Pore-Type Characterization and Reservoir Zonation of the Sarvak Formation in the Abadan Plain, Zagros Basin, Iran
Abstract
:1. Introduction
2. Geological Setting and Stratigraphy
3. Materials and Methods
- (1)
- The Winland plot and calculated R35 values (Equation (1));
- (2)
- The stratigraphic modified Lorenz plot (SMLP)
4. Results
4.1. Sedimentology
4.2. Petrographic Pore Types
4.2.1. Primary Pore Types
4.2.2. Secondary Pore Types
4.3. Scanning Electron Microscopy (SEM)
4.3.1. Primary Micropores
4.3.2. Secondary Micropores
4.4. Pore Size Classes
4.5. Mercury Injection Capillary Pressure (MICP)
4.6. Reservoir Zonation
- Reservoir zones, which are characterized by high flow and storage capacities (zones 4, 6, 7, and 8; Figure 13);
- Barrier zones, which encompass zones with very low storage and flow capacities (zones 1, 3, 5, 9, and 13; Figure 13);
- Speed zones, which are exemplified by zone 12 and exhibit a higher percentage of flow capacity relative to storage capacity (Figure 13);
- Baffle zones, represented by zones 2 and 10, which induce turbulence in fluid movement and possess significantly greater storage capacity compared to flow capacity (Figure 13).
5. Discussion
5.1. Pore Type’s Paragenesis
- -
- Depositional pore-types
- -
- Diagenetic pore-types
5.2. Micropores
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lucia, F.J. Carbonate Reservoir Characterization: An Integrated Approach; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 978-3-540-72742-2. [Google Scholar]
- Moore, C.H.; Wade, W.J. Carbonate Reservoirs. In Porosity and Diagenesis in a Sequence Stratigraphic Framework, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Mehrabi, H.; Bagherpour, B. Scale, origin, and predictability of reservoir heterogeneities in shallow-marine carbonate sequences: A case from Cretaceous of Zagros, Iran. J. Pet. Sci. Eng. 2022, 214, 110571. [Google Scholar] [CrossRef]
- Tavoosi Iraj, P.; Mehrabi, H.; Rahimpour-Bonab, H.; Ranjbar-Karami, R. Quantitative analysis of geological attributes for reservoir heterogeneity assessment in carbonate sequences; A case from Permian–Triassic reservoirs of the Persian Gulf. J. Pet. Sci. Eng. 2021, 200, 108356. [Google Scholar] [CrossRef]
- Foroshani, J.S.; Mehrabi, H.; Rahimpour-Bonab, H. Reservoir heterogeneity of Upper Cretaceous Sarvak Formation in the Dezful Embayment, SW Iran: Implications of flow unit distribution, electrofacies analysis and geological-based reservoir zonation. J. Afr. Earth Sci. 2023, 200, 104882. [Google Scholar] [CrossRef]
- Chehrazi, A.; Rezaee, R.; Rahimpour, H. Pore-facies as a tool for incorporation of small-scale dynamic information in integrated reservoir studies. J. Geophys. Eng. 2011, 8, 202–224. [Google Scholar] [CrossRef]
- Hollis, C.; Lawrence, D.A.; Deville de Perière, M.; Al Darmaki, F. Controls on porosity preservation within a Jurassic oolitic reservoir complex, UAE. Mar. Pet. Geol. 2017, 88, 888–906. [Google Scholar] [CrossRef]
- Assadi, A.; Honarmand, J.; Moallemi, S.A.; Abdollahie-Fard, I. An integrated approach for identification and characterization of Palaeo-exposure surfaces in the Upper Sarvak Formation of Abadan Plain, SW Iran. J. Afr. Earth Sci. 2018, 94, 1432–1450. [Google Scholar] [CrossRef]
- Mahaman Salifou, I.A.; Zhang, H.; Boukari, I.O.; Harouna, M.; Cai, Z. New vuggy porosity models-based interpretation methodology for reliable pore system characterization, Ordovician carbonate reservoirs in Tahe oilfield, North Tarim Basin. J. Pet. Sci. Eng. 2021, 196, 1077–1100. [Google Scholar] [CrossRef]
- Tavakoli, V. Microscopic heterogeneity. In Carbonate Reservoir Heterogeneity; Springer: Berlin/Heidelberg, Germany, 2020; pp. 17–51. [Google Scholar]
- Mehrabi, H.; Bagherpour, B.; Honarmand, J. Reservoir quality and micrite textures of microporous intervals in the Upper Cretaceous successions in the Zagros area, SW Iran. J. Pet. Sci. Eng. 2020, 192, 107292. [Google Scholar] [CrossRef]
- Mehrabi, H.; Bahrehvar, M.; Rahimpour-Bonab, H. Porosity evolution in sequence stratigraphic framework: A case from cretaceous carbonate reservoir in the Persian Gulf, southern Iran. J. Pet. Sci. Eng. 2021, 196, 107699. [Google Scholar] [CrossRef]
- Ranjbar-Karami, R.; Tavoosi Iraj, P.; Mehrabi, H. Integrated rock typing and pore facies analyses in a heterogeneous carbonate for saturation height modelling, A case study from Fahliyan Formation, the Persian Gulf. J. Pet. Explor. Prod. 2021, 11, 1577–1595. [Google Scholar] [CrossRef]
- Mehrabi, H. Deposition, diagenesis, and geochemistry of Upper Cretaceous carbonates (Sarvak Formation) in the Zagros Basin and the Persian Gulf, Iran. Minerals 2023, 13, 1078. [Google Scholar] [CrossRef]
- Abdollahie-Fard, I.; Braathen, A.; Mokhtari, M.; Alavi, S.A. Interaction of the Zagros Fold-Thrust Belt and the Arabian-Type, Deep-Seated Folds in the Abadan Plain and the Dezful Embayment, SW Iran. Pet. Geosci. 2006, 12, 347–362. [Google Scholar] [CrossRef]
- Abdollahie-Fard, I.; Sherkati, S.; McClay, K.; Haq, B.U. Tectono-sedimentary evolution of the Iranian Zagros in a global context and its impact on petroleum habitats. In Developments in Structural Geology and Tectonics; Elsevier: Amsterdam, The Netherlands, 2019; Volume 3, pp. 17–28. [Google Scholar]
- Assadi, A.; Honarmand, J.; Moallemi, S.A.; Abdollahie-Fard, I. Depositional environments and sequence stratigraphy of the Sarvak Formation in an oil field in the Abadan Plain, SW Iran. Facies 2016, 62, 1–22. [Google Scholar] [CrossRef]
- Razin, P.; Taati, F.; van Buchem, F.S.P. Sequence stratigraphy of Cenomanian-Turonian carbonate platform margins (Sarvak Formation) in the High Zagros, SW Iran: An outcrop reference model for the Arabian Plate. Geol. Soc. Spec. Publ. 2010, 329, 187–218. [Google Scholar] [CrossRef]
- Hajikazemi, E.; Al-Aasm, I.S.; Coniglio, M. Subaerial exposure and meteoric diagenesis of the Cenomanian-Turonian Upper Sarvak Formation, southwestern Iran. Geol. Soc. Spec. Publ. 2010, 330, 253–272. [Google Scholar] [CrossRef]
- Hajikazemi, E.; Al-Aasm, I.S.; Coniglio, M. Chemostratigraphy of Cenomanian-Turonian Carbonates of the Sarvak Formation, Southern Iran. J. Pet. Geol. 2012, 35, 187–205. [Google Scholar] [CrossRef]
- Navidtalab, A.; Rahimpour-Bonab, H.; Huck, S.; Heimhofer, U. Elemental geochemistry and strontium-isotope stratigraphy of Cenomanian to Santonian neritic carbonates in the Zagros Basin, Iran. Sediment. Geol. 2016, 346, 35–48. [Google Scholar] [CrossRef]
- Navidtalab, A.; Heimhofer, U.; Huck, S.; Omidvar, M.; Rahimpour-Bonab, H.; Aharipour, R.; Shakeri, A. Biochemostratigraphy of an Upper Albian–Turonian Succession from the Southeastern Neo-Tethys Margin, SW Iran. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 533, 109255. [Google Scholar] [CrossRef]
- Mehrabi, H.; Navidtalab, A.; Enayati, A.; Bagherpour, B. Age, duration, and geochemical signatures of paleo-exposure events in Cenomanian–Santonian Sequences (Sarvak and Ilam Formations) in SW Iran: Insights from carbon and strontium isotopes chemostratigraphy. Sediment. Geol. 2022, 434, 106136. [Google Scholar] [CrossRef]
- Mehrabi, H.; Navidtalab, A.; Rahimpour-Bonab, H.; Heimhofer, U. Geochemical expression of sequence stratigraphic surfaces: A case from Upper Cretaceous shallow-water carbonates of southeastern Neo-Tethys Margin, SW Iran. Cretac. Res. 2022, 140, 105329. [Google Scholar] [CrossRef]
- Alsharhan, A.S. Petroleum systems in the Middle East. In Tectonic Evolution of the Oman Mountains; Rollinson, H.R., Searle, M.P., Abbasi, A.I., Al-Lazki, A.I., Al Kindi, M.H., Eds.; Geological Society, London, Special Publications: London, UK, 2014; Volume 392, pp. 361–408. [Google Scholar]
- Hollis, C. Diagenetic controls on reservoir properties of carbonate successions within the Albian-Turonian of the Arabian Plate. Pet. Geosci. 2011, 17, 223–241. [Google Scholar] [CrossRef]
- Huber, B.T.; Norris, R.D.; MacLeod, K.G. Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology 2002, 30, 123–126. [Google Scholar] [CrossRef]
- Sharland, P.R.; Archer, D.M.; Casey, R.B.; Davies, S.H.; Hall, A.P.; Heward, A.D.; Horbury, A.D.; Simmons, M.D. Arabian Plate Sequence Stratigraphy; GeoArabia Special Publication 2; Gulf Petrolink: Manama, Bahrain, 2001; Volume 2, p. 371. [Google Scholar]
- Scotese, C.R. An atlas of phanerozoic paleogeographic maps: The seas come in and the seas go out. Annu. Rev. Earth Planet. Sci. 2021, 49, 679–728. [Google Scholar] [CrossRef]
- Keller, G.; Adatte, T.; Berner, Z.; Chellai, E.H.; Stueben, D. Oceanic events and biotic effects of the Cenomanian-Turonian anoxic event, Tarfaya Basin, Morocco. Cretac. Res. 2008, 29, 976–994. [Google Scholar] [CrossRef]
- Immenhauser, A.; Creusen, A.; Esteban, M.; Vonhof, H.B. Recognition and interpretation of polygenic discontinuity surfaces in the middle Cretaceous Shu’aiba, Nahr Umr, and Natih Formations of Northern Oman. GeoArabia 2000, 5, 299–322. [Google Scholar] [CrossRef]
- Mehrabi, H.; Yahyaei, E.; Navidtalab, A.; Rahimpour-Bonab, H.; Abbasi, R.; Omidvar, M.; Assadi, A.; Honarmand, J. Depositional and diagenetic controls on reservoir properties along the shallow-marine carbonates of the Sarvak Formation, Zagros Basin: Petrographic, petrophysical, and geochemical evidence. Sediment. Geol. 2023, 454, 106457. [Google Scholar] [CrossRef]
- Mohseni, H.; Zeybaram Javanmard, R. New data on sequence stratigraphy of the Sarvak Formation in Malekshahi city, (Ilam province) Zagros basin, Iran. Mar. Pet. Geol. 2020, 112, 104035. [Google Scholar] [CrossRef]
- Taghavi, A.A.; Mørk, A.; Emadi, M.A. Sequence stratigraphically controlled diagenesis governs reservoir quality in the carbonate Dehluran Field, southwest Iran. Pet. Geosci. 2006, 12, 115–126. [Google Scholar] [CrossRef]
- Hajikazemi, E.; Al-Aasm, I.S.; Coniglio, M. Diagenetic history and reservoir properties of the Cenomanian-Turonian carbonates in southwestern Iran and the Persian Gulf. Mar. Pet. Geol. 2017, 88, 845–857. [Google Scholar] [CrossRef]
- van Buchem, F.S.P.; Simmons, M.D.; Droste, H.J.; Davies, R.B. Late Aptian to Turonian stratigraphy of the eastern Arabian Plate—Depositional sequences and lithostratigraphic nomenclature. Pet. Geosci. 2011, 17, 211–222. [Google Scholar] [CrossRef]
- Motiei, H. Stratigraphy of Zagros; Geological Survey of Iran Publication: Tehran, Iran, 1993; p. 536. [Google Scholar]
- Kiani, A.; Saberi, M.H.; ZareNezhad, B.; Mehmandosti, E.A. Reservoir zonation in the framework of sequence stratigraphy: A case study from Sarvak Formation, Abadan Plain, SW Iran. J. Pet. Sci. Eng. 2022, 208, 109560. [Google Scholar] [CrossRef]
- Dunham, R.J. Classification of carbonate rocks according to depositional textures. In Classification of Carbonate Rocks; Ham, W.E., Ed.; AAPG: Tulsa, OK, USA, 1962; pp. 108–121. [Google Scholar]
- Embry, A.F.; Klovan, J.E. A Late Devonian Reef Tract on Northeastern Banks Island, NWT. Bull. Can. Pet. Geol. 1971, 19, 730–781. [Google Scholar]
- Flügel, E. Microfacies of Carbonate Rocks, Analysis, Interpretation and Application; Springer: Berlin/Heidelberg, Germany, 2010; 976p. [Google Scholar]
- Choquette, P.W.; Pray, L.C. Geologic nomenclature and classification of proposity in sedimentary carbonates. Am. Assoc. Pet. Geol. Bull. 1970, 54, 207–250. [Google Scholar]
- Ahr, W.M. Geology of Carbonate Reservoirs: The Identification, Description, and Characterization of Hydrocarbon Reservoirs in Carbonate Rocks; John Wiley & Sons: Hoboken, NJ, USA, 2008; ISBN 9780470164914. [Google Scholar]
- Kolodzie, S. Analysis of pore throat size and use of the waxman-smits equation to determine ooip in spindle field, colorado. In Proceedings of the SPE Annual Technical Conference and Exhibition, Dallas, TX, USA, 21 September 1980. [Google Scholar] [CrossRef]
- Porras, J.C.; Campos, O. Rock Typing: A Key Approach for Petrophysical Characterization and Definition of Flow Units, Santa Barbara Field, Eastern Venezuela Basin. In Proceedings of the SPE Latin American and Caribbean Petroleum Engineering Conference, Buenos Aires, Argentina, 25–28 March 2001; OnePetro: Richardson, TX, USA, 2001. [Google Scholar]
- Gunter, G.W.; Finneran, J.M.; Hartmann, D.J.; Miller, J.D. Early Determination of Reservoir Flow Units Using an Integrated Petrophysical Method. In Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 5–8 October 1997. [Google Scholar] [CrossRef]
- Skalinski, M.; Kenter, J.A.M. Carbonate petrophysical rock typing: Integrating geological attributes and petrophysical properties while linking with dynamic behaviour. Geol. Soc. Spec. Publ. 2015, 406, 229–259. [Google Scholar] [CrossRef]
- Mehrabi, H.; Ranjbar-Karami, R.; Roshani-Nejad, M. Reservoir rock typing and zonation in sequence stratigraphic framework of the Cretaceous Dariyan Formation, Persian Gulf. Carbonates Evaporites 2019, 34, 1833–1853. [Google Scholar] [CrossRef]
- Gomes, J.S.; Ribeiro, M.T.; Strohmenger, C.J.; Negahban, S.; Kalam, M.Z. Carbonate Reservoir Rock Typing—The Link between Geology and SCAL. Society of Petroleum Engineers 118284, manuscript. In Proceedings of the Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, United Arab Emirates, 3–6 November 2008. [Google Scholar]
- Coalson, E.B.; Hartmann, D.J. Rock Types, Pore Types, and Hydrocarbon Exploration: ABSTRACT. Am. Assoc. Pet. Geol. Bull. 1985, 69, 845. [Google Scholar] [CrossRef]
- Asquith, G.B. Microporosity in the O’Hara Oolite Zone of the Mississippian Ste. Genevieve Limestone, Hopkins County, Kentucky, and Its Implications for Formation Evaluation. Carbonates Evaporites 1986, 1, 7–12. [Google Scholar] [CrossRef]
- Tucker, M.E.; Wright, V.P.; Dickson, J.A.D. Carbonate Sedimentology; Blackwell Science Ltd.: Hoboken, NJ, USA, 2009; ISBN 9780632014729. [Google Scholar]
- Steuber, T.; Löser, H. Species richness and abundance patterns of Tethyan Cretaceous rudist bivalves (mollusca: Hippuritacea) in the central-eastern Mediterranean and Middle East, analysed from a palaeontological database. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2000, 162, 75–104. [Google Scholar] [CrossRef]
- Esrafili-Dizaji, B.; Rahimpour-Bonab, H.; Mehrabi, H.; Afshin, S.; Kiani Harchegani, F.; Shahverdi, N. Characterization of rudist-dominated units as potential reservoirs in the Middle Cretaceous Sarvak Formation, SW Iran. Facies 2015, 61, 14. [Google Scholar] [CrossRef]
- Yu, Y.; Sun, L.; Song, X.; Guo, R.; Gao, X.; Lin, M.; Yi, L.; Han, H.; Li, F.; Liu, H. Sedimentary diagenesis of rudist shoal and its control on reservoirs: A case study of Cretaceous Mishrif Formation, H Oilfield, Iraq. Pet. Explor. Dev. 2018, 45, 1075–1087. [Google Scholar] [CrossRef]
- Tavakoli, V. Permeability’s response to dolomitization, clues from Permian–Triassic reservoirs of the central Persian Gulf. Mar. Pet. Geol. 2021, 123, 104723. [Google Scholar] [CrossRef]
- Omidpour, A.; Mahboubi, A.; Moussavi-Harami, R.; Rahimpour-Bonab, H. Effects of dolomitization on porosity—Permeability distribution in depositional sequences and its effects on reservoir quality, A case from Asmari Formation, SW Iran. J. Pet. Sci. Eng. 2022, 208, 109348. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Zheng, B.; Sheng, Q.; Wei, H.; Shen, L.; Xiong, S.; Mansour, A. Age assignment of dolomite in palaeo-reservoirsof the Qiangtang Basin: New evidence from palaeontology and carbonate in situ U-Pb dating. Mar. Pet. Geol. 2023, 158, 106545. [Google Scholar] [CrossRef]
- Ezati, M.; Azizzadeh, M.; Riahi, M.A.; Fattahpour, V.; Honarmand, J. Characterization of micro-fractures in carbonate Sarvak reservoir, using petrophysical and geological data, SW Iran. J. Pet. Sci. Eng. 2018, 170, 675–695. [Google Scholar] [CrossRef]
- Volery, C.; Davaud, E.; Foubert, A.; Caline, B. Shallow-marine microporous carbonate reservoir rocks in the Middle East: Relationship with seawater Mg/Ca ratio and eustatic sea level. J. Pet. Geol. 2009, 32, 313–326. [Google Scholar] [CrossRef]
- Tavakoli, V.; Jamalian, A. Microporosity evolution in Iranian reservoirs, Dalan and Dariyan Formations, the central Persian Gulf. J. Nat. Gas Sci. Eng. 2018, 52, 155–165. [Google Scholar] [CrossRef]
- Lambert, L.; Durlet, C.; Loreau, J.P.; Marnier, G. Burial dissolution of micrite in Middle East carbonate reservoirs (Jurassic-Cretaceous): Keys for recognition and timing. Mar. Pet. Geol. 2006, 23, 79–92. [Google Scholar] [CrossRef]
Facies Code | Microfacies Name | Lithology | Allochems (Skeletal and Non-Skeletal) | Deposition Setting |
---|---|---|---|---|
SMF-1 | Planktonic Foraminifera microbioclast Wackestone | (Dolomitic) Limestone | planktonic foraminifera, oligosteginids, echinoderm debris, fine peloids | Outer Ramp |
SMF-2 | Foraminifera (B&P) bioclast Wackestone to Packstone | (Dolomitic) Limestone | planktonic and small benthic foraminifera, echinoderms, bivalves, rudists, red algae, and bryozoan fragments, and oligosteginids, fine peloids | Middle Ramp |
SMF-3 | Benthic foraminifera bioclast (echinoids) Wackestone | (Dolomitic) Limestone | whole fossils of echinoderms, bivalves, red algae and bryozoans, foraminifera (both benthic and planktonic), peloids, intraclasts | Middle Ramp |
SMF-4 | Bioclastic Grainstone | Limestone | rudist debris, echinoderms, and bivalves | Inner Ramp—Shoal (Seaward) |
SMF-5 | Bioclast benthic foraminifera Packstone to Grainstone | Limestone | rudist debris (well sorted and rounded), benthic foraminifera, green algae intraclasts | Inner Ramp—Shoal (Central) |
SMF-6 | Benthic foraminifera peloidal Packstone | Limestone | peloids and benthic foraminifers, shell fragments (largely rudists and bivalve debris), and intraclasts | Inner Ramp—Shoal (Leeward) |
SMF-7 | Bioclast (rudist and coral) Rudstone/Floatstone | Limestone | rudist debris and green to red algae fragments, corals, echinoderms, and benthic foraminifera | Inner Ramp—Reef talus |
SMF-8 | Bioturbated benthic foraminifera peloidal Mudstone to Wackestone | (Dolomitic) Limestone | benthic foraminifera and peloids, rudist and green algae fragments | Inner Ramp—Lagoon |
Pore-Size Class (PSC) | R35 Range (μm) | Porosity Range (%) | Permeability Range (mD) | Dominant Facies Types | Dominant Pore Types |
---|---|---|---|---|---|
PSC-1 | <0.2 | 2.2 to 16.9 | 0.001 to 0.14 | SMF1 to 3 | Micropores |
PSC-2 | 0.2 to 0.5 | 1.5 to 28.8 | 0.01 to 1.48 | SMF1 to 3, SMF8 | Micropores, Fractures |
PSC-3 | 0.5 to 1 | 2.3 to 28.2 | 0.1 to 6.76 | SMF3 to 6 | Interparticle, Moldic |
PSC-4 | 1 to 2 | 1.7 to 32 | 0.18 to 19.2 | SMF4 to 7 | Interparticle, Intraparticle, Moldic, Vuggy |
PSC-5 | 2 to 5 | 21.6 to 32 | 28.7 to 101 | SMF5, 7, 8 | Vuggy, Moldic, Interparticle |
PSC-6 | 5 to 10 | 2.5 to 31.5 | 9.5 to 321 | SMF5, 7, 8 | Fractures, Vuggy, Moldic, Interparticle |
PSC-7 | >10 | 1.3 to 30 | 0.18 to 19.2 | SMF7, 8 | Vuggy, Moldic |
Zone | Thickness (m) | KH (%) | PhiH (%) | RPS (Avg) | Poro (Avg) | Perm (Avg) | R35 (Avg) | Pore Size Class | PSC | SMF | Pore Type | Diagenesis | C |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Z-1 | 3.38 | 0.03 | 0.29 | 22.3 | 3.7 | 0.71 | 0.08 | Nano | 1 | SMF2 | Microporosity | Compaction, Cementation | Barrier |
Z-2 | 17.5 | 1.01 | 5.6 | 21.3 | 12.4 | 2.62 | 0.21 | Micro | 1, 3 | SMF2,3 | Vuggy Intercrystalline | Compaction, Cementation, Neomorphism | Baffle |
Z-3 | 8.24 | 0.6 | 2.39 | 46 | 8.64 | 2.67 | 0.32 | Micro | 4 | SMF2,8 | Microporosity | Compaction, Cementation | Barrier |
Z-4 | 16.4 | 9.38 | 11.4 | 127 | 20.8 | 24 | 0.39 | Micro | 5 | SMF7 | Vuggy, Moldic Intraskeletal Interparticle | Dissolution, Fracture | Reservoir |
Z-5 | 1.97 | 1.86 | 0.91 | 271 | 12.6 | 33 | 0.44 | Micro | 4 | SMF8 | Microporosity | Compaction, Cementation | Barrier |
Z-6 | 24.3 | 21.3 | 15.3 | 214 | 16.1 | 37.4 | 0.49 | Micro | 6 | SMF7 | Interparticle Intraparticle Vuggy, Moldic | Dissolution, Fracture | Reservoir |
Z-7 | 23.2 | 20.7 | 9.19 | 318 | 14.6 | 33.6 | 0.59 | Meso | 4, 5 | SMF7,8 | Intercrystalline Interparticle Microporosity | Dissolution, Fracture | Reservoir |
Z-8 | 32.7 | 15.3 | 9.19 | 178 | 11.3 | 18.1 | 0.74 | Meso | 3 | SMF7,8 | Microporosity Intercrystalline | Dissolution, Fracture | Reservoir |
Z-9 | 23.8 | 4.01 | 8.06 | 61.1 | 12.5 | 7.22 | 0.97 | Meso | 1, 3 | SMF3 | Microporosity Intercrystalline | Compaction, Cementation | Barrier |
Z-10 | 43.9 | 8.86 | 18.8 | 53.9 | 16.7 | 8.16 | 1.58 | Meso | 3 | SMF2 | Microporosity Intercrystalline | Compaction, Cementation, Neomorphism | Baffle |
Z-11 | 16.0 | 4.94 | 7.82 | 77.2 | 19.3 | 17.1 | 2.72 | Macro | 4 | SMF4–6 | Interparticle | Dissolution, Fracture | Reservoir |
Z-12 | 19.3 | 10.3 | 6.36 | 210 | 13.1 | 30.3 | 4.73 | Macro | 4 | SMF8 | Intercrystalline Microporosity Interparticle | Dolomitization and Fracturing | Speed |
Z-13 | 14.2 | 1.55 | 4.57 | 64.7 | 11.1 | 4.89 | 12.3 | Mega | 3 | SMF8 | Intercrystalline Microporosity | Compaction, Cementation | Barrier |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehrabi, H.; Karami, F.; Fakhar-Shahreza, N.; Honarmand, J. Pore-Type Characterization and Reservoir Zonation of the Sarvak Formation in the Abadan Plain, Zagros Basin, Iran. Minerals 2023, 13, 1464. https://doi.org/10.3390/min13121464
Mehrabi H, Karami F, Fakhar-Shahreza N, Honarmand J. Pore-Type Characterization and Reservoir Zonation of the Sarvak Formation in the Abadan Plain, Zagros Basin, Iran. Minerals. 2023; 13(12):1464. https://doi.org/10.3390/min13121464
Chicago/Turabian StyleMehrabi, Hamzeh, Fatemeh Karami, Nafiseh Fakhar-Shahreza, and Javad Honarmand. 2023. "Pore-Type Characterization and Reservoir Zonation of the Sarvak Formation in the Abadan Plain, Zagros Basin, Iran" Minerals 13, no. 12: 1464. https://doi.org/10.3390/min13121464
APA StyleMehrabi, H., Karami, F., Fakhar-Shahreza, N., & Honarmand, J. (2023). Pore-Type Characterization and Reservoir Zonation of the Sarvak Formation in the Abadan Plain, Zagros Basin, Iran. Minerals, 13(12), 1464. https://doi.org/10.3390/min13121464