. Mesozoic-Cenozoic Dynamics of Longmenshan Foreland Basin along the Eastern Margin of the Tibetan Plateau and its Coupled Relationship with Continnent Collision. Acta Geol. Sin. 2006, 80, 1101–1109. [Google Scholar] [CrossRef]
- Lin, L.B.; Chen, H.D.; Hu, X.Q.; Ji, X.T.; Jiang, P. Classification of tectonic sequence and basin evolution of the upper Triassic in the Sichuan basin. J. Stratigr. 2007, 04, 415–422. [Google Scholar] [CrossRef]
- Li, Z.W.; Chen, H.D.; Liu, S.G.; Hou, M.C.; Deng, B. Differential uplift driven by thrusting and its lateral variation along the Longmenshan belt, western Sichuan, China: Evidence from fission track thermochronology. Chin. J. Geol. 2010, 45, 944–968. [Google Scholar] [CrossRef]
- Chen, B. The sedimentary characteristics and formation mechanism of black shale in the Southern Longmenshan Foreland Basin in the Late Triassic. Chengdu Univ. Technol. Collage Energy 2019, 15, 80–90. [Google Scholar] [CrossRef]
- Chen, H.D.; Liu, L.; Lin, L.B.; Wang, X.L.; Wang, Z.W.; Yu, Y.; Zeng, J.; Li, P.W. Depositional responses of Xuijiahe Formation to the uplifting of Longmenshan during the Late Triassic, Western Sichuan Depression. Oil Gas Geol. 2021, 2021, 801–815. [Google Scholar] [CrossRef]
- Deng, B.; He, Y.; Huang, J.Q.; Luo, Q.; Yang, R.J.; Yu, H.; Zhang, J.; Liu, S.G. Analogue modeling insights to foreland basin growth: A case study on the Longmenshan Thrust Belt in Western Sichuan Basin. Oil Gas Geol. 2021, 42, 401–415. [Google Scholar]
- Xu, Z.Q.; Wang, Q.; Li, Z.H.; Li, H.Q.; Cai, Z.H.; Liang, F.H.; Dong, H.W.; Cao, H.; Chen, X.J. Indo-Asian Collision: Tectonic Transition from Compression to Strike Slip. Acta. Geol. Sin. 2016, 90, 1–23. [Google Scholar] [CrossRef]
- Golonka, J. Late Triassic and Early Jurassic Palaeogeography of the world. Palaeogeogr. Palaeoclim. Palaeoecol. 2007, 244, 297–307. [Google Scholar] [CrossRef]
- Ogg, J.G.; Ogg, G.M.; Gradstein, F.M. A Concise Geologic Time Scale; Elsevier: Amsterdam, The Netherlands, 2016; pp. 133–149. [Google Scholar]
- Yu, Y.; Lin, L.B.; Zhai, C.B.; Chen, H.D.; Wang, Y.N.; Li, Y.H.; Deng, X.L. Impacts of lithologic characteristics and diagenesis on reservoir quality of the 4th member of the Upper Triassic Xujiahe Formation tight gas sandstones in the western Sichuan Basin, southwest China. Mar. Pet. Geol. 2019, 107, 1–19. [Google Scholar] [CrossRef]
- Tan, C.; Yu, B.S.; Ruan, Z.; Hao, S.L.; Li, K.; Luo, Z.; Liu, R.D. High-Resolution Sequence Stratigraphy Research for Xujiahe Formation of the Upper Triassic Series in Sichuan Basin. Geoscience 2017, 31, 290–301. [Google Scholar] [CrossRef]
- Liu, S.G.; Li, Z.W.; Sun, W.; Deng, B.; Huang, W. Basic geological features of superimposed basin and hydrocarbon accumulation in Sichuan basin, China. Chin. J. Geol. 2011, 46, 233–257. [Google Scholar]
- Liu, S.G.; Deng, B.; Sun, W.; Zhong, Y.; Li, Z.W.; Li, J.X.; Jiang, L. Sichuan Basin: A superimposed basin formed under the main control of peripheral activities. Chin. J. Geol. 2018, 53, 308–326. [Google Scholar]
- Xu, Y.Y. New fossil materials from the Upper Triassic Xujiahe Formation in the Sichuan Basin and their palaeoenvironmental significances. Univ. Sci. Technol. China 2020, 1, 124. [Google Scholar] [CrossRef]
- Tian, N.; Wang, Y.D.; Philippe, M.; Li, Q.; Xie, X.P.; Jiang, Z.K. New record of fossil wood Xenoxylon from the Late Triassic in the Sichuan Basin, southern China and its paleoclimatic implications. Palaeogeogr. Palaeoclim. Palaeoecol. 2016, 464, 65–75. [Google Scholar] [CrossRef]
- Zhou, N.; Wang, Y.D.; Li, L.Q.; Zhang, X.Q. Diversity variation and tempo-spatial distributions of the Dipteridaceae ferns in the Mesozoic of China. Palaeoworld 2016, 25, 263–286. [Google Scholar] [CrossRef]
- Lu, N.; Wang, Y.D.; Popa, M.E.; Xie, X.P.; Li, L.Q.; Xi, S.N.; Xin, C.L.; Deng, C.T. Sedimentological and paleoecological aspects of the Norian-Rhaetian transition (Late Triassic) in the Xuanhan area of the Sichuan Basin, Southwest China. Palaeoworld 2019, 28, 334–345. [Google Scholar] [CrossRef]
- Chen, C.Y.; Wang, Q.X.; Chen, D.F. Genesis of Siderite in Miocene Marine Shale in Kuohsing Area, Taiwan. Acta Sedimentol. Sin. 2021, 40, 1691–1701. [Google Scholar] [CrossRef]
- Lu, Y.F.; Meng, W.B.; Feng, M.S.; Zhang, C.G.; Wang, J.; Wang, X.; Zhang, Y. Characteristics of the Middle Triassic Mung Beans Rock in the Mount Emei Area and their Implications for Sedimentary Environment. Bull. Mineral. Petrol. Geochem. 2020, 39, 626–636. [Google Scholar] [CrossRef]
- McLennan, S.M.; Taylor, S.R. Sedimentary rocks and crustal evolution: Tectonic setting and secular trends. J. Geol. 1991, 99, 1–21. [Google Scholar] [CrossRef]
- Bai, Y.Y.; Liu, Z.J.; Sun, P.C.; Rong, L.; Hu, X.F.; Zhao, H.Q.; Xu, Y.B. Rare earth and major element geochemistry of Eocene fne-grained sediments in oil shale- and coal-bearing layers of the Meihe Basin, Northeast China. J. Asian Earth Sci. 2015, 97, 8–101. [Google Scholar] [CrossRef]
- Dai, S.F.; Graham, I.T.; Ward, C.R. A review of anomalous rare earth elements and yttrium in Coal. Int. J. Coal Geol. 2016, 159, 82–95. [Google Scholar] [CrossRef]
- Shields, G.; Stille, P. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: An isotopic and REE study of Cambrian phosphorites. Chem. Geol. 2001, 175, 29–48. [Google Scholar] [CrossRef]
- Cao, T.T.; Xu, S.H.; Wang, Y. Characteristics of rare earth elements in Lower Cambrian Qiongzhusi Formation in Northeastern Sichuan Basin and its geological implications: A case study of Yangba section, Nanjiang. Petrol Geol. Exp. 2018, 40, 716–723. [Google Scholar] [CrossRef]
- Wang, Q.W.; Kan, Z.H.; Liu, X.H.; Liang, B.; Zhu, B. The Mesozoic Sporopollen Assemblage in the Sichuan Basin and Its Significance to Paleovegetation and Paleoclimate. Acta Geol. Sichuan. 2008, 2, 89–95. [Google Scholar]
- Liu, Z.S.; Li, L.Q.; Wang, Y.D. Late Triassic Spore-Pollen assemblage from the Xujiahe Formation in Hechuan of Chongqing, China. Acta Palaeontol. Sin. 2015, 54, 279–304. [Google Scholar] [CrossRef]
- Zhao, Z.Y.; Zhao, J.H.; Wang, H.J.; Liao, J.D.; Liu, C.M. Distribution characteristics and applications of trace elements in Junggar Basin. Nat. Gas Explor. Develop. 2007, 30, 30–33. [Google Scholar] [CrossRef]
- Meng, Q.T.; Liu, Z.J.; Bruch, A.A.; Liu, R.; Hu, F. Palaeoclimatic evolution during Eocene and its influence on oil shale mineralization, Fushun basin, China. Asian Earth Sci. 2012, 45, 95–105. [Google Scholar] [CrossRef]
- Cao, H.S.; Guo, W.; Shan, X.L.; Ma, L.; Sun, P.C. Paleolimnological environments and organic accumulation of the Nenjiang Formation in the Southeastern Songliao Basin, China. Oil Shale 2015, 32, 5–24. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wang, J.; Fu, X.; Zhan, W.; Armstrong-Altrin, J.S.; Yu, F.; Feng, X.L.; Song, C.Y.; Zeng, S.Q. Geochemistry of the Upper Triassic black mudstones in the Qiantang Basin, Tibet: Implications for paleoenvironment, provenance, and tectonic setting. J. Asian Earth Sci. 2018, 160, 118–135. [Google Scholar] [CrossRef]
- Zheng, Y.W.; Fu, D.L.; Tian, B.; Duan, Z.Q.; Zhang, B.; Luo, J.N.; Wang, Z.X. The mineral composition and geochemical characteristics of rare earth elements of Salt Lake shale in Qianjiang Depression and its geological significance. Mar. Orig. Petrol Geol. 2021, 26, 150–158. [Google Scholar] [CrossRef]
- Dymond, J.; Suess, E.; Lyle, M. Barium in deep-sea sediment: A geochemical proxy for paleo productivity. Paleoceanography 1992, 7, 163–181. [Google Scholar] [CrossRef] [Green Version]
- Algeo, J.T.; Kuwahara, K.; Sano, H.; Bates, S.; Lyons, T.; Elswick, E.; Hinnov, L.; Ellwood, B.; Moser, J.; Maynard, J.B. Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian-Triassic Pan thalassic Ocean. Paleogeogr. Paleoclim. Paleoecol. 2011, 308, 65–83. [Google Scholar] [CrossRef]
- Dong, T.; Harris, N.B.; Ayranci, K. Relative sea-level cycles and organic matter accumulation in shales of the Middle and Upper Devonian Horn River Group, northeastern British Columbia, Canada: Insights into sediment flux, redox conditions, and bio productivity. GSA Bull. 2018, 130, 859–880. [Google Scholar] [CrossRef]
- He, Q.; Gao, J.; Dong, T.; He, S.; Zhai, G.Y.; Zou, G.F. Elemental Geochemistry and Paleo-environmental Conditions of the Lower Cambrian Niutitang Shale in Western Hubei Province. Acta Sedimentol. Sin. 2021, 39, 686–703. [Google Scholar] [CrossRef]
- Zhai, G.Y.; Li, J.; Jiao, Y.; Wang, Y.F.; Liu, G.H.; Xu, Q.; Wang, C.; Chen, R.; Guo, X.B. Applications of chemo stratigraphy in a characterization of shale gas Sedimentary Microfacies and predictions of sweet spots-taking the Cambrian black shales in Western Hubei as an example. Mar. Pet. Geol. 2019, 109, 547–560. [Google Scholar] [CrossRef]
- Xu, J.; Pu, R.H.; Yang, L.; An, H. The Palaeosalinity Analysis of Carboniferous Mudstone, Tarim Basin. Acta Sedimentol. Sin. 2010, 28, 509–517. [Google Scholar] [CrossRef]
- Fan, Y.H.; Qu, H.J.; Wang, H.; Yang, X.C.; Feng, Y.W. The application of trace elements analysis to identifying sedimentary media environment: A case study of Late Triassic strata in the middle part of Western Ordos Basin. Geol. China 2012, 39, 382–389. [Google Scholar] [CrossRef]
- Stanistreet, I.G.; Boyle, J.F.; Stollhofen, H.; Deocampo, D.M.; Deino, A.; McHenry, L.J.; Toth, N.; Schick, K.; Njau, J.K. Palaeosalinity and palaeoclimatic geochemical proxies (elements Ti, Mg, Al) vary with Milankovitch cyclicity (1.3 to 2.0 Ma), OGCP cores, Palaeolake Olduvai, Tanzania. Palaeogeogr. Palaeoclim. Palaeoecol. 2020, 546, 109656. [Google Scholar] [CrossRef]
- He, Y.Y.; Zhao, G.T.; Zhao, L.; Long, X.J.; Qi, Q.; Xu, C.L. Geochemistry Characteristics and Palaeo-Environment Significance of Qixia Formation in Chaobei Area. Period. Ocean. Univ. China 2014, 44, 79–88. [Google Scholar] [CrossRef]
- Zhang, L.T. Geochemical characteristics and geological significance of organic-rich shale in Chongqing area. China Univ. Geosci. Sch. Ocean. Sci. 2019, 2, 33–52. [Google Scholar] [CrossRef]
- Dai, C.C.; Ren, J.P.; Rao, Q.; Zhang, H.S. Paleosalinity of the Xujiahe Formation in Central Sichuan Basin and Its Geological Significance. Geol. J. China Univ. 2018, 24, 390–400. [Google Scholar] [CrossRef]
- Lai, W. Geochemical characteristics of Xujiahe Formation mudstones in the northeast Sichuan and their geological significance. China Univ. Geosci. 2020, 8, 70. [Google Scholar] [CrossRef]
- McKirdy, D.M.; Hall, P.A.; Nedin, C.; Halverson, G.P.; Michaelsen, B.H.; Jago, J.B.; Gehling, J.G.; Jenkins, R.J.F. Paleoredox status and thermal alteration of the lower Cambrian (Series 2) Emu Bay Shale Lagerstatte, South Australia. Aust. J. Earth Sci. 2011, 58, 259–272. [Google Scholar] [CrossRef]
- Dill, H. Metallogenies of early Paleozoic graptolite shales from the Graefenthal Horst (Northern Bavaria, Federal Republic of Germany). Econ. Geol. 1986, 81, 889–903. [Google Scholar] [CrossRef]
- Tong, L.; He, Y.B.; Li, H. Sedimentary Environment of Late Ordovician Carbonates in the Fuping Area, Shaanxi Province. Bull. Mineral. Petrol. Geochem. 2019, 38, 748–758. [Google Scholar] [CrossRef]
- Algeo, T.J.; Tribovillard, N. Environmental analysis of palaeoceanographic systems based on molybdenum-uranium covariation. Chem. Geol. 2009, 268, 211–225. [Google Scholar] [CrossRef]
- Li, Y.F.; Shao, D.Y.; Lv, H.G.; Zhang, X.L.; Zhang, Y.W. A relationship between elemental geochemical characteristics and organic matter enrichment in marine shale of Wufeng Formation-Longmaxi Formation, Sichuan Basin. Acta Pet. Sin. 2015, 36, 1470–1483. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, M.F.; Yan, D.P.; Li, J.W. Depositional age, provenance, and tectonic setting of the Neoproterozoic Sibao Group, Southeastern Yangtze Block, South China. Precambrian Res. 2012, 192–195, 107–124. [Google Scholar] [CrossRef]
- Hou, Q.; Mou, C.L.; Wang, Q.Y.; Tan, Z.Y.; Ge, X.Y.; Wang, X.P. Geochemistry of sandstones from the Silurian Hanxia formation, North Qilian Belt, China: Implication for provenance, weathering and tectonic setting. Geochem. Int. 2018, 56, 362–377. [Google Scholar] [CrossRef]
- Li, J.; Tian, J.C.; Zhang, X.; Liang, Q.S.; Peng, M.H. Geochemical characteristics and the constraints on paleoenvironment, provenance, and tectonic setting of Precambrian Xifangshan Formation in the northwestern Tarim Basin, NW China. J. Petrol. Sci. Eng. 2022, 208, 109553. [Google Scholar] [CrossRef]
- Awasthi, N. Provenance and paleo-weathering of Tertiary accretionary prism-forearc sedimentary deposits of the Andaman Archipelago, India. J. Asian Earth Sci. 2017, 150, 45–62. [Google Scholar] [CrossRef]
- Oghenekome, M.E.; Chatterjee, T.K.; van Bever Donker, J.M.; Hammond, N.Q. Geochemistry and weathering history of the Balfour sandstone formation, Karoo basin, South Africa: Insight to provenance and tectonic setting. J. Afr. Earth Sci. 2018, 147, 623–632. [Google Scholar] [CrossRef]
- Sahariah, N.; Bhattacharyya, P. Geochemical characteristics of the Tura Formation in parts of the Upper Assam Basin: An implication on provenance, tectonic setting and source-Area Weathering. J. Appl. Geochem. 2019, 21, 1–14. [Google Scholar]
- Cullers, R.L.; Podkovyrov, V.N. Geochemistry of the Mesoproterozoic Lakhanda shales in Southeastern Yakutia, Russia: Implications for mineralogical and provenance control, and recycling. Precambrian Res. 2000, 104, 77–93. [Google Scholar] [CrossRef]
- Cullers, R.L.; Podkovyrov, V.N. The source and origin of terrigenous sedimentary rocks in the Mesoproterozoic Ui group, Southeastern Russia. Precambrian Res. 2002, 117, 157–183. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 1982, 299, 715–717. [Google Scholar] [CrossRef]
- Cox, R.; Lowe, D.R.; Cullers, R.L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochim. Et Cosmochim. Acta 1995, 59, 2919–2940. [Google Scholar] [CrossRef]
- Wu, F.Z.; Liu, D.N.; Zhao, F.H.; Zou, Y.; Xie, A.K.; Li, J.S. Sedimentary conditions and geotectonic setting implicated from the geochemistry of major and trace elements in pelite of the Sugetbrak Formation in Northwestern of Tarim Basin, Xinjiang, China. Bull. Mineral. Petrol. Geochem. 2021, 40, 478–490. [Google Scholar] [CrossRef]
- McLennan, S.M.; Hemming, S.; McDaniel, D.K.; Hanson, G.N. Geochemical Approaches to Sedimentation, Provenance, and Tectonics. In Processes Controlling the Composition of Clastic Sediments; Johnson, M.J., Basu, A., Eds.; Geological Society of America: Boulder, CO, USA, 1993; Volume 284, pp. 21–40. [Google Scholar] [CrossRef]
- Fedo, C.M.; Nesbitt, H.W.; Young, G.M. Unraveling the Effects of potassium metasomatism in Sedimentary Rocks and Paleosols, with implications for paleo weathering conditions and provenance. Geology 1995, 23, 921–924. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim. Et Cosmochim. Acta 1984, 48, 1523–1534. [Google Scholar] [CrossRef]
- Young, G.M.; Nesbitt, H.W. Paleoclimatology and provenance of the Glaciogenic Gowganda Formation (Paleoproterozoic), Ontario, Canada: A chemo strati graphic approach. GSA Bull. 1999, 111, 264–274. [Google Scholar] [CrossRef]
- Mou, C.L.; Ge, X.Y.; Yu, Q.; Men, X.; Liu, W.; He, J.L.; Liang, W. Palaeoclimatology and provenance of black shales from Wufeng-Longmaxi Formations in southwestern Sichuan Province: From geochemical records of Well Xindi-2. J. Palaeogeogr. Chin. Ed. 2019, 21, 835–854. [Google Scholar] [CrossRef]
- Xu, X.T.; Shao, L.Y. Limiting factors in utilization of chemical index of alteration of mudstones to quantify the degree of weathering in provenance. J. Palaeogeogr. Chin. Ed. 2018, 20, 515–522. [Google Scholar] [CrossRef]
No. | Index | Formula | References |
---|---|---|---|
1. | CIA: Chemical Index of Alteration | =Al2O3/(Al2O3 + Na2O + K2O + CaO*) × 100 | Nesbitt et al. [85] |
2. | ICV: Index of Compositional Variability | =(Fe2O3 + K2O + Na2O + CaO + MgO + MnO + TiO2)/Al2O3 | Cox et al. [86] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Tian, J.; Liang, Q.; Lin, X. Geological Characteristics and Paleoenvironmental Evolution of Fine-Grained Sediments in the Third Member of the Xujiahe Formation in the Western Sichuan Depression, SW China. Minerals 2023, 13, 510. https://doi.org/10.3390/min13040510
Lu Y, Tian J, Liang Q, Lin X. Geological Characteristics and Paleoenvironmental Evolution of Fine-Grained Sediments in the Third Member of the Xujiahe Formation in the Western Sichuan Depression, SW China. Minerals. 2023; 13(4):510. https://doi.org/10.3390/min13040510
Chicago/Turabian StyleLu, Yunfei, Jingchun Tian, Qingshao Liang, and Xiaobing Lin. 2023. "Geological Characteristics and Paleoenvironmental Evolution of Fine-Grained Sediments in the Third Member of the Xujiahe Formation in the Western Sichuan Depression, SW China" Minerals 13, no. 4: 510. https://doi.org/10.3390/min13040510