Marker Minerals in Volcanics and Xenoliths—An Approach to Categorize the Inferred Magmatic Rocks Underneath the Present-Day Volcanic Landscape of Tenerife, Spain (NW African Rare Mineral Province)
Abstract
:1. Introduction
- It is to emphasize that the plethora of rare minerals, which are often mocked as a playground for rockhounds and mineral hunters, warrant more attention in applied economic geology, particularly those parts devoted to those commodities classified as critical ones.
- It is to discuss a type of mineral exploration joining mineralogy, lithology and applied sedimentology, geomorphology and to encourage applied geoscientists to leave the beaten tracks of routine exploration of mineral deposits.
2. Mineral Deposits of Critical Elements with Special Reference to Carbonatites, Pegmatites and Alkaline Magmatic Host Rocks as Potential Host Environments
2.1. Beryllium—Mineral Deposits and Their Origin
2.2. Zirconium and Hafnium—Mineral Deposits and Their Origin
2.3. Fluorine—Mineral Deposits and Their Origin
2.4. Lithium—Mineral Deposits and Their Origin
2.5. Niobium-Tantalum—Mineral Deposits and Their Origin
2.6. Rare Earth Elements (REE)—Mineral Deposits and Their Origin
3. The Geological Setting of the Isle of Tenerife, Spain
4. Geomorphology and Lithology of Rare Mineral Host Rocks as an Exploration Tool
4.1. From the Common to the Unconventional Exploration
4.2. Landforms Hosting Critical Elements and Rare Minerals
4.3. From the Host Rock Lithology to the Mineral Texture
4.4. Minerals and Mineral Assemblages
- Na-, K-, Ca-, Fe-, and Mg-bearing silicates (mainly tecto-silicates);
- Ca- and Fe-bearing non-tectosilicates (“calcsilicate minerals”);
- Complex potentially economic Be-Zr-F-Ti-Nb-REE(+Y)-Li-Cs-W-Sn minerals;
- Complex Mn-Fe-Pb-U-Th-As-Sb-V-Cr-S-B-Cu-Zn-Mo-Au minerals.
5. Discussion
5.1. Marker Minerals—From the Country Rock to the Rare Mineral Deposit
5.1.1. Petrology of Peralkaline Host Rocks and the Facies of Hydrothermal Alteration—Type I Mineral Assemblage
5.1.2. Calcsilicate Minerals and Skarnoid Alteration—Type II Mineral Assemblage
5.1.3. The Cs-W-Sn-Bearing Be-Zr-F-Ti-Nb-REE(+Y)-Li-Cs-W-Sn Ore Minerals and Their Origin—Type III Mineral Assemblages
- Nb-F-Ti-REE-Zr assemblage;
- Be-Nb-Ti-Zr-REE-F assemblage;
- Be-Li-Cs-F-Ti-Nb-Zr-REE(+Y) assemblage;
- W-Sn-Be-Li-Cs-Ti-Zr-REE(+Y)-F-Nb assemblage.
5.1.4. Accompanying Mn-Fe-Pb-U-Th-As-Sb-V-Cr-S-B-Cu-Zn-Mo-Au Minerals and Their Origin—Type IV Mineral Assemblages
- Mn-Fe assemblage;
- V-Pb-Sb-As-S assemblage;
- Th-U mineral assemblage;
- Cu-Mo-Zn-Au assemblage.
5.2. The Evolution of the Inferred Hidden Rare Element and Rare Mineral Occurrences on the Isle of Tenerife and the New REE Discovery at La Gomera
5.2.1. Stage 1—The Initial Rifting Stage
5.2.2. Stage 2—The Syenite–pegmatite Intrusion
5.2.3. Stage 3—Alkali-Magmatite-Carbonatite Skarn
5.2.4. Stage 4—Alkali-Magmatite-Carbonatite-Related Metasomatic-Hydrothermal Mineralizations
5.2.5. Stage 5—Hydrothermal Mineralization and Zeolitization
5.2.6. Stage 6—Hypogene–Supergene Mineralization and Kaolinization
5.2.7. Stage 7—Auto-Hydrothermal Mineralization in Volcanic and Volcaniclastic Rocks
5.3. From rare Minerals in Volcanics and Xenoliths to the Critical Element Deposits—A Conditio Sine Qua Non for the Use of Modern Technologies
5.3.1. From Classical Chemical to Mineralogical Exploration
5.3.2. Critical Elements—Low Grade–Low Quantity and High Quality–High Impact
5.4. Synopsis and Exploration Using an Advanced Level of Terrain Analysis
6. Conclusions
- Critical elements, in this case history of Tenerife, such as beryllium, fluorine, lithium, niobium (tantalum), zirconium (hafnium), and rare earth elements are decisive in many high-tech products to find out if a device can economically be operated or not. Their availability is a conditio sine qua non for the final products (Figure 1 and Figure 15).
- For discovering new deposits of these critical elements, unconventional quantitative mineralogical mapping has proved to assist in delineating lithological intrusive/subvolcanic bodies, varied alteration zones and potential ore deposits using xenoliths (Figure 5, Figure 6, Figure 7, Figure 12 and Figure 13).
- Two types of critical element concentrations, carbonatites and pegmatites bound to agpaitic intrusive rocks, are genetically closely interlocked with each other in rift zones and associated with hotspots and, hence, these govern the evolution of volcanic island archipelagos near passive continental margins (Figure 12g,h).
- There are multiple mineralizing processes: rifting, differentiation, contact-metasomatic/hydrothermal mineralization, hydrothermal remobilization and zeolitization hypogene–supergene transitional kaolinization, and auto-hydrothermal–topomineralic mineralization (Figure 8, Figure 11, Figure 12a–f and Figure 13, Table 6).
- The prerequisites for this holistic approach in economic geology are a low maturity of the landscapes in the target area, Cenozoic (Late Cretaceous?) ages of endogenous and exogenous processes amenable to sedimentological, geomorphological, volcano-tectonic and quantitative mineralogical investigations (Figure 3 and Figure 5, Table 5).
- The volcanic island mineralogical mapping of Tenerife, Spain, is not primarily designed as a pre-well-site study. It is a reference study area for minero-stratigraphic inter-island correlation (land–land) and land–sea when investigating the seabed and seamounts around volcanic archipelagos worldwide in search of critical elements (Figure 2 and Figure 12h, part a–c of Table 4).
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wagner, C.; Mokhtari Deloule, E.; Chabaux, F. Carbonatite and Alkaline Magmatism in Taourirt (Morocco): Petrological, Geochemical and Sr–Nd Isotope Characteristics. J. Petrol. 2003, 44, 937–965. [Google Scholar] [CrossRef]
- Casillas, R.; Demény, A.; Nagy, G.; Ahijado, A.; Fernández, C. Metacarbonatites in the Basal Complex of Fuerteventura (Canary Islands). The role of fluid/rock interactions during contact metamorphism and anatexis. Lithos 2011, 125, 503–520. [Google Scholar]
- Bea, F.; Montero, P.; Haissen, F.; El Archi, A. 2.46 Ga kalsilite and nepheline syenites from the Awsard pluton, Reguibat Rise of the West African Craton, Morocco. Generation of extremely K-rich magmas at the Archean–Proterozoic transition. Precambrian Res. 2013, 224, 242–254. [Google Scholar] [CrossRef]
- Benaouda, R.; Kraemer, D.; Sitnikova, M.; Goldmann, S.; Schwarz-Schampera, U.; Errami, A.; Mouttaqi, A.; Bau, M. Discovery of high-grade REE-Nb-Fe mineralization associated with calciocarbonatite in south Morocco. Ore Geol. Rev. 2020, 124, 103631. [Google Scholar] [CrossRef]
- Benaouda, R.; Kraemer, D.; Bejtullahu, S.; Mouttaqi, A.; Bau, M. Occurrence of high-grade LREE allanite-pegmatites and calcite carbonatite dykes in the Ediacaran complex of Aghracha, Oulad Dlim Massif (South Morocco). J. Afr. Earth Sci. 2022, 196, 104727. [Google Scholar] [CrossRef]
- Haissen, F.; Montero, P.; Cambeses, A.; Bea, F.; Molina, J.F.; Mouttaqi, A.; Gonzalez- Lodeiro, F.; Sadki, O.; Errami, A. Petrogenesis of Derraman peralkaline granite (Oulad Dlim massif, west African Craton margin, Morocco): New constraints from zircon Hf and O isotopic compositions. Compt. Rendus Geosci. 2018, 350, 236–244. [Google Scholar] [CrossRef]
- Maham, E.S.; Ouali, H.; Jébrak, M.; Ouabid, M. 2021 Contribution to the study of carbonatite complex of the Richat Dome (Mauritania). In Proceedings of the EGU General Assembly 2021, Online, 19–30 April 2021; p. EGU21-12995. [Google Scholar] [CrossRef]
- Carr, D.D.; Herz, N. Concise Encyclopedia of Mineral Resources; Pergamon Press: Oxford, UK, 1989; p. 426. [Google Scholar]
- Dill, H.G. The “chessboard” classification scheme of mineral deposits: Mineralogy and geology from aluminum to zirconium. Earth Sci. Rev. 2010, 100, 1–420. [Google Scholar] [CrossRef]
- Dill, H.G.; Buzatu, A.; Balaban, S.-I.; Rüsenberg, K.A. A mineralogical-geomorphological terrain analysis of hotspot volcanic islands—The missing link between carbonatite- and pegmatite Nb-F-Zr-Li-Be-bearing REE deposits and new tools for their exploration (Canary Islands Archipelago, Spain). Ore Geol. Rev. 2023. in print. [Google Scholar]
- Monster, M.W.L.; van Galen, J.; Kuiper, K.F.; Dekkers, M.J.; de Groot, L.V. A late-Quaternary full-vector geomagnetic record from El Golfo section, El Hierro, Canary Islands. Geophys. J. Int. 2018, 215, 1701–1717. [Google Scholar] [CrossRef]
- Paris, R.; Guillou, H.; Carracedo, J.C.; Pérez-Torrado, F.J. Volcanic and morphological evolution of La Gomera (Canary Islands), based on new K–Ar ages and magnetic stratigraphy: Implications for oceanic island evolution. J. Geol. Soc. Lond. 2005, 162, 501–512. [Google Scholar] [CrossRef]
- Sagan, M.; Heaman, L.M.; Pearson, D.G.; Luo, Y.; Stern, R.A. Removal of continental lithosphere beneath the Canary archipelago revealed from a U/Pb age and Hf/O isotope study of modern sand detrital zircons. Lithos 2020, 362–363, 105448. [Google Scholar] [CrossRef]
- Dill, H.G. Pegmatites and aplites: Their genetic and applied ore geology. Ore Geol. Rev. 2015, 69, 417–561. [Google Scholar] [CrossRef]
- Sørensen, H. Beryllium Minerals in a Pegmatite in the Nepheline Syenites of Ilimaussaq, South West Greenland; Report, 21st Session, Norden, Part 17; International Geological Congress: Buffalo, NY, USA, 1960; pp. 31–35. [Google Scholar]
- Novák, M.; Černý, P.; Uher, P. Extreme variation and apparent reversal of Nb-Ta fractionation in columbite-group minerals from the Scheibengraben beryl-columbite granite pegmatite, Marsikov, Czech Republic. Eur. J. Mineral. 2003, 15, 565–574. [Google Scholar] [CrossRef]
- Groat, L.A.; Giuliani, G.; Marshall, D.D.; Turner, D. Emerald deposits and occurrences: A review. Ore Geol. Rev. 2008, 34, 87–112. [Google Scholar] [CrossRef]
- Uher, P.; Bačík, P.; Ozdín D Števko, M. Beryl in granitic pegmatites of the Western Carpathians (Slovakia): Compositional variations, mineral inclusions and breakdown products. Acta Mineral. Petrographica. Abstr. Ser. 2012, 7, 144. [Google Scholar]
- Lyalina, L.M.; Selivanova, E.A.; Zozulya, D.R.; Ivanyuk, G.Y. Beryllium Mineralogy of the Kola Peninsula, Russia—A Review. Minerals 2018, 9, 42. [Google Scholar] [CrossRef]
- Barton, M.D.; Young, S. Non-pegmatitic Deposits of Beryllium: Mineralogy, geology, phase equilibria and origin. Rev. Mineral. Geochem. 2002, 50, 591–692. [Google Scholar] [CrossRef]
- Dill, H.G. The Hagendorf-Pleystein Pegmatite Province, SE Germany: The Center of Pegmatites in an Ensialic Orogen (Modern Approaches in Solid Earth Sciences); Springer: Dortrecht, The Netherlands; Berlin/Heidelberg, Germany; London, UK; New York, NY, USA, 2015; p. 343. ISBN 978-3-319-18805-8. [Google Scholar]
- Lindsey, D.A. Beryllium deposits at Spor Mountain, Utah. In Proceedings of the 35th forum on the geology of industrial mineral—The International West Forum 1999, Salt Lake City, UT, USA, 1 January 1999; Bon, R.L., Riordan, R.F., Tripp, B.T., Krukowski, S.T., Eds.; Utah Geological Survey Miscellaneous Publication 01-2: Salt Lake, UT, USA, 2001; pp. 73–77. [Google Scholar]
- Ludwig, K.R.; Lindsey, D.A.; Zielinski, R.A.; Simmons, K.R. U-Pb ages of uraniferous opals and implications for the history of beryllium, fluorine, and uranium mineralization at Spor Mountain. Utah Earth Planet. Sci. Lett. 1980, 46, 221–232. [Google Scholar] [CrossRef]
- Hou, B.; Keeling, J.; Frakes, L.; Alley, N.; Luo, X. Evolution and exploration of palaeochannels/palaeoshorelines, South Australia: A decade on-MRD-12 Fluvial palaeo-systems. In Evolution and Mineral Deposits; International Geological Congress: Oslo, Norway, 2008. [Google Scholar]
- Benisek, A.; Finger, F. Factors controlling the development of prism faces in granite zircons: A microprobe study. Contrib. Mineral. Petrol. 1993, 114, 441–451. [Google Scholar] [CrossRef]
- Bingen, B.; Davis, W.J.; Austrheim, H. Zircon U–Pb geochronology in the Bergenarc eclogites and their Proterozoic protoliths, and implications for the pre- Scandian evolution of the Caledonides in western Norway. Geol. Soc. Am. Bull. 2001, 113, 640–649. [Google Scholar] [CrossRef]
- Dill, H.G.; Weber, B.; Klosa, D. Crystal morphology and mineral chemistry of monazite–zircon mineral assemblages in continental placer deposits (SE Germany): Ore guide and provenance marker. J. Geochem. Explor. 2012, 112, 322–346. [Google Scholar] [CrossRef]
- Gübelin, E.; Erni, F. Gemstones, Symbols of Beauty and Power; Geoscience Press: Tucson, AZ, USA, 2000; p. 240. [Google Scholar]
- Salvi, S.; Williams-Jones, A.E. Zirconosilicate phase relations in the Strange Lake (Lac Brisson) pluton, Quebec–Labrador, Canada. Am. Mineral. 1995, 80, 1031–1040. [Google Scholar] [CrossRef]
- Kerr, A.; Rafuse, H. Rare-earth element (REE) geochemistry of the Strange Lake deposits: Implications for resource estimation and metallogenic models. Nfld. Labrador Dep. Nat. Resour. Curr. Res. 2012, 39–60. [Google Scholar]
- Gysi, A.P.; Williams-Jones, A.E. Hydrothermal mobilization of pegmatite-hosted REE and Zr at Strange Lake, Canada: A reaction path model. Geochim. Cosmochim. Acta 2013, 122, 324–352. [Google Scholar] [CrossRef]
- Doroshkevich, A.; Sharygin, V.V.; Belousova, E.A.; Izbrodin, I.A.; Prokopyev, I.R. Zircon from the Chuktukon alkaline ultramafic carbonatite complex (Chadobets uplift, Siberian craton) as evidence of source heterogeneity. Lithos 2021, 382–383, 105957. [Google Scholar] [CrossRef]
- Tichomirowa, M.; Whitehouse, M.J.; Gerdes, A.; Götze, J.; Schulz, B.; Belyatsky, B.V. Different zircon recrystallization types in carbonatites caused by magma mixing: Evidence from U–Pb dating, trace element and isotope composition (Hf and O) of zircons from two Precambrian carbonatites from Fennoscandia. Chem. Geol. 2013, 353, 173–198. [Google Scholar] [CrossRef]
- Jago, B.C.; Gittins, J. The role of fluorine in carbonatite magma evolution. Nature 1991, 349, 56–58. [Google Scholar] [CrossRef]
- Alvin, M.P.; Dunphy, J.M.; Groves, D.I. Nature and genesis of a carbonatite-associated fluorite deposit at Speewah, East Kimberley region, Western Australia. Mineral. Petrol. 2004, 80, 127–153. [Google Scholar] [CrossRef]
- Samson, I.M.; Wood, S.A.; Finucane, K. Fluid inclusion characteristics and genesis of the fluorite–parisite mineralization in the Snowbird Deposit, Montana. Econ. Geol. 2004, 99, 1727–1744. [Google Scholar] [CrossRef]
- Kontak, D.J.; Ansdell, K.; Dostal, J.; Halter, W.; Martin, R.; Williams-Jones, A.E. The nature and origin of pegmatites in a fluorine-rich leucogranite, East Kemptville Tin Deposit, Nova Scotia, Canada. Trans. R. Soc. Edinb. Earth Sci. 2001, 92, 173–200. [Google Scholar] [CrossRef]
- Bastos Neto, A.C.; Pereira, V.P.; Ronchi, L.H.; Lima, E.F.; Frantz, J.C. The world-class Sn, Nb, Ta, F (Y, Ree, Li) deposit and the massive cryolite associated with the albite-enriched facies of the Madeira A-type granite, Pitinga Mining District, Amazonas State, Brazil. Can. Mineral. 2009, 47, 1329–1357. [Google Scholar] [CrossRef]
- Dixon, C.J. Atlas of Economic Mineral Deposits; Chapman and Hall: London, UK, 1979. [Google Scholar]
- Novák, M.; Cerný, P. Distinctive compositional trends in columbite–tantalite from two segments of the lepidolite pegmatite at Rozná, western Moravia, Czech Republic. J. Czech Geol. Soc. 2001, 46, 1–8. [Google Scholar]
- Cooper, A.F.; Paterson, L.A.; Reid, D.L. Lithium in carbonatites-consequence of an enriched mantle source? Mineral. Mag. 1995, 59, 401–408. [Google Scholar] [CrossRef]
- Dias, M.B.; Wilson, W.E. Famous mineral localities: The Alto Ligonha pegmatites (Mozambique). Mineral. Rec. 2000, 31, 459–497. [Google Scholar]
- Selway, J.B.; Breaks, F.W.; Tindle, A.G. A review of rare-element (Li–Cs–Ta) pegmatite exploration techniques for the Superior Province, Canada, and large worldwide tantalum deposits. Explor. Min. Geol. 2005, 14, 1–30. [Google Scholar] [CrossRef]
- Neiva, A. Feldspars, micas and columbite–tantalite minerals from the zoned granitic lepidolite-subtype pegmatite at Namivo, Alto Ligonha, Mozambique. Eur. J. Mineral. 2013, 25, 967–985. [Google Scholar] [CrossRef]
- Chakhmouradian, A.R.; Sitnikova, M.A. Radioactive minerals in murmanite–lorenzenite-tinguaite at Mt. Selsurt, Lovozero complex, Kola Peninsula. Eur. J. Mineral. 1999, 11, 871–878. [Google Scholar] [CrossRef]
- Chakhmouradian, A.R.; Mitchell, R.H. New data on pyrochlore- and perovskite-group minerals from the Lovozero alkaline complex, Russia. Eur. J. Mineral. 2002, 14, 821–836. [Google Scholar] [CrossRef]
- Woolley, A.R.; Church, A.A. Extrusive carbonatites: A brief review. Lithos 2005, 85, 1–14. [Google Scholar] [CrossRef]
- Kanazawa, Y.; Kamitani, M. Rare earth minerals and resources in the world. J. Alloys Compd. 2006, 408–412, 1339–1343. [Google Scholar] [CrossRef]
- Hong-Rui, F.; Yi-Han, X.; Kai-Yi, W.; Wilde, S.A. Methane-rich fluid inclusions in skarn near the giant REE–Nb–Fe deposit at Bayan Obo, Northern China. Ore Geol. Rev. 2004, 25, 259–283. [Google Scholar]
- Ni, P.; Zhou, J.; Chi, Z.; Pan, J.-Y.; Li, S.-N.; Ding, J.-Y.; Han, L. Carbonatite dyke and related REE mineralization in the Bayan Obo REE ore field, North China: Evidence from geochemistry, C-O isotopes and Rb-Sr dating. J. Geochem. Explor. 2020, 215, 106560. [Google Scholar] [CrossRef]
- She, H.-D.; Fan, H.-R.; Yang, K.-F.; Li, X.-C.; Wang, Q.-W.; Zhang, L.-F.; Liu, S.; Li, X.-H.; Dai, Z.-H. In situ trace elements of magnetite in the Bayan Obo REE-Nb-Fe deposit: Implications for the genesis of Mesoproterozoic iron mineralization. Ore Geol. Rev. 2021, 139, 104574. [Google Scholar] [CrossRef]
- Tian, P.; Xiaoyong, Y. Wanming Yuan Formation and preservation of the Bayan Obo Fe-REE-Nb deposit, Inner Mongolia: Insights from evidences of petrogenesis, geochemistry and apatite fission track dating. Solid Earth Sci. 2021, 6, 228–245. [Google Scholar] [CrossRef]
- Tian, P.; Xiaoyong, Y.; Yulun, X.; Wanming, Y.; Zifei, H. In Situ Monazite U-Pb Ages in Thin Sections from the Giant Bayan Obo Fe–REE–Nb Deposit, Inner Mongolia: Implications for Formation Sequences. Minerals 2022, 12, 1237. [Google Scholar] [CrossRef]
- Wei, C.W.; Xu, C.; Deng, M.; Song, W.L.; Shi, A.; Li, Z.; Fan, C.; Kuang, G. Origin of metasomatic fluids in the Bayan Obo rare-earth-element deposit. Ore Geol. Rev. 2022, 141, 104654. [Google Scholar] [CrossRef]
- Philpotts, J.; Tatsumoto, M.; Li, X.; Wang, K. Some Nd and Sr isotopic systematics for the REE-enriched deposit at Bayan Obo, China. Chem. Geol. 1991, 90, 177–188. [Google Scholar] [CrossRef]
- Conrad, J.E.; McKee, E.H. 40Ar/30Ar dating of vein amphibole from the Bayan Obo iron-rare earth element-niobium deposit, Inner Mongolia, China; constraints on mineralization and deposition of the Bayan Obo Group. Econ. Geol. 1992, 87, 185–188. [Google Scholar] [CrossRef]
- Wang, J.; Tatsumoto, M.; Li, X.; Premo, W.R.; Chao, E.C.T. A precise 232Th-208Pb chronology of fine grained monazite: Age of the Bayan Obo REE-Fe-Nb ore deposit, China. Geochim. Et Cosmochim. Acta 1994, 58, 3155–3169. [Google Scholar] [CrossRef]
- Walter, T.R.; Schmincke, H.-U. Rifting, recurrent landsliding and Miocene structural reorganization on NW-Tenerife (Canary Islands). Int. J. Earth Sci. 2002, 91, 615–628. [Google Scholar] [CrossRef]
- Acosta, J.; Uchupi, E.; Muñoz, A.; Herranz, P.; Palomo, C.; Ballesteros, M.; ZEE Working Group. Geologic evolution of the Canarian Islands of Lanzarote, Fuerteventura, Gran Canaria and La Gomera and comparison of landslides at these islands with those at Tenerife, La Palma and El Hierro. In Geophysics of the Canary Islands; Clift, P., Acosta, J., Eds.; Springer: Dordrecht, The Netherlands, 2005. [Google Scholar]
- Pittari, A.; Cas, R.A.F.; Edgar, C.J.; Nichols, H.J.; Wolff, A.J.; Marti, J. The influence of paleotopography on facies architecture and pyroclastic flow processes of a lithic-rich ignimbrite in a high gradient setting: The Abrigo ignimbrite, Tenerife, Canary Islands. J. Volcanol. Geotherm. Res. 2006, 152, 253–315. [Google Scholar] [CrossRef]
- Clarke, H.; Troll, V.R.; Carracedo, J.C. Phreatomagmatic to Strombolian eruptive activity of basaltic cinder cones: Montaña Los Erales, Tenerife, Canary Islands. J. Volcanol. Geotherm. Res. 2009, 180, 225–245. [Google Scholar] [CrossRef]
- Dávila-Harris, P. Explosive ocean-island volcanism: The 1.8–0.7 Ma explosive eruption history of Cañadas volcano recorded by the pyroclastic successions around Adeje and Abona, southern Tenerife, Canary Islands. Ph.D. Thesis, University of Leicester, Leicester, UK, 2009; p. 311, unpublished. [Google Scholar]
- Ancochea, E.; Hernán, F.; Huertas, M.J.; Brändle, J.L.; Herrera, R. A new chronostratigraphical and evolutionary model for La Gomera: Implications for the overall evolution of the Canarian Archipelago. J. Volcanol. Geotherm. Res. 2006, 157, 271–293. [Google Scholar] [CrossRef]
- Von Suchodoletz, H.; Blanchard, H.; Hilgers, A.; Radtke, U.; Fuchs, M.; Dietze, M.; Zöller, L. TL and ESR dating of Middle Pleistocene lava flows on Lanzarote island, Canary Islands (Spain). Quat. Geochronol. 2012, 9, 54–64. [Google Scholar] [CrossRef]
- Cas, R.A.F.; Wolff, J.A.; Martí, J.; Olin, P.H.; Edgar, C.J.; Pittari, A.; Simmons, J.M. Tenerife, a complex end member of basaltic oceanic island volcanoes, with explosive polygenetic phonolitic calderas, and phonolitic-basaltic stratovolcanoes. Earth Sci. Rev. 2022, 230, 103990. [Google Scholar] [CrossRef]
- Samonova, O.A.; Aseyeva, E.N.; Kasimov, N.S. Metals in soils of erosional systems in forest zone in the central part of European Russia. J. Geochem. Exploration. 2014, 144, 247–259. [Google Scholar] [CrossRef]
- Novoselov, A.A.; Hodson, M.E.; Tapia-Gatica, J.; Dovletyarova, E.A.; Yáñez, C.; Neaman, A. The effect of rock lithology on the background concentrations of trace elements in alluvial soils: Implications for environmental regulation. Appl. Geochem. 2022, 146, 105440. [Google Scholar] [CrossRef]
- Qiao, Y.; Wang, X.; Han, Z.; Tian, M.; Wang, Q.; Wu, H.; Liu, F. Geodetector based identification of influencing factors on spatial distribution patterns of heavy metals in soil: A case in the upper reaches of the Yangtze River. China Appl. Geochem. 2022, 146, 105459. [Google Scholar] [CrossRef]
- Gent, M.R.; Alvarez, M.M.; Iglesias, J.J.M.G.; Álvarez, J.T. Offshore occurrences of heavy-mineral placers, Northwest Galicia, Spain. Mar. Georesources Geotechnol. 2005, 23, 39–59. [Google Scholar] [CrossRef]
- Jacob, J.; Ward, J.D.; Bluck, B.J.; Scholz, R.A.; Frimmel, H.E. Some observations on diamondiferous bedrock gully trap sites on Late Cainozoic, marine-cut platforms of the Sperrgebiet, Namibia. Ore Geol. Rev. 2006, 28, 493–506. [Google Scholar] [CrossRef]
- Dill, H.G. Grain morphology of heavy minerals from marine and continental placer deposits, with special reference to Fe–Ti oxides. Sediment. Geol. 2007, 198, 1–27. [Google Scholar] [CrossRef]
- Dill, H.G. Geogene and anthropogenic controls on the mineralogy and geochemistry of modern alluvial-(fluvial) gold placer deposits in man-made landscapes in France, Switzerland and Germany. J. Geochem. Explor. 2008, 99, 29–60. [Google Scholar] [CrossRef]
- Dill, H.G.; Ludwig, R.-R. Geomorphological—Sedimentological studies of landform types and modern placer deposits in the savanna (Southern Malawi). Ore Geol. Rev. 2008, 33, 411–434. [Google Scholar] [CrossRef]
- Philander, C.; Rozendaal, A. Geology of the Cenozoic Namakwa Sands Heavy Mineral Deposit, West Coast of South Africa: A World-Class Resource of Titanium and Zircon. Econ. Geol. 2015, 110, 1577–1623. [Google Scholar] [CrossRef]
- Bern, C.R.; Shah, A.K.; Benzel, W.M. Lowers HA The distribution composition of REE-bearing minerals in placers of the Atlantic Gulf coastal plains, U.S.A. J. Geochem. Explor. 2016, 162, 50–61. [Google Scholar] [CrossRef]
- Hou, B.; Keeling, J.; Van Gosen, B.S. Geological and exploration models of beach placer deposits, integrated from case-studies of Southern Australia. Ore Geol. Rev. 2017, 80, 437–459. [Google Scholar] [CrossRef]
- Instituto Geográfico Nacional. 2022. Available online: https://igme.maps.arcgis.com/home/webmap/viewer.html?webmap=44df600f5c6241b59edb596f54388ae4 (accessed on 3 August 2022).
- Knighton, D.A. Fluvial Forms and Processes: New Perspective; Routledge: Arnold, London, 1998; p. 400. [Google Scholar]
- Bird, E.C.F. Coastal Geomorphology: An Introduction; John Wiley & Sons: Chichester, UK, 2008; p. 411. [Google Scholar]
- Nichols, G. Sedimentology and Stratigraphy; Wiley-Blackwell: Hoboken, NJ, USA, 2009; p. 432. [Google Scholar]
- Lancaster, N.; Baas, A.C.W.; Sherman, D.J. Aeolian geomorphology: Introduction. In Treatise on Geomorphology; Aeolian Geomorphology, Shroder, J., Lancaster, N., Sherman, D.J., Baas, A.C.W., Eds.; Academic Press: San Diego, CA, USA, 2013; Volume 11, pp. 1–6. [Google Scholar]
- Barudžija, U.; Velic, J.; Malvic, T.; Trenc, N.; Matovinovic´ Božinovic´, N. Morphometric characteristics, shapes and provenance of Holocene pebbles from the Sava River gravels (Zagreb, Croatia). Geosciences 2020, 10, 92. [Google Scholar] [CrossRef]
- Streckeisen, A.L. To each plutonic rock its proper name. Earth-Sci. Rev. 1976, 12, 1–33. [Google Scholar] [CrossRef]
- Le Maitre, R.W.; Bateman, P.; Dudek, A.; Keller, J.; Lameyre, J.L.; Bas, M.J.; Sabine, P.A.; Schmid, R.; Sorensen, H.; Streckeisen, A.; et al. A Classification of Igneous Rocks and Glossary of terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks; Blackwell Scientific Publications: Oxford, UK, 1989. [Google Scholar]
- Ferguson, A.K. The occurrence of ramsayite, titan-låvenite and a fluorine-rich eucolite in a nepheline-syenite inclusion from Tenerife, Canary Islands. Contrib. Mineral. Petrol. 1978, 66, 15–20. [Google Scholar] [CrossRef]
- Mangas, J.; Perez-Torrado, F.J.; Regulion, R.M.; Martin-Izard, A. Rare earth minerals in carbonatites of basal complex of Fuerteventura (Canary Islands, Spain), Mineral Deposits. In Proceedings of the 4th Biennial SGA Meeting, Turku, Finland, 11–13 August 1997; pp. 471–478. [Google Scholar]
- Rodriguez-Losada, J.A.; Martinez-Frias, J. Ancient oxide- and sulphide-mineralization in the islands of Tenerife and La Gomera (Canary Archipelago, Spain). Miner. Depos. 1998, 33, 639–643. [Google Scholar] [CrossRef]
- Ahijado, A. Características mineralógicas de una sövita pirofanítica de la Pta. del Peñón Blanco, Fuerteventura, Canarias. Geogaceta 1992, 12, 81–82. [Google Scholar]
- Rüsenberg, K.A. Mineralien in den Pyroklastiten von Teneriffa, Kanarische Inseln. Aufschluss 2016, 67, 301–324. [Google Scholar]
- Menéndez, I.; Campeny, M.; Quevedo-González, L.; Mangas, J.; Llovet, X.; Tauler, E.; Barrón, V.; Torrent, J.; Méndez-Ramos, J. Distribution of REE-bearing minerals in felsic magmatic rocks and paleosols from Gran Canaria, Spain: Intraplate oceanic islands as a new example of potential, non-conventional sources of rare-earth elements. J. Geochem. Explor. 2019, 204, 270–288. [Google Scholar] [CrossRef]
- Hecht l Thuro, K.; Plinninger, R.; Cuney, M. Mineralogical and geochemical characteristics of hydrothermal alteration and episyenitization in the Königshain granites, northern Bohemian Massif, Germany. Int. J. Earth Sci. 1999, 88, 236–252. [Google Scholar] [CrossRef]
- Boulvais, P.; Ruffet, G.; Cornichet, J.; Mermet, M. Cretaceous albitization and dequartzification of Hercynian peraluminous granites in the Salvezines Massif (French Pyrénées). Lithos 2007, 93, 89–106. [Google Scholar] [CrossRef]
- Dosbaba, M.; Novák, M. Quartz replacement by “kerolite” in graphic quartz–feldspar intergrowths from the Věžná I pegmatite, Czech Republic: A complex desilication process related to episyenitization. Can. Mineral. 2012, 50, 1609–1622. [Google Scholar] [CrossRef]
- Petersson, J.; Eliasson, T. Mineral evolution and element mobility during episyenitization (dequartzification) and albitization in the postkinematic Bohus granite, southwest Sweden. Lithos 1997, 42, 123–146. [Google Scholar] [CrossRef]
- Marks, M.A.W.; Markl, G. A global review on agpaitic rocks. Earth-Sci. Rev. 2017, 173, 229–258. [Google Scholar] [CrossRef]
- Le Maitre, R.W. International Union of Geological Sciences. Subcommission on the systematics of igneous rocks. In A Classification of Igneous Rocks and Glossary of Terms; Blackwell Scientific Publications: Oxford, UK, 2003; p. 193. [Google Scholar]
- Frost, B.R.; Frost, C.D. A geochemical classification for feldspathic igneous rocks. J. Petrol. 2008, 49, 1955–1969. [Google Scholar] [CrossRef]
- Frost, B.R.; Frost, C.D. On ferroan (A-type) granitoids: Their compositional variability modes of origin. J. Petrol. 2010, 52, 39–53. [Google Scholar] [CrossRef]
- Gottardi, G.; Galli, E. Natural Zeolites; Springer: Berlin/Heidelberg, Germany; New York, NY, USA; Tokyo, Japan, 1985; p. 409. [Google Scholar]
- Tschernich, R.W. Zeolites of the World; Geoscience Press: Phoenix, Arizona, 1992; p. 563. [Google Scholar]
- Coombs, D.S.; Alberti, A.; Armbruster, T.; Artioli, G.; Colella, C.; Galli, E.; Grice, J.D.; Liebau, F.; Mandarino, J.A.; Minato, H.; et al. Recommended nomenclature for zeolite minerals: Report of the subcommittee on zeolites of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Can. Mineral. 1997, 35, 1571–1606. [Google Scholar]
- Neuhoff, S.; Fridriksson, T.; Bird, D.K. Zeolite parageneses in the north Atlantic igneous province: Implications for geotectonics and groundwater quality of basaltic crust. Int. Geol. Rev. 2000, 42, 15–44. [Google Scholar] [CrossRef]
- Pérez-Torrado, F.J.; Martí, J.; Queralt, I.; Mangas, J. Alteration processes of the Roque Nublo ignimbrites (Gran Canaria, Canary Islands). J. Volcanol. Geotherm. Res. 1995, 65, 191–204. [Google Scholar] [CrossRef]
- Donoghue, E.; Troll, V.R.; Harris, C.; O’Halloran, A.; Walter, T.R.; Pérez, F.J. Torrado Low-temperature hydrothermal alteration of intra-caldera tuffs, Miocene Tejeda caldera, Gran Canaria, Canary Islands. J. Volcanol. Geotherm. Res. 2008, 176, 551–564. [Google Scholar] [CrossRef]
- Garcıa-Romero, E.; Vegas, J.; Baldonedo, J.L.; Marfil, R. Clay minerals as alteration products in basaltic volcaniclastic deposits of La Palma (Canary Islands, Spain). Sedim. Geol. 2005, 174, 237–253. [Google Scholar] [CrossRef]
- De Oliveira, M.T.G.; Furtado, S.M.A.; Formoso, M.L.L.; Eggleton, R.A.; Dani, N. Coexistence of halloysite and kaolinite-a study on the genesis of kaolin clays of Campo Alegre Basin, Santa Catarina State, Brazil. An. Acad. Bras. Ciências 2007, 79, 665–681. [Google Scholar] [CrossRef]
- Churchman, G.J.; Pontifex, I.R.; McClure, S.G. Factors influencing the formation and characteristics of halloysites or kaolinites in granitic and tuffaceous saprolites in Hong Kong. Clays Clay Miner. 2010, 58, 220–237. [Google Scholar] [CrossRef]
- Schwaighofer, B. Zur Verwitterung vulkanischer Gesteine—Ein Beitrag zur Halloysit-Genese. Mitteilungen Geol. Ges. 1974, 66/67, 221–236. [Google Scholar]
- Rodriguez-Losada, J.A.; Martinez-Frias, J. The felsic complex of the Vallehermoso Caldera: Interior of an ancient volcanic system (La Gomera, Canary Islands). J. Volcanol. Geotherm. Res. 2004, 137, 261–284. [Google Scholar] [CrossRef]
- Bucher, K.; Grapes, R. Petrogenesis of Metamorphic Rocks; Springer: Berlin/Heidelberg, Germany; Dortrecht, The Netherlands; London, UK; New York, NY, USA, 2011; p. 428. [Google Scholar]
- Castorina, F.; Masi, U. REE and Nd-isotope evidence for the origin of siderite from the Jebel Awam deposit (Central Morocco). Ore Geol. Rev. 2008, 34, 337–342. [Google Scholar] [CrossRef]
- Dill, H.G.; Botz, R.; Berner, Z.; Abu Hamad, A.M.B. The origin of pre-and syn-rift, hypogene Fe-P mineralization during the Cenozoic along the Dead-Sea-Transform Fault, Northwest Jordan. Econ. Geol. 2010, 105, 1301–1319. [Google Scholar] [CrossRef]
- Dill, H.G.; Kolb, J. Carbonate-related metallic and non-metallic mineralization within and proximal to granites (Fichtelgebirge Pluton, Germany): Mantle-crust marker mineralization. Ore Geol. Rev. 2019, 104, 46–71. [Google Scholar] [CrossRef]
- Meinert, L.D. Dipple and Nicolescu, G.M. World Skarn Deposits. In Economic Geology 100th Anniversary Volume 1905–2005; Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2005; Volume 1905–2005, pp. 299–336. [Google Scholar]
- Chen, W.; Simonetti, A. Evidence for the multi-stage petrogenetic history of the Oka Carbonatite Complex (Quebec, Canada) as recorded by perovskite and apatite. Minerals 2014, 4, 437–476. [Google Scholar] [CrossRef]
- Patel, S.C.J. Vesuvianite-wollastonite-grossular-bearing calc-silicate rock near Tatapani, Surguja district, Chhattisgarh. J. Earth Syst. Sci. 2007, 116, 143–147. [Google Scholar] [CrossRef]
- Ancochea, E.; Huertas, M.J.; Cantagrel, J.M.; Coello, J.; Fúster, J.M.; Arnaud, N.; Ibarrola, E. Evolution of the Cañadas edifice and its implications for the origin of the Cañadas Caldera (Tenerife, Canary Islands). J. Volcanol Geotherm Res. 1999, 88, 177–199. [Google Scholar] [CrossRef]
- Duff, D. Holmes Principles of Physical Geology; Routledge: Cheltenham, UK, 1993; p. 832. [Google Scholar]
- Raade, G.; Mladeck, M.H. Janhaugite, Na3Mn3Ti2Si4O15(OH,F,O)3, A new mineral from Norway. Am. Mineral. 1983, 68, 1216–1219. [Google Scholar]
- Wagner, C.; Velde, D. Davanite, K2TiSi6O15, in the Smoky Butte (Montana) lamproites. Am. Mineral. 1986, 71, 1473–1475. [Google Scholar]
- Chesner, C.A.; Ettlinger, A.D. Composition of volcanic allanite from the Toba Tuffs, Sumatra, Indonesia. Am. Mineral. 1989, 74, 750–758. [Google Scholar]
- Hornig, I.; Wörner, G. Zirconolite-bearing ultra-potassic veins in a mantle-xenolith from Mt. Melbourne Volcanic Field, Victoria Land, Antarctica. Contrib. Mineral. Petrol. 1991, 106, 355–366. [Google Scholar] [CrossRef]
- Keller, J.; Williams, T. Niocalite and Woehlerite from the alkaline and carbonatite rocks at Kaiserstuhl, Germany. Mineral. Mag. 1995, 59, 561–566. [Google Scholar] [CrossRef]
- Chakhmouradian, A.R.; Zaitsev, A.N. Calcite–amphibole–clinopyroxene rock from the Afrikanda complex, Kola Peninsula, Russia: Mineralogy and a possible link to carbonatites. I. Oxide Miner. Can. Mineral. 1999, 37, 177–198. [Google Scholar] [CrossRef]
- Traversa, G.; Gomes, C.B.; Brotzu, P.; Buraglini, N.; Morbidelli, L.; Principato, M.S.; Ronca, S.; Ruberti, E. Petrography and mineral chemistry of carbonatites and mica-rich rocks from the Araxá complex (Alto Paranaíba Province, Brazil). An. Acad. Bras. Ciências 2001, 73, 71–98. [Google Scholar] [CrossRef]
- Petersen, O.V.; Giester, G.; Brandstätter, F.; Niedermayr, G. Nabesite, a new mineral species from the Ilimaussaq alkaline complex. Can. Mineral. 2002, 40, 173–181. [Google Scholar] [CrossRef]
- Poitrasson, F. In situ investigations of allanite hydrothermal alteration: Examples from calc-alkaline and anorogenic granites of Corsica (southeast France). Contrib. Mineral. Petrol. 2002, 142, 485–500. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Pekov, I.V.; Rastsvetaeva, R.K.; Chilov, G.V.; Zadov, A.E. Clinobarylite, BaBe2Si2O7, a new mineral from Khibiny massif, Kola peninsula. Zap. Vser. Miner. Obshch. 2003, 132, 2937. (In Russian) [Google Scholar]
- Mitchell, R.H.; Belton, F. Niocalite-cuspidine solid solution and manganoan monticellite from natrocarbonatite, Oldoinyo Lengai, Tanzania. Mineral. Mag. 2004, 68, 787–799. [Google Scholar] [CrossRef]
- Pekov, I.V.; Chukanov, N.V.; Ferraris, G.; Gula, A.; Pushcharovsky, D.Y.; Zadov, A.E. Tsepinite–Ca,(Ca,K,Na,□)2(Ti,Nb)2(Si4O12)(OH,O)2·4H2O, a new mineral of the labuntsovite group from the Khibiny alkaline massif, Kola Peninsula–Novel disordered sites in the vuoriyarvite-type structure. Neues Jahrb. Für Mineral. Monatshefte 2003, 2003, 461480. [Google Scholar]
- Pekov, I.V.; Chukanov, N.V.; Lebedeva Yu, S.; Pushcharovsky DYu Ferraris, G.; Gula, A.; Zadov, A.E.; Novakova, A.A.; Petersen, O.V. Potassic-Arfvedsonite a K-dominant Amphibole of the Arfvedsonite-series from agpaitic pegmatites. Neues Jahrb. Mineral. Monatshefte 2004, 12, 555–574. [Google Scholar] [CrossRef]
- Liferovich, R.P.; Mitchell, R.H.; Zozulya, D.R.; Shpachenko, A.K. Paragenesis and composition of banalsite, stronalsite, and their solid solution in nepheline syenite and ultramafic alkaline rocks. Can. Mineral. 2006, 44, 929–942. [Google Scholar] [CrossRef]
- Costanzo, A.; Moore, K.R.; Wall, F.; Feely, M. Fluid inclusions in apatite from Jacupiranga calcite carbonatites: Evidence for a fluid-stratified carbonatite magma chamber. Lithos 2006, 91, 208–228. [Google Scholar] [CrossRef]
- Azarova, Y.V.; Shlyukova, Z.V.; Zolotarev, A.A., Jr.; Organova, N.I. Burovaite-Ca, (Na, K) 4Ca2 (Ti, Nb) 8 [Si4O12] 4 (OH, O) 8·12H2O, a new labuntsovite-group mineral species and its place in low-temperature mineral formation in pegmatites of the Khibiny pluton, Kola Peninsula, Russia. Geol. Ore Depos. 2009, 51, 774–783. [Google Scholar] [CrossRef]
- Berger, V.I.; Singer, D.A.; Orris, G.J. Carbonatites of the World, Explored Deposits of Nb and REE—Database and Grade and Tonnage Models; U.S. Geological Survey Open-File Report 2009–1139, 17 p. and database; US Geological Survey: Reston, VA, USA, 2009. [Google Scholar]
- Andersen, T.; Erambert, M.; Larsen, A.O.; Selbekk, R.S. Petrology of nepheline syenite pegmatites in the Oslo Rift, Norway: Zirconium silicate mineral assemblages as indicators of alkalinity and volatile fugacity in mildly agpaitic magma. J. Petrol. 2010, 51, 2303–2325. [Google Scholar] [CrossRef]
- Valentini, L.; Moore, K.R.; Chazot, G. Unravelling carbonatite–silicate magma interaction dynamics: A case study from the Velay province (Massif Central, France). Lithos 2010, 116, 53–64. [Google Scholar] [CrossRef]
- Chernysheva, E.A.; Kharin, G.S. Melilitites in the alkaline volcanic succession of the Gorringe bank, Southwestern Portugal. Geochem. Int. 2012, 50, 54–62. [Google Scholar] [CrossRef]
- Larsen, A.O. Contributions to the mineralogy of the syenite pegmatites in the Larvik Plutonic complex. Nor. Bergverksmus. Skrifter. 2013, 50, 101–109. [Google Scholar]
- Pekov, I.V.; Nikolaev, A.P. Minerals of the pegmatites and hydrothermal assemblages of the Koashva deposit (Khibiny, Kola Peninsula, Russia). Mineral. Alm. 2013, 189, 765. [Google Scholar]
- Chakhmouradian, A.R.; Reguir, E.P.; Kressall, R.D.; Crozier, J.; Pisiak, L.K.; Sidhu, R.; Yang, P. Carbonatite-hosted niobium deposit at Aley, northern British Columbia (Canada): Mineralogy, geochemistry and petrogenesis. Ore Geol. Rev. 2015, 64, 642–666. [Google Scholar] [CrossRef]
- Novák, M.; Čopjaková, R.; Dosbaba, M.; Galiová, M.V.; Všianský, D.; Staněk, J. Two paragenetic types of cookeite from the Dolní Bory-Hatě Pegmatites, Moldanubian Zone, Czech Republic: Proximal and distal alteration productions of Li-bearing sekaninaite. Can. Mineral. 2015, 53, 1035–1048. [Google Scholar] [CrossRef]
- Downes, P.J.; Dunkley, D.J.; Fletcher, I.R.; McNaughton, N.J.; Rasmussen, B.; Jaques, A.L.; Verrall, M.; Sweetapple, M.T. Zirconolite, zircon and monazite-(Ce) U-Th-Pb age constraints on the emplacement, deformation and alteration history of the Cummins Range Carbonatite Complex, Halls Creek Orogen, Kimberley region, Western Australia. Mineral. Petrol. 2016, 110, 199–222. [Google Scholar] [CrossRef]
- Torró, L.; Villanova, C.; Castillo, M.; Campeny, M.; Gonçalves, A.O.; Melgarejo, J.C. Melgarejo Niobium and rare earth minerals from the Virulundo carbonatite, Namibe, Angola. Mineral. Mag. 2012, 76, 393–409. [Google Scholar] [CrossRef]
- Amores-Casals, S.; Melgarejo, J.C.; Bambi, A.; Gonçalves, A.O.; Morais, E.A.; Manuel, J.; Buta Neto, A.; Costanzo, A.; Molist, J.M. Lamprophyre-Carbonatite Magma Mingling and Subsolidus Processes as Key Controls on Critical Element Concentration in Carbonatites—The Bonga Complex (Angola). Minerals 2019, 9, 601. [Google Scholar] [CrossRef]
- Buchholz, T.; Falster, A.; Simmons, W. A rediscovered pegmatite in the Stettin Complex, Wausau Syenite Complex, Marathon County, Wisconsin. Rocks Miner. 2019, 94, 184–185. [Google Scholar]
- Gonçalves, A.O.; Melgarejo, J.C.; Alfonso, P.; Amores, S.; Paniagua, A.; Neto, A.B.; Eduardo, A.M.; Camprubí, A. The Distribution of Rare Metals in the LCT Pegmatites from the Giraúl Field, Angola. Minerals 2019, 9, 580. [Google Scholar] [CrossRef]
- Galliski, M.Á.; Márquez-Zavalía, M.F.; Roquet, M.B. Los minerales de Nb-Ta-U de la pegmatita María Elena, Sierra de San Luis, Argentina. Rev. Asoc. Geológica Argent. 2021, 78, 355–367. [Google Scholar]
- Mitchell, R.H.; Dawson, J.B. Mineralogy of volcanic calciocarbonatites from the Trig Point Hill debris flow, Kerimasi volcano, Tanzania: Implications for the altered natrocarbonatite hypothesis. Mineral. Mag. 2021, 85, 484–495. [Google Scholar] [CrossRef]
- Mikhailova, J.A.; Kalashnikov, A.O.; Sokharev, V.A.; Pakhomovsky, Y.A.; Konopleva, N.G.; Yakovenchuk, V.N.; Bazai, A.V.; Goryainov, P.M.; IvanyukIvanyuk, G.Y. 3D mineralogical mapping of the Kovdor phoscorite–carbonatite complex (Russia). Miner. Depos. 2016, 51, 131–149. [Google Scholar] [CrossRef]
- Doroshkevich, A.; Prokopyev, I.; Kruk, M.; Sharygin, V.; Izbrodin, I.; Starikova, A.; Ponomarchuk, A.; Izokh, A.; Nugumanova, Y. Age and petrogenesis of ultramafic lamprophyres of the Arbarastakh alkaline-carbonatite complex, Aldan-Stanovoy shield, South of Siberian Craton (Russia): Evidence for ultramafic lamprophyre-carbonatite link. J. Petrol. 2022, 63, egac073. [Google Scholar] [CrossRef]
- Hutchinson, M.; Slezak, P.; Wendlandt, R.; Hitzman, M. Rare Earth Element Enrichment in the Weathering Profile of the Bull Hill Carbonatite at Bear Lodge, Wyoming, USA. Econ. Geol. 2022, 117, 813–831. [Google Scholar] [CrossRef]
- Zaitsev, V.A.; Chukanov, N.V.; Aksenov, S.M. Chlorine-Deficient Analog of Taseqite from Odikhincha Massif (Russia): Genesis and Relation with Other Sr-Rich Eudialyte-Group. Minerals 2022, 12, 1015. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L.; Wade, B.P.; Gilbert, S.E.; Alford, R. Mineralogy and distribution of REE in oxidized ores of the Mount Weld laterite deposit. West. Aust. Miner. 2023, 13, 656. [Google Scholar]
- Kogarko, L.N. Ore-forming potential of alkaline magmas. Lithos 1990, 26, 167–175. [Google Scholar] [CrossRef]
- Sørensen, H. Agpaitic nepheline syenites: A potential of rare elements. Appl. Geochem. 1992, 7, 417–427. [Google Scholar] [CrossRef]
- Sørensen, H. The agpaitic rocks—An overview. Mineral. Mag. 1997, 61, 485–498. [Google Scholar] [CrossRef]
- Sørensen, H.; Larsen, L.M. The hyper-agpaitic stage in the evolution of the llimaussaq alkaline complex, South Greenland. In: Sørensen, H. The llimaussaq Alkaline Complex, South Greenland: Status of Mineralogical Research with New Results. Geol. Greenl. Surv. Bull. 2001, 190, 83–94. [Google Scholar] [CrossRef]
- Marks, M.A.W.; Hettmann, K.; Schilling, J.; Frost, B.R.; Markl, G. The mineralogical diversity of alkaline igneous rocks: Critical factors for the transition from miaskitic to agpaitic phase assemblages. J. Petrol. 2011, 52, 439–455. [Google Scholar] [CrossRef]
- Khomyakov, A.P.; Sørensen, H. Zoning in steenstrupine-(Ce) from the llimaussaq alkaline complex, South Greenland: A review and discussion. Geol. Greenl. Surv. Bull. 2001, 190, 109–118. [Google Scholar] [CrossRef]
- Andersen, T.; Friis, H. The transition from agpaitic to hyperagpaitic magmatic crystallization in the llimaussaq alkaline complex, South Greenland. J. Petrol. 2015, 56, 1343–1364. [Google Scholar] [CrossRef]
- Carracedo, J.C.; Rodriguez Badiola, E.; Guillou, H.; Paterne, M.; Scaillet, S.; Perez Torrado, F.J.; Paris, R.; Fra-Paleo, U.; Hansen, A. Eruptive and structural history of the Teide Volcano and rift zones of Tenerife, Canary islands. Geol. Soc. Ameri. Bull. 2007, 119, 1027–1051. [Google Scholar] [CrossRef]
- Chakhmouradian, A.R.; Mitchell, R.H. The mineralogy of Ba- and Zr-rich alkaline pegmatites from Gordon Butte, Crazy Mountains (Montana, USA): Comparisons between potassic and sodic agpaitic pegmatites. Contrib. Mineral. Petrol. 2002, 143, 93–114. [Google Scholar] [CrossRef]
- Broom-Fendley, S.; Brady, A.E.; Horstwood, M.S.A.; Woolley, A.R.; Mtegha, J.; Wall, F.; Dawes, W.; Gunn, G. Geology, geochemistry and geochronology of the Songwe Hill carbonatite, Malawi. J. Afr. Earth Sci. 2017, 134, 10–23. [Google Scholar] [CrossRef]
- Broom-Fendley, S.; Brady, A.E.; Wall, F.; Gunn, G.; Dawes, W. REE minerals at the Songwe Hill carbonatite, Malawi: HREE-enrichment in late-stage apatite. Ore Geol. Rev. 2017, 81, 23–41. [Google Scholar] [CrossRef]
- Wall, F.; Zaitsev, A.N. Phoscorites and Carbonatites from Mantle to Mine: The Key Example of the Kola Alkaline Province; The Mineralogical Society Series 10; British Mineralogical Society: London, UK, 2004; p. 498. [Google Scholar]
- Khomyakov, A.P.; Nechelyustov, G.N.; Rastsvetaeva, R.K. Aqualite, (H3O)8(Na,K,Sr)5Ca6Zr3Si26O66(OH)9Cl, a new eudialyte-group mineral from Inagli alkaline massif (Sakha-Yakutia, Russia), and the problem of oxonium in hydrated eudialytes. Proc. Russ. Mineral. Soc. 2007, 136, 39–55. [Google Scholar]
- Guarino, V.; Lustrino, M.; Zanetti, A.; Tassinari, C.C.; Ruberti, E.; de’Gennaro, R.; Melluso, L. Mineralogy and geochemistry of a giant agpaitic magma reservoir: The Late Cretaceous Poços de Caldas potassic alkaline complex (SE Brazil). Lithos 2021, 398, 106330. [Google Scholar] [CrossRef]
- Chakhmouradian, A.R. On the development of niobium and rare-earth minerals in monticellite-calcite carbonatite of the Oka Complex, Quebec. Can. Mineral. 1996, 34, 479–484. [Google Scholar]
- Oteo, G.D. REE Geochemical Exploration in Magmatic Felsic Rocks and Carbonatites of Oceanic Intraplate Volcanic Islands (the Island of Fuerteventura). Master’s Thesis, Universidad Las Palmas de Gran Canaria, Las Palmas, Spain, 2020; p. 38. [Google Scholar]
- Carnevale, G.; Caracausi, A.; Correale, A.; Italiano, L.; Rotolo, S.G. An Overview of the Geochemical characteristics of oceanic carbonatites: New insights from Fuerteventura Carbonatites (Canary Islands). Minerals 2021, 11, 203. [Google Scholar] [CrossRef]
- O’Donoghue, M. Gems their Sources, Descriptions and Identification; Elsevier: Amsterdam, The Netherlands, 2006; p. 873. [Google Scholar]
- Van Velthuizen, J.; Chao, G.Y. Griceite, LiF, a new mineral species from Mont Saint-Hilaire, Quebec. Can. Mineral. 1989, 27, 125–127. [Google Scholar]
- Grice, J.D. Mont Saint-Hilaire, Quebec: Canada’s Most Diverse Mineral Locality. In Famous Mineral Localities of Canada; Fitzhenry & Whiteside Limited & the National Museum of Natural Sciences: Markham, ON, Canada, 1989; p. 190. [Google Scholar]
- McDonald, A.M.; Back, M.E.; Gault, R.A.; Horváth, L. Peatite-(Y) and ramikite-(Y), two new Na-Li-Y{+/−}Zr phosphate-carbonate minerals from the Poudrette pegmatite, Mont Saint-Hilaire, Québec. Can. Mineral. 2013, 51, 569–596. [Google Scholar] [CrossRef]
- Voloshin, A.V.; Pakomovskii, Y.A.; Stepanov, V.I.; Tyusheva, F.N. Lithiotantite, Li, (Ta,Nb)3O8, a new mineral from granite pegmatites of Eastern Kazakhstan. Mineral. Zhurnal 1983, 5, 91–95. [Google Scholar]
- Yakovenchik, V.N.; Ivaniuk GYu Pakhomovsky, Y.A.; Selivanova, E.A.; Men’shikov, Y.P.; Korchak, J.A.; Krivovichev, S.V.; Spiridonova, D.V.; Zalkind, O.A. Punkaruaivite, Li{Ti2(OH)2[Si4O11(OH)]}. H2O, a new mineral species from hydrothermalites of Khibiny and Lovozero alkaline massifs (Kola Peninsula, Russia). Can. Mineral. 2010, 48, 41–50. [Google Scholar] [CrossRef]
- Teertstra, D.K.; Černý, P.; Novák, M. Compositional and textural evolution of pollucite in pegmatites of the Moldanubicum. Mineral. Petrol. 1995, 55, 37–51. [Google Scholar] [CrossRef]
- Pautov, L.A.; Agakhanov, A.A.; Pekov, I.V.; Karpenko, V.Y.; Siidra, O.I.; Sokolova, E.; Hawthorne, F.C.; Faiziev, A.R. Garmite, IMA 2017-008. Mineral. Mag. 2017, 81, 737–742. [Google Scholar]
- Pautov, L.; Agakhanov, A.; Pekov, I.; Karpenko, V.; Siidra, O.; Sokolova, E.; Hawthorne, F.; Fayziev, A.R. Garmite, CsLiMg2(Si4O10)F2, a New mica-group mineral from “Quartz Lumps” of the Darai-Piyoz Alkaline Massif, Tajikistan. Geol. Ore Depos. 2022, 95894. [Google Scholar] [CrossRef]
- Gold, D.P.; Eby, G.N.; Valleé, M. Carbonatites, diatremes and ultra-alkaline rocks in the Oka area. In Fieldtrip Guidebook 21; GAC/MAC Meeting: Ottawa, ON, Canada, 1986; p. 51. [Google Scholar]
- Mitchell, R.H.; Liferovich, R.P. Ecandrewsite-zincian pyrophanite from lujavrite. Pilanesberg alkaline complex, South Africa. Can. Mineral. 2004, 42, 1169–1178. [Google Scholar] [CrossRef]
- Pekov, I.V.; Podlesnyi, A.S. Kukisvumchorr Deposit: Mineralogy of Alkaline Pegmatites and Hydrothermalites. Mineral. Alm. 2004, 7, 140. [Google Scholar]
- Škoda, R.; Čopjaková, R. Herzenbergite and Sn-bearing tinzenite from the NYF Pegmatite in Třebíč Pluton, Moldanubicum, Czech Republic. Acta Miner. Petrograph. Abstr. Ser. 2006, 5, 107. [Google Scholar]
- Tucker, R.D.; Belkin, H.E.; Schulz, K.J.; Peters, S.G.; Horton, F.; Buttleman, K.; Scott, E.R. A major light rare-earth element (LREE) resource in the Khanneshin carbonatite complex, southern Afghanistan. Econ. Geol. 2012, 107, 197–208. [Google Scholar] [CrossRef]
- Chakrabarty, A.; Mitchell, R.H.; Ren, M.; Pal, S.; Pal, S.; Sen, A.K. Nb–Zr–REE re-mobilization and implications for transitional agpaitic rock formation: Insights from the Sushina Hill Complex, India. J. Petrol. 2018, 59, 1899–1938. [Google Scholar] [CrossRef]
- Holtstam, D.; Cámara, F.; Skogby, H.; Karlsson, A. Hjalmarite, a new Na–Mn member of the amphibole supergroup, from Mn skarn in the Långban deposit, Värmland, Sweden. Eur. J. Mineral. 2019, 31, 565–574. [Google Scholar] [CrossRef]
- Ibrahim, E. Sedimentary origin of the Mn-Fe Ore of Um Bogma, Southwest Sinai: Geochemical and Paleomagnetic Evidence. Econ. Geol. 2000, 95, 607–620. [Google Scholar]
- Cabral, A.R.; Moore, J.M.; Mapani, B.S.; Koubová, M.; Sattler, C.D. Geochemical and mineralogical constraints on the genesis of the Otjosondu ferromanganese deposit, Namibia: Hydrothermal exhalative versus hydrogenetic (including snowball-earth) origins. S. Afr. J. Geol. 2011, 114, 57–76. [Google Scholar] [CrossRef]
- Jones, S.; McNaughton, N.J.; Grguric, B. Structural controls and timing of fault-hosted manganese at Woodie, East Pilbara, Western Australia. Ore Geol. Rev. 2013, 50, 52–82. [Google Scholar] [CrossRef]
- Bonzi, W.M.E.; Van Lichtervelde, M.; Vanderhaeghe, O.; André-Mayer, A.S.; Salvi, S.; Wenmenga, U. Insights from mineral trace chemistry on the origin of NYF and mixed LCT + NYF pegmatites and their mineralization at Mangodara, SW Burkina Faso. Miner. Depos. 2023, 58, 75–104. [Google Scholar] [CrossRef]
- Horváth l Gault, R.A. The mineralogy of Mont Saint-Hilaire. Mineral. Rec. 1990, 21, 281–359, 330–331. [Google Scholar]
- Cabral, A.R.; Sattler, C.-D. Alteration of pyrophanite: Transition in chemical composition to a manganese analogue of pseudorutile-evidence from the Quadrilatero Ferrifero of Minas Gerais, Brazil. N. Jb. Mineral. Monatsh. 2004, 3, 97–103. [Google Scholar] [CrossRef]
- Goss, S.C.; Wilde, S.A.; Wu, F.; Yang, J. The age, isotopic signature and significance of the youngest Mesozoic granitoids in the Jiaodong Terrane, Shandong Province, North China Craton. Lithos 2010, 120, 309–326. [Google Scholar] [CrossRef]
- Xie, L.; Wang, R.C.; Wang, D.Z.; Qiu, J.S. A survey of accessory mineral assemblages in peralkaline and more aluminous A-type granites of the southeast coastal area of China. Mineral. Mag. 2006, 70, 709–729. [Google Scholar] [CrossRef]
- Gu, X.; Yang, H.; Xie, X.; Van Nieuwenhuizen, J.; Downs, R.; Evans, S. Lipuite, a new manganese phyllosilicate mineral from the N’Chwaning III mine, Kalahari Manganese Fields, South Africa. Mineral. Mag. 2019, 83, 645–654. [Google Scholar] [CrossRef]
- Goudie, A.S.; Viles, H. Weathering processes and forms. In Quaternary and Recent Processes and Forms; Burt, T.P., Chorley, R.J., Brunsden, D., Cox, N.J., Goudie, A.S., Eds.; Landforms or the Development of Geomorphology Geological Society: London, UK, 2008; pp. 129–164. [Google Scholar]
- Taylor, G.; Eggleton, R.A. Regolith Geology and Geomorphology; John Wiley & Sons: Hoboken, NJ, USA, 2009; p. 375. [Google Scholar]
- Pring, A.; Francis, G.; Birch, W.D. Pyrobelonite, arsenoklasite, switzerite and other recent finds at Iron Monarch, South Australia. Aust. Mineral. 1989, 4, 49–55. [Google Scholar]
- Dill, H.G.; Berner, Z.A. Sedimentological and structural processes operative along a metalliferous catena from sandstone-hosted to unconformity-related Pb-Cu-Zn deposit in an epicontinental basin, SE Germany. Ore Geol. Rev. 2014, 63, 91–114. [Google Scholar] [CrossRef]
- Gomes, C.A.L.; Neiva, A.M. Tourmalines in the Namacotche Li-Cs-Ta granitic pegmatite group, Mozambique: Crystal chemistry and origin. Cadernos do Laboratorio Xeolóxico de Laxe. Rev. De Xeol. Galega E Do Hercínico Penins. 2022, 44, 132–153. [Google Scholar]
- Manrique, J.; Guaman, G.; Guartan, J. Geochemical prospecting study of the Vanadium-Uranium Mineralization of Puyango, Ecuador (No. IAEA-CN--261). In Proceedings of the International Symposium on Uranium Raw Material for the Nuclear FuelCycle: Exploration, Mining, Production, Supply and Demand, Economics and Environmental Issues (URAM-2018), Vienna, Austria, 25–29 June 2018. [Google Scholar]
- Witzke, T.; Zhen, S.; Seff, K.; Doering, T.; Nasdala, L.; Kolitsch, U. Ronneburgite, K2MnV4O12, a new mineral from Ronneburg, Thuringia, Germany: Description and crystal structure. Am. Mineral. 2001, 86, 1081–1086. [Google Scholar] [CrossRef]
- Szczerba, M.; Sawłowicz, Z. Remarks on the origin of cerussite in the Upper Silesian Zn-Pb deposits, Poland. Mineralogia 2009, 40, 54–64. [Google Scholar] [CrossRef]
- Zubkova, N.V.; Chukanov, N.V.; Pekov, I.V.; Pushcharovsky DYu Katerinopoulos, A.; Voudouris, P.; Magganas, A. New data on fiedlerite-1A from ancient slags of Lavrion, Greece: Crystal structure and H-bonding. Dokl. Akad. Nauk 2019, 486, 83–87. [Google Scholar]
- Bulakh, M.O.; Pekov, I.V.; Koshlyakova, N.N.; Sidorov, E.G. Ludwigite and Yuanfuliite from Fumarolic Exhalations of the Tolbachik Volcano, Kamchatka, Russia. Geol. Ore Depos. 2022, 64, 607–621. [Google Scholar] [CrossRef]
- Pekov, I.V.; Zubkova, N.V.; Britvin, S.N.; Yapaskurt, V.O.; Chukanov, N.V.; Lykova, I.S.; Sidorov, E.; Pushcharovsky, D.Y. New zinc and potassium chlorides from fumaroles of the Tolbachik volcano, Kamchatka, Russia: Mineral data and crystal chemistry. III., Cryobostryxite, KZnCl3·2H2O. Eur. J. Mineral. 2015, 27, 805–812. [Google Scholar] [CrossRef]
- Rüsenberg, K.A. Mineralparagenesen in den Schlacken von Lavrion und ihre Entstehung. Aufschluss 2001, 52, 25–44. [Google Scholar]
- Kaminsky, F.V.; Ryabchikov, I.D.; Wirth, R. A primary natrocarbonatitic association in the Deep Earth. Mineral. Petrol. 2015, 110, 387–398. [Google Scholar] [CrossRef]
- Foord, E.E.; Jensen, M.; Rota, J.C. The Gold Quarry Mine, Carlin-Trend, Eureka County, Nevada. Mineral. Rec. 1995, 26, 449–469. [Google Scholar]
- Haggan, T.; Parnell, J. Hydrocarbon-metal associations in the Western Cordillera, Central Peru. J. Geochem. Explor. 2000, 69–70, 229–234. [Google Scholar] [CrossRef]
- Brugger, J.; Berlepsch, P.; Meisser, N.; Armbruster, T. Ansermetite, MnV2O6·4H2O, a new mineral species with V5+ in five-fold coordination from Val Ferrera, Eastern Swiss Alps. Can. Mineral. 2003, 41, 1423–1431. [Google Scholar] [CrossRef]
- Schäfer, C. Armalcolit und Schäferit vom Weinberg bei Nickenich. Der Aufschluß 2021, 72, 170–176. [Google Scholar]
- Števko, M.; Uher, P.; Ondrejka, M.; Ozdín, D.; Bačík, P. Quartz-apatite-REE phosphates-uraninite vein mineralization near Čučma (eastern Slovakia): A product of early Alpine hydrothermal activity in the Gemeric superunit, Western Carpathians. J. Geosci. 2014, 59, 209–222. [Google Scholar] [CrossRef]
- Carracedo, J.C.; Day, S.; Guillou, H. Hotspot volcanism close to a passive continental margin: The Canary Islands. Geol. Mag. 1998, 135, 591604. [Google Scholar] [CrossRef]
- González, F.J.; Rincón-Tomás, B.; Somoza, L.; Santofimia, E.; Medialdea, T.; Madureira, P.; López-Pamo, E.; Hein, J.R.; Marino, E.; de Ignacio, C.; et al. Low-temperature, shallow-water hydrothermal vent mineralization following the recent submarine eruption of Tagoro volcano (El Hierro, Canary Islands. Mar. Geol. 2020, 430, 106333. [Google Scholar] [CrossRef]
- Cerný, P.; Ercit, T.S.; Groat, L.A.; Chapman, R. Zirconium and hafnium in minerals of the columbite and wodginite groups from granitic pegmatites. Can. Mineral. 2007, 45, 185–202. [Google Scholar] [CrossRef]
- Mansour, S.; Glasmacher, U.A.; Krob, F.C.; Casillas, R.; Albinger, M. Timing of rapid cooling and erosional decay of two volcanic islands of the Canary Archipelago: Implications from low-temperature thermochronology. Int. J. Earth Sci. Geol. Rundsch. 2022, 112, 345–382. [Google Scholar] [CrossRef]
- Miller, R. Structural and textural evolution of the Strange Lake peralkaline rare-element (NYF) granitic pegmatite, Quebec–Labrador. Can. Mineral. 1996, 34, 349–371. [Google Scholar]
- Danilova, Y.; Shumilova, T.; Mayer, J.; Danilov, B.S. Conditions and Formation Mechanism of carbon phases in Late Quaternary geyserites and travertines of Ol’khon Area and Ol’khon Island (Baikal Rift Zone). Petrology 2016, 24, 41–54. [Google Scholar] [CrossRef]
- Dunn, P.J. Rare minerals of the Kombat Mine. Mineral. Rec. 1991, 22, 421–425. [Google Scholar]
- Dill, H.G.; Melcher, F.; Botz, R. Meso-to epithermal W-bearing Sb vein-type deposits in calcareous rocks in western Thailand: With special reference to their metallogenetic position in SE Asia. Ore Geol. Rev. 2008, 34, 242–262. [Google Scholar] [CrossRef]
- Russo, M.; Campostrini, I.; Demartin, F. Fumarolic minerals after the 1944 Vesuvius eruption. In The Future of the Italian Geosciences–The Italian Geosciences of the Future. 87° Congresso della Società Geologica Italiana e 90° Con-gresso della Società Italiana di Mineralogia e Petrologia, Milan, Italy, 10–12 September 2014; Cesare, B., Erba, E., Carmina, B., Fascio, L., Petti, F.M., Zuccari, A., Eds.; Abstract Book. Rendiconti Online della Società Geologica Italiana, 31, Supplemento n.1.; Mineralogical Society: Milan, Italy, 2014. [Google Scholar]
- Arfè, G.; Boni, M.; Mondillo, N.; Aiello, R.; Balassone, G.; Arseneau, V.; Soyk, D. Supergene alteration in the Capricornio Au-Ag epithermal vein system, Antofagasta Region, Chile. Can. Mineral. 2016, 54, 681–706. [Google Scholar] [CrossRef]
- Van den Berg, W.; Calvo, M.; Rewitzer, C. Secondary minerals from old smelter slags from the Puerto de Mazarrón area, Mazarrón, Murcia, Spain. Miner. Up 2020, 5, 8–32. [Google Scholar]
- British Broadcasting Corporation. The BBC and the Amazing Tellurium Find in the Atlantic. Forbes. 2017. Available online: https://www.forbes.com/sites/timworstall/2017/04/12/the-bbc-and-the-amazing-tellurium-find-in-the-atlantic/ (accessed on 2 September 2023).
- Joussein, E.; Petit, S.; Churchman, J.; Theng, B.; Righi, D.; Delvaux, B. Halloysite clay minerals—A review. Clay Miner. 2005, 40, 383–426. [Google Scholar] [CrossRef]
- Fernandez-Caliani, J.C.; Crespo, E.; Rodas, M.; Barrenechea, J.F.; Luque, F.J. Formation of nontronite from oxidative dissolution of pyrite disseminated in Precambrian felsic metavolcanics of the Southern Iberian Massif (Spain). Clays Clay Miner. 2004, 52, 106–114. [Google Scholar] [CrossRef]
- Ioannou, S.E.; Spooner, E.T.C. Miocene Epithermal Au-Ag Vein Mineralization, Dixie Claims, Midas District, North-Central Nevada; Characteristics and Controls. Explor. Min. Geol. 2000, 9, 233–252. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Aksenov, S.M.; Rastsvetaeva, R.K.; Van, K.V.; Belakovskiy, D.I.; Pekov, I.V.; Gurzhiy, V.V.; Schüller, W.; Ternes, B. Mendigite, Mn2Mn2MnCa(Si3O9)2, a new mineral species from the Eifel volcanic region, Germany. Zap. RMO 2015, 144, 4860. [Google Scholar] [CrossRef]
- Johnson, C.C.; Breward, N.; Ander, E.L.; Ault, L. G-BASE: Baseline geochemical mapping of Great Britain and Northern Ireland. Geochem. Explor. Environ. Anal. Geol. Soc. Lond. 2005, 5, 347–357. [Google Scholar] [CrossRef]
- Klügel, A.; Hansteen, T.H.; van den Bogaard, P.; Strauss, H.; Hauff, F. Holocene fluid venting at an extinct Cretaceous seamount, Canary Archipelago. Geology 2011, 39, 855–858. [Google Scholar] [CrossRef]
- Van den Bogaard, P. The origin of the Canary Island Seamount Province-New ages of old seamounts. Sci. Rep. 2013, 2107, 17. [Google Scholar] [CrossRef]
- Balaram, V.; Sawant, S.S. Indicator minerals, pathfinder elements, and portable analytical instruments in mineral exploration Studies. Minerals 2022, 12, 394. [Google Scholar] [CrossRef]
- Crocombe, R.A. Portable Spectroscopy. Appl. Spectrosc. 2018, 72, 1701–1751. [Google Scholar] [CrossRef] [PubMed]
- Kaski, S.; Häkkänen, H.; Korppi-Tommola, J. Sulfide mineral identification using laser-induced plasma spectroscopy. Miner. Eng. 2003, 16, 1239–1243. [Google Scholar] [CrossRef]
Structural landform | 1st | Volcanic edifice | ||
2nd | Cinder/scoria cones | Scoria/lava domes, cryptodomes | Necks, palisade mesas and crater lakes | |
Landform series of structural landforms | 1. Country and wall rocks landform series | 1. Country- and wall rock landform series | 1. Country- and wall rock landform series | |
2. Cone-shaped landform series | 2. Domal landform series | 2. Crater landform series | ||
3. Pediment landform series | 3. Moat landform series | 3. Neck landform series | ||
4. Gutter landform series | 4. Coastal landform series | 4. Palisade mesa series | ||
5. Coastal landform series |
Metallogenic Province | Fuerteventura-Lanzarote | Gran Canaria | La Gomera-Tenerife | |
---|---|---|---|---|
Land-Forming Processes | Landforms Parameters | Poly-Volcanic Island (Continental Shelf Edge) | Mono-Volcanic Island (Transitional Oceanic) | Mono-Volcanic Island (Oceanic) |
Mass wasting landform processes | Rock avalanche | +++ | +++ | +++ |
Rotational slide | +++ | +++ | +++ | |
Translational slide | +++ | +++ | +++ | |
Flow | +++ | +++ | +++ | |
Creep | +++ | +++ | +++ | |
Fall | +++ | +++ | +++ | |
Fluvial mass wasting transitional landforms | +++ | --- | ||
Fluvial landform processes | Channel pattern | +++ | +++ | +++ |
Channel sinuosity (sinuosity rate) | +++ | +++ | +++ | |
Channel density | +++ | +++ | +++ | |
Channel orientation | +++ | +++ | ||
Slope angle (angle in brackets) and altitude | +++ | +++ | +++ | |
Coastal marine landform processes | Coastline landforms (sensu lato) | +++ | +++ | +++ |
Transitional coastal landforms | +++ | +++ | +++ | |
Foreshore | +++ | +++ | +++ | |
Aeolian landform processes | Unimpeded coastal dunes | +++ | +++ | --- |
Impeded coastal dunes | +++ | --- | ||
Hinterland eolian landforms | +++ | |||
Lacustrine landform processes | Volcano-sedimentary lakes | --- | +++ |
(a) |
|
(b) |
Magmatic zirconium deposits
|
(c) |
Magmatic fluorine deposits
|
(d) |
Magmatic lithium and cesium deposits
|
(e) |
|
(f) |
Magmatic rare earth element deposits
|
(a) | ||||||||||||||||||
Name | Chemical Composition | Adjacent Islands | Puerto de Santiago | Alcala | San Juan | P. d. Paraiaso | Los Humilladeros | P.d. Enramada | Los Abrigos | Centinela | La Mareta | Mt. Pelada | Tajao | B. Hondo | Mt. Reventada | Los Blanquitos | Poris de Abona | Santa Cruz |
Adamsite-(Y) | NaY(CO3)2·6H2O | 1 | ||||||||||||||||
Aeschinite-(Y) | (Y,La,Ca,Th)(Ti,Nb)2(O,OH)6 | 1 | 1 | |||||||||||||||
Alflarsenite | NaCa2Be3Si4O13(OH)·2H2O | 1 | ||||||||||||||||
Allanite | (Ce,Ca,Y)2(Al,Fe)3(SiO4)3(OH) | FUE | 1 | 1 | 1 | 1 | ||||||||||||
Almarudite | K(◻,Na)2(Mn,Fe,Mg)2[(Be,Al)3Si12]O30 | 1 | ||||||||||||||||
Ankylite-(Ce) | SrCe(CO3)2(OH)·H2O | 1 | ||||||||||||||||
Ankylite-(La) | Sr(La,Ce)[OH|(CO3)2]·H2O | 1 | ||||||||||||||||
Apatite | Ca5(PO4)3 (OH,F,Cl) REE-bearing | FUE GC | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||
Astrophyllite | K2NaFe2+7Ti2Si8O26(OH)4F | 1 | 1 | 1 | 1 | |||||||||||||
Baddeleyite | ZrO2 | 1 | 1 | 1 | 1 | 1 | ||||||||||||
Barylite | Be2Ba(Si2O7) | 1 | 1 | 1 | ||||||||||||||
Bastnaesite | Ce (CO3) F | FUE GC | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||||
Bavenite | Ca4Be2Al2Si9O26(OH)2 | 1 | 1 | 1 | 1 | 1 | ||||||||||||
Behoite | Be(OH)2 | 1 | 1 | |||||||||||||||
Berborite 2H | Be2(BO3)(OH,F)·H2O | 1 | 1 | |||||||||||||||
Berezanskite | KTi2Li3Si12O30 | 1 | ||||||||||||||||
Bertrandite | Be4(Si2O7)(OH)2 | 1 | 1 | 1 | 1 | 1 | ||||||||||||
Bikitaite | LiAlSi2O6 H2O | 1 | 1 | |||||||||||||||
Britholite-(Ce) | (Ce,Ca,Th,La,Nd)5(SiO4,PO4)3(OH,F) | FUE | 1 | |||||||||||||||
Burbankite | (Na,Ca)3(Sr,Ba,Ce)3(CO3)5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||||
Burpalite | Na2CaZrSi2O7F2 | 1 | ||||||||||||||||
Byrudite | (Be,◻)(V3+,Ti,Cr)3O6 | 1 | ||||||||||||||||
Calcio-Catapleite | CaZr(Si3O9) 2H2O | 1 | ||||||||||||||||
Cassiterite | SnO2 | 1 | ||||||||||||||||
Cerianite | CeO2 | GC | ||||||||||||||||
Cerite | (Ce,La,Ca)9(Mg,Fe3+)(SiO4)3(SiO3OH)4(OH)3 | 1 | ||||||||||||||||
Clinozoisite/epidote | Ca2(Al,Fe)3[O|OH|SiO4|Si2O7] | FUE | 1 | 1 | 1 | 1 | ||||||||||||
Chevkinite-(Ce) | (Ce,La,Ca,Na,Th)4(Fe2+,Mg)2(Ti,Fe3+)3Si4O22 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||||
Chiavennite | CaMnBe2Si5O13(OH)2·2H2O | 1 | 1 | 1 | 1 | |||||||||||||
Chkalovite | Na2BeSi2O6 | 1 | ||||||||||||||||
Churchite-(Y) | (Y,Er,La)[PO4]·2H2O | 1 | ||||||||||||||||
Colquiriite | CaLi[AlF6] | 1 | ||||||||||||||||
Cookeite | (LiAl4◻)[AlSi3O10](OH)8 | 1 | 1 | 1 | 1 | |||||||||||||
Cordylite-(Ce) | NaBaCe2[F|(CO3)4] | 1 | ||||||||||||||||
Cryolite | Na2NaAlF6 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||||||
Cuspidine | Ca4Si2O7(F,OH)2 | FUE | 1 | 1 | ||||||||||||||
Dalyite | K2ZrSi6O15 | 1 | 1 | 1 | ||||||||||||||
Davanite | K2TiSi6O15 | 1 | 1 | 1 | ||||||||||||||
Dissakisite-(Ce)/ferri-dissakisite-(REE) | CaCe(Al2Mg)[Si2O7][SiO4]O(OH) | FUE | ||||||||||||||||
Elbaite | Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH) | 1 | 1 | |||||||||||||||
Eliseevite | LiNa1.5Ti2(H1.5Si4O12)O2 2H2O | 1 | ||||||||||||||||
Elpidite | Na2ZrSi6O15 3H2O | 1 | ||||||||||||||||
Emmerichite | Ba2Na(Na,Fe2+)2(Fe3+,Mg)Ti2(Si2O7)2O2F2 | 1 | 1 | |||||||||||||||
Epididymite | Na2Be2Si6O15 H2O | 1 | 1 | 1 | 1 | 1 | ||||||||||||
Epistolite | Na2(Nb,Ti)2(Si2O7)O2 nH2O | 1 | 1 | 1 | 1 | |||||||||||||
Eudidymite | Na2Be2Si6O15 H2O | 1 | 1 | 1 | 1 | 1 | ||||||||||||
Eudyalite | Na15Ca6Fe3Zr3Si(Si25O73)(O,OH,H2O)3(Cl,OH)2 | 1 | 1 | 1 | 1 | |||||||||||||
Eudyalite-(Mn) | Na14Ca6Mn3Zr3[Si26O72(OH)2](H2O,Cl,O,OH)6 | 1 | 1 | 1 | 1 | |||||||||||||
Fergusonite-(Y) | YNbO4 | 1 | 1 | |||||||||||||||
Ferrocolumbite | Fe2+Nb2O6 | 1 | ||||||||||||||||
Ferrokentbrooksite | Na15Ca6(Fe,Mn)3Zr3NbSi25O73(O,OH,H2O)3Cl2 | 1 | 1 | |||||||||||||||
Fersmanite | Ca4(Na,Ca)4(Ti,Nb)4(Si2O7)2O8F3 | 1 | ||||||||||||||||
Fersmite | Ca(Nb,Ta)2O6 | FUE | 1 | |||||||||||||||
Florencite-(Ce) | CeAl3(PO4)2(OH)6 | GO | ||||||||||||||||
Fluorite | CaF2 | 1 | 1 | 1 | 1 | 1 | ||||||||||||
Garmite | CsLiMg2(Si4O10)F2 | 1 | ||||||||||||||||
Gittinsite | CaZrSi2O7 | FUE | ||||||||||||||||
Goetzenite | Ca4NaCa2Ti(Si2O7)2(OF)F2 | 1 | 1 | 1 | 1 | |||||||||||||
Griceite | LiF | 1 | 1 | 1 | 1 | |||||||||||||
Grossularite | Ca3Al2(SiO4)3 | FUE | 1 | |||||||||||||||
Gugiaite | Ca2Be[Si2O7] | 1 | 1 | 1 | 1 | 1 | 1 | |||||||||||
Hainite-(Y) | Na1.75Ca4.25REE0.1Ti0.75Zr0.4Mn0.25Fe0.125Si3.9O13.75F4.15 | 1 | ||||||||||||||||
Hambergite | Be2(BO3)(OH) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||||
Helvine | Be3Mn2+4(SiO4)3S | 1 | 1 | |||||||||||||||
Holmquisite | Li2(Mg,Fe2+)3Al2Si8O22(OH)2 | 1 | 1 | 1 | ||||||||||||||
Isolueshite | (Na,La)NbO3 | 1 | 1 | |||||||||||||||
Janhaugite | (Na,Ca)3(Mn2+,Fe2+)3(Ti4+,Zr,Nb)2(Si2O7)2O2(OH,F)2 | 1 | 1 | 1 | ||||||||||||||
Kentbrooksite | Na15(Ca,Ce,La)6(Mn2+,Fe2+)3Zr3Nb[O|(F,Cl,OH)|Si3O9|Si9O27]2·2H2O | 1 | 1 | 1 | 1 | |||||||||||||
Khomyakovite | Na12Sr3Ca6(Fe,Mn)3Zr3W[Si25O73](O,OH,H2O)3(OH,Cl) | 2 | 1 | |||||||||||||||
Cryolite | Na3AlF6 | 1 | ||||||||||||||||
Kukharenkoite-(Ce) | Ba2Ce(CO3)3F | 1 | ||||||||||||||||
Labuntsovite-(Mg) | Na4K4(Ba,K)2MgTi8(Si4O12)4(O,OH)8 10H2O | 1 | ||||||||||||||||
Lamprophyllite | (SrNa)Ti2Na3Ti(Si2O7)2O2(OH)2 | 1 | 1 | |||||||||||||||
Latrappite | (Ca,Na)(Nb,Ti,Fe)O3 | 1 | 1 | 1 | ||||||||||||||
Låvenite | (Na,Ca)2(Mn,Fe2+)(Zr,Ti)Si2O7(O,OH,F) | 1 | 1 | 1 | ||||||||||||||
Lepidolite | KLi2Al(Si4O10)(F,OH)2 to K(Li1.5Al1.5)(AlSi3O10)(F,OH)2 | 1 | ||||||||||||||||
Lintisite | LiNa3Ti2(Si2O6)2O2 2H2O | 1 | 1 | 1 | ||||||||||||||
Lithiotantite | Li(Ta,Nb)3O8 | 1 | ||||||||||||||||
Lorenzite | Na2Ti2Si2O9 | 1 | 1 | 1 | 1 | |||||||||||||
Loparite-(Ce) | (Na,Ce,Sr)(Ce,Th)(Ti,Nb)2O6 | FUE | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||
Lovdarite | K2Na6Be4Si14O36 9H2O | 1 | ||||||||||||||||
Lucasite-(Ce) | (Ce,La)Ti2(O,OH)6 | 1 | 1 | 1 | ||||||||||||||
Lueshite | NaNbO3 | 1 | 1 | 1 | ||||||||||||||
Magnesio-Columbite | Mg(Nb,Ta)2O6 | 1 | ||||||||||||||||
Mangano-Neptunite | Na2KLiMn2+2Ti2Si8O24 | 1 | ||||||||||||||||
Monazite-(Ce) | (Ce,La,Nd,Sm) PO4LiAl(PO4)(OH) | FUE | 1 | 1 | 1 | 1 | ||||||||||||
GC | ||||||||||||||||||
Montebrasite | CaMgSiO4 | 1 | 1 | |||||||||||||||
Monticellite | Ti(□,Ca,Na)3(Ca,REE)4(Si2O7)2[H2O,OH,F]4·H2O | FUE | 1 | |||||||||||||||
Mosandrite-(Ce) | Na2BeSi4O10 4H2O | 1 | 1 | 1 | 1 | |||||||||||||
Nabesite | Na6-8(Nb,Ti)4[(OH,O)2|Si4O12]2·8H2O | 1 | 1 | 1 | 1 | 1 | ||||||||||||
Nenadkevichite | KNa2Li(Fe2+,Mn)2Ti2Si8O24 | 1 | 1 | |||||||||||||||
Neptunite | Ca7Nb(Si2O7)2O3F | 1 | 1 | 1 | ||||||||||||||
Niocalite | NaBe(CO3)(OH) 2H2O | FUE | 1 | 1 | 1 | 1 | 1 | |||||||||||
Niveolanite | (Ce,La)(Sr,Ca)Na2(Na,Mn)(Zn,Mg)Si6O17 | 1 | ||||||||||||||||
Nordite-(Ce) | NaCa(Mn,Fe)(Ti,Nb,Zr)(Si2O7)OF | 1 | ||||||||||||||||
Normandite | Li4Na12Y12(PO4)12(CO3)4(F, OH)8 | 1 | 1 | 1 | ||||||||||||||
Peatite-(Y) | CaTiO3 | 1 | ||||||||||||||||
Perovskite | (La,Ce,Ca)4(Fe2+,Mn)(Ti,Fe3+,Al)4[(Si2O7)O4]2 | FUE | ||||||||||||||||
Perrierite-(La) | (La,Ce,Ca)4(Fe2+,Mn)(Ti,Fe3+,Al)4[(Si2O7)O4]2 | 1 | 1 | |||||||||||||||
Perrierite-(Ce) | LiAl(Si4O10) | 1 | ||||||||||||||||
Petalite | Mn4Nb6O19 14H2O | 1 | ||||||||||||||||
Peterandresenite | Be2SiO4 | 1 | ||||||||||||||||
Phenakite | (Cs0.75Na0.25)(Si2Al)O6·nH2O | 1 | 1 | |||||||||||||||
Pollucite | KLi2AlSi4O10(F,OH)2 | 1 | 1 | 1 | 1 | |||||||||||||
Polylithionite | K(Ti4+7Fe3+)O16 | 1 | 1 | 1 | ||||||||||||||
Priderite | (Na,Ca)2Nb2O6(OH,F) | 1 | 1 | |||||||||||||||
Pyrochlore | Ce(PO4)·H2O | FUE | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||||
Rhabdophane-(Ce) | (Ca3 Ce) Na(NaCa)(TiNb)(Si2O7)2(OF)F2 | GC | 1 | |||||||||||||||
Rinkite-(Ce) | Na4Zr2TiO4(CO3)4 | 1 | 1 | 1 | ||||||||||||||
Sabinaite | Na2CeSi6O14(OH)·nH2O | 1 | ||||||||||||||||
Sazhinite-(Ce) | CaWO4 | 1 | 1 | |||||||||||||||
Scheelite | Na2Ba2Mg2Ti2(Si2O7)2O2F2 | 1 | ||||||||||||||||
Schüllerite | MgF2 | 1 | 1 | |||||||||||||||
Sellaite | (K,Na,Ba)3(Ti,Nb)2Si4O14 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||||
Shcherbakovite | Na4SnBe2Si6O16(OH)4 | 1 | 1 | |||||||||||||||
Sørensenite | LiAlSi2O6 | 1 | ||||||||||||||||
Spodumene | Na14Mn2+2(Fe3+, Mn3+)2Ce6(Zr,Th)(Si6O18)2(PO4)6(HPO4)(OH)2 · 2H2O | 1 | 1 | 1 | ||||||||||||||
Steenstrupine-(Ce) | SrNa2Al4Si4O16 | 1 | ||||||||||||||||
Stronalsite | KLiMg2Si4O10F2 | |||||||||||||||||
Tainiolite | (Fe2+,Mn2+)(Ta,Nb)2O6 | 1 | 1 | |||||||||||||||
Tapiolite-(Fe) | CaTiSiO5 | 1 | 1 | |||||||||||||||
Titanite | (Ca,K,Na)2(Ti,Nb)2(Si4O12)(OH,O)2·4H2O(Ca,Mn)4Be3Si6O17(OH)4 3H2O | FUE | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||
GC | ||||||||||||||||||
Tsepinite-(Ca/K) | Ca19(Mg, Mn2+)2(Al, Mn3+, Fe3+)10Mn3+[O|(OH)9|(SiO4)10|(Si2O7)4] | 1 | 1 | 1 | ||||||||||||||
Tvedalite | NaF | 1 | 1 | |||||||||||||||
Vesuvianite-(Mn) | (Na,Ca,K)5(Ti,Nb)4(Si6BeAl)O26·3H2O | FUE | 1 | 1 | ||||||||||||||
Villieaumite | Na11Nb2Ti3+Si4O12(PO4)2O5F2 | 1 | 1 | 1 | ||||||||||||||
Vinogradovite | K2ZrSi3O9 | 1 | ||||||||||||||||
Vuonnemite | Na2KLi(Mn2+,Fe2+)2V4+2[Si8O24] | 1 | 1 | 1 | ||||||||||||||
Wadeite | Na2Ca4ZrNb(Si2O7)2O3F | 1 | ||||||||||||||||
Watatsumiite | CaSiO3 | 1 | ||||||||||||||||
Woehlerite | YPO4 | 1 | 1 | 1 | 1 | 1 | ||||||||||||
Wollastonite | KLiFe2+Al(AlSi3)O10(F,OH)2 | FUE | 1 | 1 | 1 | 1 | ||||||||||||
Xenotime-(Y) | ZrSiO4 | FUE | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||||
Zinnwaldite | CaZrTi2O7 | 1 | ||||||||||||||||
Zircon | NaY(CO3)2·6H2O | FUE | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||
Zirconolite | (Y,La,Ca,Th)(Ti,Nb)2(O,OH)6 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||||||
(b) | ||||||||||||||||||
Name | MnS | Puerto de Santiago | Alcala | San Juan | P. d. Paraiaso | Los Humilladeros | P.d. Enramada | Los Abrigos | Centinela | La Mareta | Mt. Pelada | Tajao | B. Hondo | Mt. Reventada | Los Blanquitos | Poris de Abona | ||
Alabandite | Mn5(SiO4)2(OH)2 | 1 | 1 | |||||||||||||||
Alleghanyite | PbSO4 | 1 | 1 | |||||||||||||||
Anglesite | Ca(Fe2+,Mg,Mn)(CO3)2 | 1 | 1 | 1 | ||||||||||||||
Ankerite | MnV2O6 4H2O | 1 | 1 | 1 | 1 | |||||||||||||
Ansermetite | Cu3(CO3)2(OH)2 | 1 | 1 | |||||||||||||||
Name | (Mn3+,Fe3+)2O3 | 1 | 1 | |||||||||||||||
Bixbyite | Ca2(Fe2+,Mn)Fe3+Si5O14(OH) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||||
Babingtonite | Mn2+Mn63+O8SiO4 | 1 | 1 | |||||||||||||||
Braunite | CaMn2+Si2O6 | 1 | 1 | |||||||||||||||
Bustamite | Mn2+3Si2O5(OH)4 | 1 | ||||||||||||||||
Caryopilite | (Ca0.75Mn0.25)4(Fe0.6Mn0.3Al0.1)4(OH)4(V0.6Mg0.3Al0.1)2(O0.75(OH)0.25)4(Si3O10)(SiO4)2 | 1 | 1 | 1 | ||||||||||||||
Cassagnaite | PbCO3 | 1 | ||||||||||||||||
Cerussite | U(SiO4)1−x(OH)4x | 1 | ||||||||||||||||
Coffinite | Cu | 1 | ||||||||||||||||
Copper | PbCl2 | 1 | ||||||||||||||||
Cotunnite | Fe2+V23+O4 | 1 | 1 | 1 | ||||||||||||||
Coulsonite | Cu2O | 1 | 1 | |||||||||||||||
Cuprite | PbZn(VO4)(OH) | 1 | ||||||||||||||||
Descloizite | Ca2(Mn,Fe2+)(PO4)2·2H2O | 1 | 1 | 1 | ||||||||||||||
Fairfieldite | (Ca0.6Na0.3K0.1)0.9(V0.55V0.3Fe0.1Ti0.05)8O20·4H2O | 1 | ||||||||||||||||
Fernandinite | Fe3+4V5+4O16·5H2O | 1 | 1 | |||||||||||||||
Fervanite | Pb3Cl4F(OH)2 | 1 | ||||||||||||||||
Fiedlerite | Mn2+6V5+(SiO4)2(O,OH)6 | 1 | ||||||||||||||||
Franciscanite | (Mn,Fe2+,Mg)(Al,Fe3+)2O4 | 1 | 1 | |||||||||||||||
Galaxite | PbS | 1 | 1 | |||||||||||||||
Galenite | Mn52+[(OH)2|PO4]2 | 1 | 1 | 1 | 1 | |||||||||||||
Gatehouseite | Au | 1 | ||||||||||||||||
Gold | Mn2+(S4+O3)·3H2O | 1 | 1 | |||||||||||||||
Gravegliaite | Mn3+O(OH) | 1 | 1 | |||||||||||||||
Groutite | Mn2+Mn23+O4 | 1 | ||||||||||||||||
Hausmannite | CaV65+O16·9H2O | 1 | ||||||||||||||||
Hewettite | Ba(Mn4+6Mn3+2)O16 | 1 | ||||||||||||||||
Hollandite | (Mn2+,Fe2+,Mg)(Fe3+,Mn3+)2O4 | 1 | 1 | 1 | 1 | |||||||||||||
Jacobsite | CaMnSi2O6 | 1 | 1 | |||||||||||||||
Johannsenite | MnAl2Si2O6(OH)4 | 1 | ||||||||||||||||
Karpholite | Pb14(VO4)2O9Cl4 | 1 | ||||||||||||||||
Kombatite | CaMn2+(CO3)2 | 1 | 1 | |||||||||||||||
Kutnohorite | Pb2(SO4)O | 1 | 1 | 1 | 1 | 1 | 1 | |||||||||||
Lanarkite | PbCl(OH) | 1 | ||||||||||||||||
Laurionite | Mn7(SiO4)3(OH)2 | 1 | 1 | |||||||||||||||
Leucophoenicite | PbO | 1 | 1 | |||||||||||||||
Litharge | PbTiO3 | 1 | ||||||||||||||||
Macedonite | CaMn23+O4 | 1 | 1 | |||||||||||||||
Marokite | NaCaMn3Si5O14(OH) | 1 | ||||||||||||||||
Marsturite | PbO | 1 | ||||||||||||||||
Massicot | PbFCl | 1 | ||||||||||||||||
Matlockite | MgV23+O4 |