Impacts of Surface Deformation Induced by Underground Mining of Metal Mines on Above-Ground Structures: A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mechanical Experiment and Reconstruction Method
2.2. Laboratory Experiment-Determination of Reconstruction Parameters
2.3. Modeling and Calculation Condition Setup via Flac3D
3. Results and Discussion
3.1. Isondensity Map of Floor, Orebody, and Its Roof Joint Fissure Investigation
3.2. Displacement Contour Map
3.3. Monitoring Point Transplantation, Surface Deformation and Curvature Calculation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Behera, A.; Rawat, K. A brief review paper on mining subsidence and its geo-environmental impact. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Altun, A.O.; Yilmaz, I.; Yildirim, M. A short review on the surficial impacts of underground mining. Sci. Res. Essays 2010, 3, 206–3212. Available online: https://www.researchgate.net/publication/229044874 (accessed on 4 December 2021).
- Monika; Govil, H.; Guha, S. Underground mine deformation monitoring using Synthetic Aperture Radar technique: A case study of Rajgamar coal mine of Korba Chhattisgarh, India. J. Appl. Geophys. 2023, 209, 104899. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, X.; Yin, S.; Zhang, X.; Liu, P.; Ilankoon, I.M.S.K. Three-dimensional characterisation of pore networks and fluid flow in segregated heaps in the presence of crushed ore and agglomerates. Hydrometallurgy 2023, 219, 106082. [Google Scholar] [CrossRef]
- Cui, X.; Li, C.; Hu, Q.; Miao, X. Prediction of surface subsidence due to underground mining based on the zenith angle. Int. J. Rock. Mech. Min. 2013, 60, 246–252. [Google Scholar] [CrossRef]
- Wang, L.; Yin, S.; Deng, B.; Wu, W. Copper sulfides leaching assisted by acidic seawater-based media: Ionic strength and mechanism. Min. Eng. 2022, 175, 107286. [Google Scholar] [CrossRef]
- Li, W.; Gao, C.; Yin, X.; Li, J.; Qi, D.; Ren, J. A visco-elastic theoretical model for analysis of dynamic ground subsidence due to deep underground mining. Appl. Math. Model. 2015, 39, 5495–5506. [Google Scholar] [CrossRef]
- Marschalko, M.; Yilmaz, I.; Bednárik, M.; Kubečka, K. Influence of underground mining activities on the slope deformation genesis: Doubrava Vrchovec, Doubrava Ujala and Staric case studies from Czech Republic. Eng. Geol. 2012, 147, 37–51. [Google Scholar] [CrossRef]
- Marschalko, M.; Yilmaz, I.; Bednárik, M.; Kubečka, K. Deformation of slopes as a cause of underground mining activities: Three case studies from Ostrava–Karviná coal field (Czech Republic). Environ. Monit. Assess. 2012, 184, 6709–6733. [Google Scholar] [CrossRef] [PubMed]
- Pan, R.; Li, Y.; Wang, H.; Chen, J.; Xu, Y.; Yang, H.; Cao, S. A new model for the identification of subcritical surface subsidence in deep pillarless mining. Eng. Fail. Anal. 2021, 129, 105631. [Google Scholar] [CrossRef]
- Yang, D.; Qiu, H.; Ma, S.; Liu, Z.; Du, C.; Zhu, Y.; Cao, M. Slow surface subsidence and its impact on shallow loess landslides in a coal mining area. Catena 2022, 209, 105830. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Hu, Y.; Zhou, C.; Zhang, H. Numerical investigation on stratum and surface deformation in underground phosphorite mining under different mining methods. Front. Earth Sci. 2022, 10, 831856. [Google Scholar] [CrossRef]
- Xia, Y.; Wang, Y.; Du, S.; Liu, X.; Zhou, H. Integration of D-InSAR and GIS technology for identifying illegal underground mining in Yangquan District, Shanxi Province, China. Environ. Earth Sci. 2018, 77, 319. [Google Scholar] [CrossRef]
- Li, P.; Yan, L.; Yao, D. Study of tunnel damage caused by underground mining deformation: Calculation, analysis, and reinforcement. Adv. Civ. Eng. 2019, 2019, 4865161. [Google Scholar] [CrossRef]
- Zeng, Z.; Kou, X. Application of viscoelasticity to study the time-dependent surface subsidence caused by underground mining. Eng. Geol. 1992, 32, 279–284. [Google Scholar] [CrossRef]
- Zhang, Z.; Mei, G.; Xu, N. A geometrically and locally adaptive remeshing method for finite difference modeling of mining-induced surface subsidence. J. Rock. Mech. Geotech. 2022, 14, 219–231. [Google Scholar] [CrossRef]
- Sasaoka, T.; Takamoto, H.; Shimada, H.; Hamanaka, A.; Matsui, K. Surface subsidence due to underground mining operation under weak geological condition in Indonesia. J. Rock. Mech. Geotech. 2015, 7, 337–344. [Google Scholar] [CrossRef]
- Zhao, X.; Yu, W.; Zhao, Y.; Fu, S. Numerical Estimation of Shaft Stability and Surface Deformation Induced by Underground Mining Transferred from Open-Pit Mining in Jinfeng Gold Mine. Minerals 2023, 13, 196. [Google Scholar] [CrossRef]
- Brücker, C.; Preuße, A. The future of underground spatial planning and the resulting potential risks from the point of view of mining subsidence engineering. Int. J. Min. Sci. Technol. 2020, 30, 93–98. [Google Scholar] [CrossRef]
- Wang, L.; Cheng, L.; Yin, S.; Zhang, X. Multiphase slurry flow regimes and its pipeline transportation of underground backfill in metal mine: Mini review. Constr. Build. Mater. 2023, 402, 133014. [Google Scholar] [CrossRef]
Lithology | Density (g/cm3) | Tensile Strength (MPa) | Compressive Strength (MPa) | Elasticity Modulus (GPa) | Poisson Ratio | Cohesion (MPa) | Internal Friction Angle (°) |
---|---|---|---|---|---|---|---|
Gneiss | 2.79 | 4.12 | 81.00 | 50.8 | 0.26 | 10.48 | 44.76 |
Marble | 2.72 | 5.57 | 99.67 | 67.7 | 0.32 | 8.04 | 44.00 |
Orebody | 3.32 | 4.32 | 111.83 | 54.2 | 0.28 | 11.68 | 46.61 |
No. | Actual Age Period (Day) | Sample Specifications (mm) | Compression Area (mm2) | Single Block Load (kN) | Single Block Strength (MPa) | Representative Strength Value (MPa) |
---|---|---|---|---|---|---|
1 | 28 | 70.7 × 70.7 × 70.7 | 5000 | 10.5 | 2.8 | 3.1 |
2 | 28 | 5000 | 11.3 | 3.1 | ||
3 | 28 | 5000 | 12.4 | 3.3 | ||
1 | 28 | 5000 | 12.3 | 3.3 | 3.7 | |
2 | 28 | 5000 | 13.6 | 3.7 | ||
3 | 28 | 5000 | 14.7 | 4.0 |
Lithology | Density (g/cm3) | Tensile Strength (MPa) | Compressive Strength (MPa) | Elasticity Modulus (GPa) | Poisson Ratio | Cohesion (MPa) | Internal Friction Angle (°) |
---|---|---|---|---|---|---|---|
Gneiss | 2.79 | 2.47 | 48.60 | 5.08 | 0.26 | 1.98 | 38.05 |
Marble | 2.72 | 3.34 | 59.80 | 6.77 | 0.32 | 3.39 | 37.40 |
Orebody | 3.32 | 2.59 | 67.10 | 5.42 | 0.28 | 4.11 | 39.62 |
Weathered zone | 2.41 | 16.56 | 0.41 | 1.62 | 0.28 | 1.08 | 31.05 |
Quaternary system | 1.96 | — | — | 0.05 | 0.35 | 0.05 | 24 |
Fill object | 1.90 | 0.25 | 1.68 | 0.9 | 0.30 | 0.67 | 29 |
Node Numbering | Monitoring Point Coordinates | Vertical Displacement (mm) | Horizontal Displacement (mm) | ||
---|---|---|---|---|---|
X | Y | Z | |||
Y1 | 403,100 | 96,750 | 31.85 | 51.86 | 7.51 |
Y2 | 403,100 | 96,810 | 31.86 | 45.23 | 5.46 |
Y3 | 403,100 | 96,870 | 31.86 | 35.72 | 2.78 |
X1 | 403,200 | 96,630 | 29.10 | 51.21 | 9.71 |
X2 | 403,250 | 96,630 | 26.35 | 40.26 | 8.07 |
X3 | 403,300 | 96,630 | 28.49 | 32.55 | 6.43 |
Node No. | Horizontal Spacing (m) | Incline i (mm/m) | Curvature K (10−3/m) | Horizontal Distortion ε (mm/m) |
---|---|---|---|---|
Y1 | 60.0 | 0.11 | 0.00083 | 0.034 |
Y2 | ||||
Y2 | 60.0 | 0.16 | 0.045 | |
Y3 | ||||
X1 | 50.0 | 0.22 | 0.0014 | 0.033 |
X2 | ||||
X3 | 50.0 | 0.15 | 0.033 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, P.; Li, H.; Wang, L.; Yin, S. Impacts of Surface Deformation Induced by Underground Mining of Metal Mines on Above-Ground Structures: A Case Study. Minerals 2023, 13, 1510. https://doi.org/10.3390/min13121510
Liu P, Li H, Wang L, Yin S. Impacts of Surface Deformation Induced by Underground Mining of Metal Mines on Above-Ground Structures: A Case Study. Minerals. 2023; 13(12):1510. https://doi.org/10.3390/min13121510
Chicago/Turabian StyleLiu, Peizheng, Hui Li, Leiming Wang, and Shenghua Yin. 2023. "Impacts of Surface Deformation Induced by Underground Mining of Metal Mines on Above-Ground Structures: A Case Study" Minerals 13, no. 12: 1510. https://doi.org/10.3390/min13121510
APA StyleLiu, P., Li, H., Wang, L., & Yin, S. (2023). Impacts of Surface Deformation Induced by Underground Mining of Metal Mines on Above-Ground Structures: A Case Study. Minerals, 13(12), 1510. https://doi.org/10.3390/min13121510