Fast-Curing Geopolymer Foams with an Enhanced Pore Homogeneity Derived by Hydrogen Peroxide and Sodium Dodecyl Sulfate Surfactant
Abstract
1. Introduction
2. Experimental
2.1. Materials
2.2. Mix Proportions and Fabrication of Specimens
2.3. Testing Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Wang, Y.-S.; Alrefaei, Y.; Dai, J.-G. Silico-Aluminophosphate and Alkali-Aluminosilicate Geopolymers: A Comparative Review. Front. Mater. 2019, 6, 106. [Google Scholar] [CrossRef]
- Zhang, P.; Gao, Z.; Wang, J.; Guo, J.; Hu, S.; Ling, Y. Properties of fresh and hardened fly ash/slag based geopolymer concrete: A review. J. Clean. Prod. 2020, 270, 122389. [Google Scholar] [CrossRef]
- Studart, A.R.; Gonzenbach, U.T.; Tervoort, E.; Gauckler, L.J. Processing routes to macroporous ceramics: A review. J. Am. Ceram. Soc. 2006, 89, 1771–1789. [Google Scholar] [CrossRef]
- Novais, R.M.; Pullar, R.; Labrincha, J. Geopolymer foams: An overview of recent advancements. Prog. Mater. Sci. 2020, 109, 100621. [Google Scholar] [CrossRef]
- Shimizu, T.; Matsuura, K.; Furue, H.; Matsuzak, K. Thermal conductivity of high porosity alumina refractory bricks made by a slurry gelation and foaming method. J. Eur. Ceram. Soc. 2013, 33, 3429–3435. [Google Scholar] [CrossRef]
- Meille, S.; Lombardi, M.; Chevalier, J.; Montanaro, L. Mechanical properties of porous ceramics in compression: On the transition between elastic, brittle, and cellular behavior. J. Eur. Ceram. Soc. 2012, 32, 3959–3967. [Google Scholar] [CrossRef]
- Bagherian, E.; Ariffin, M.K.; Sulaiman, S. Development of a Ceramic Foam Filter for Filtering Molten Aluminum Alloy in Casting Processes. Ph.D. Thesis, Universiti Putra Malaysia, Serdang, Malaysia, 2009. [Google Scholar]
- Geus, J.W.; Van Giezen, J. Catalysts supported by porous ceramic layers on ceramic or metallic substrates. MRS Online Proc. Libr. 1996, 454, 147. [Google Scholar] [CrossRef]
- Barhate, R.S.; Ramakrishna, S. Nanofibrous filtering media: Filtration problems and solutions from tiny materials. J. Membr. Sci. 2007, 296, 1–8. [Google Scholar] [CrossRef]
- Chou, K.-S.; Lee, T.-K.; Liu, F.-J. Sensing mechanism of a porous ceramic as humidity sensor. Sens. Actuators B Chem. 1999, 56, 106–111. [Google Scholar] [CrossRef]
- Wongkvanklom, A.; Posi, P.; Kasemsiri, P. Strength, thermal conductivity and sound absorption of cellular lightweight high calcium fly ash geopolymer concrete. Eng. Appl. Sci. Res. 2021, 48, 487–496. [Google Scholar]
- Zhu, L.; Li, S.; Li, Y.; Xu, N. Novel applications of waste ceramics on the fabrication of foamed materials for exterior building walls insulation. Constr. Build. Mater. 2018, 180, 291–297. [Google Scholar] [CrossRef]
- Wang, S.; Li, H.; Zou, S.; Zhang, G. Experimental research on a feasible rice husk/geopolymer foam building insulation material. Energy Build. 2020, 226, 110358. [Google Scholar] [CrossRef]
- Seeber, B.S.M.; Gonzenbach, U.T.; Gauckler, L.J. Mechanical properties of highly porous alumina foams. J. Mater. Res. 2013, 28, 2281–2287. [Google Scholar] [CrossRef]
- Sarkar, N.; Park, J.G.; Mazumder, S.; Pokhrel, A.; Aneziris, C.G.; Kim, I.J. Effect of amphiphile chain length on wet foam stability of porous ceramics. Ceram. Int. 2015, 41, 4021–4027. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Li, Y.; Sang, S.; Li, S. Effects of pore structure on thermal conductivity and strength of alumina porous ceramics using carbon black as pore-forming agent. Ceram. Int. 2016, 42, 8221–8228. [Google Scholar] [CrossRef]
- Brown, R.C.; Harrison, P.T. Alkaline earth silicate wools–A new generation of high temperature insulation. Regul. Toxicol. Pharmacol. 2012, 64, 296–304. [Google Scholar] [CrossRef]
- Provis, J.L.; Van Deventer, J.S.J. Geopolymers: Structures, Processing, Properties and Industrial Applications; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Łach, M.; Mierzwiński, D.; Korniejenko, K.; Mikuła, J. Geopolymer foam as a passive fire protection. MATEC Web Conf. 2018, 247, 00031. [Google Scholar] [CrossRef][Green Version]
- Oo, H.M.; Mohamed-Kamari, H.; Wan-Yusoff, W.M.D. Optical Properties of Bismuth Tellurite Based Glass. Int. J. Mol. Sci. 2012, 13, 4623–4631. [Google Scholar] [CrossRef]
- Kovářík, T.; Hájek, J.; Pola, M.; Rieger, D.; Svoboda, M.; Beneš, J.; Šutta, P.; Deshmukh, K.; Jandová, V. Cellular ceramic foam derived from potassium-based geopolymer composite: Thermal, mechanical and structural properties. Mater. Des. 2021, 19, 109355. [Google Scholar] [CrossRef]
- Pokhrel, A.; Seo, D.N.; Lee, S.T.; Kim, I.J. Processing of porous ceramics by direct foaming: A review. J. Korean Ceram. Soc. 2013, 50, 93–102. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, R.; Gong, L.; Li, Y.; Cao, W.; Cheng, X. Development of porous fly ash-based geopolymer with low thermal conductivity. Mater. Des. 2015, 65, 529–533. [Google Scholar] [CrossRef]
- Ducman, V.; Korat, L. Characterization of geopolymer fly-ash based foams obtained with the addition of Al powder or H2O2 as foaming agents. Mater. Charact. 2016, 113, 207–213. [Google Scholar] [CrossRef]
- Novais, R.M.; Buruberri, L.H.; Ascensão, G.; Seabra, M.P.; Labrincha, J. Porous biomass fly ash-based geopolymers with tailored thermal conductivity. J. Clean. Prod. 2016, 119, 99–107. [Google Scholar] [CrossRef]
- Prud’homme, E.; Michaud, P.; Joussein, E.; Peyratout, C.; Smith, A.; Arrii-Clacens, S.; Clacens, J.; Rossignol, S. Silica fume as porogent agent in geo-materials at low temperature. J. Eur. Ceram. Soc. 2010, 30, 1641–1648. [Google Scholar] [CrossRef]
- Natali Murri, A.; Medri, V.; Papa, E.; Laghi, L.; Mingazzini, C.; Landi, E. Porous geopolymer insulating core from a metakaolin/biomass ash composite. Environments 2017, 4, 86. [Google Scholar] [CrossRef]
- Davidovits, J.G. Geopolymer Chemistry and Applications; Institute Geopolymer: Saint-Quentin, France, 2008. [Google Scholar]
- Łach, M.; Korniejenko, K.; Mikuła, J. Thermal insulation and thermally resistant materials made of geopolymer foams. Procedia Eng. 2016, 151, 410–416. [Google Scholar] [CrossRef]
- Jiang, N.; Yu, X.; Sheng, Y.; Zong, R.; Li, C.; Lu, S. Role of salts in performance of foam stabilized with sodium dodecyl sulfate. Chem. Eng. Sci. 2020, 216, 115474. [Google Scholar] [CrossRef]
- Han, Y.; Yang, J.; Jung, M.; Han, S.; Kim, S.; Jeon, H.-S. Controlling the pore size and connectivity of alumina-particle-stabilized foams using sodium dodecyl sulfate: Role of surfactant concentration. Langmuir 2020, 36, 10331–10340. [Google Scholar] [CrossRef]
- Wang, M. Geopolymerization Mechanism of Aluminosilicate Geopolymer and Microstructure and Properties of Fly Ash Cenosphere/Geopolymer Composite; Harbin Institute of Technology: Harbin, China, 2011. [Google Scholar]
- Bondar, D.; Lynsdale, C.; Milestone, N.B.; Hassani, N.; Ramezanianpour, A. Effect of type, form, and dosage of activators on strength of alkali-activated natural pozzolans. Cem. Concr. Compos. 2011, 33, 251–260. [Google Scholar] [CrossRef]
- Rocha, T.d.S.; Dias, D.P.; França, F.C.C.; de Salles Guerra, R.R.; de Oliveira, L.R.D.C. Metakaolin-based geopolymer mortars with different alkaline activators (Na+ and K+). Constr. Build. Mater. 2018, 178, 453–461. [Google Scholar] [CrossRef]
- Fasihnikoutalab, M.H.; Pourakbar, S.; Ball, R.J.; Huat, B.K. The Effect of Olivine Content and Curing Time on the Strength of Treated Soil in Presence of Potassium Hydroxide. Int. J. Geosynth. Ground Eng. 2017, 3, 12. [Google Scholar] [CrossRef]
- Li, N.; Shi, C.; Wang, Q.; Zhang, Z.; Ou, Z. Composition design and performance of alkali-activated cements. Mater. Struct. 2017, 50, 178. [Google Scholar] [CrossRef]
- Hafid, K.E.; Hajjaji, M. Geopolymerization of glassand silicate-containing heated clay. Constr. Build. Mater. 2018, 159, 598–609. [Google Scholar] [CrossRef]
- Gomez-Zamorano, L.Y.; Vega-Cordero, E.; Struble, L. Composite geopolymers of metakaolin and geothermal nanosilica waste. Constr. Build. Mater. 2016, 115, 269–276. [Google Scholar] [CrossRef]
- Bai, C.; Colombo, P. Processing, properties and applications of highly porous geopolymers: A review. Ceram. Int. 2018, 44, 16103–16118. [Google Scholar] [CrossRef]
- Siyal, A.A.; Shamsuddin, M.R.; Rabat, N.E.; Zulfiqar, M.; Man, Z.; Low, A. Fly ash based geopolymer for the adsorption of anionic surfactant from aqueous solution. J. Clean. Prod. 2019, 229, 232–243. [Google Scholar] [CrossRef]
- Ohji, T.; Fukushima, M. Macro-porous ceramics: Processing and properties. Int. Mater. Rev. 2012, 57, 115–131. [Google Scholar] [CrossRef]
- ASTM C39/C39M; Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, American Society for Testing and Materials International (ASTM): West Conshohocken, PA, USA, 2015.
- ASTM E136-19a; Standard Test Method for Assessing Combustibility of Materials Using a Vertical Tube Furnace at 750 °C. American Society for Testing and Materials International (ASTM): West Conshohocken, PA, USA, 2019.
- ASTM E2652-18; Standard Test Method for Assessing Combustibility of Materials Using a Tube Furnace with a Cone-Shaped Airflow Stabilizer, at 750 °C. American Society for Testing and Materials International (ASTM): West Conshohocken, PA, USA, 2018.
- ISO 1182; Reaction to Fire Tests for Products—Non Combustibility Test. International Organization for Standardization: Geneva, Switzerland, 2010.
- Bai, C.; Colombo, P. High-porosity geopolymer membrane supports by peroxide route with the addition of egg white as surfactant. Ceram. Int. 2017, 43, 2267–2273. [Google Scholar] [CrossRef]
- Bai, C.; Franchin, G.; Elsayed, H.; Conte, A.; Colombo, P. High strength metakaolin-based geopolymer foams with variable macroporous structure. J. Eur. Ceram. Soc. 2016, 36, 4243–4249. [Google Scholar] [CrossRef]
- Korat, L.; Ducman, V. The influence of the stabilizing agent SDS on porosity development in alkali-activated fly-ash based foams. Cem. Concr. Compos. 2017, 80, 168–174. [Google Scholar] [CrossRef]
- Novais, R.M.; Ascensão, G.; Buruberri, L.; Senff, L.; Labrincha, J. Influence of blowing agent on the fresh-and hardened-state properties of lightweight geopolymers. Mater. Des. 2016, 108, 551–559. [Google Scholar] [CrossRef]
- Samson, G.; Cyr, M. Porous structure optimisation of flash-calcined metakaolin/fly ash geopolymer foam concrete. Eur. J. Environ. Civ. Eng. 2018, 22, 1482–1498. [Google Scholar] [CrossRef]
- Samson, G.; Cyr, M.; Gao, X.X. Thermomechanical performance of blended metakaolin-GGBS alkali-activated foam concrete. Constr. Build. Mater. 2017, 157, 982–993. [Google Scholar] [CrossRef]
- Petlitckaia, S.; Poulesquen, A. Design of lightweight metakaolin based geopolymer foamed with hydrogen peroxide. Ceram. Int. 2019, 45, 1322–1330. [Google Scholar] [CrossRef]
- Yan, S.; Zhang, F.; Liu, J.; Ren, B.; He, P.; Jia, D.; Yang, J. Green synthesis of high porosity waste gangue microsphere/geopolymer composite foams via hydrogen peroxide modification. J. Clean. Prod. 2019, 227, 483–494. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Z.; Zhang, Y.; Li, D. Preparation and characterization of ultra-lightweight foamed geopolymer (UFG) based on fly ash-metakaolin blends. Constr. Build. Mater. 2018, 168, 771–779. [Google Scholar] [CrossRef]
- Duan, P.; Song, L.; Yan, C.; Ren, D.; Li, Z. Novel thermal insulating and lightweight composites from metakaolin geopolymer and polystyrene particles. Ceram. Int. 2017, 43, 5115–5120. [Google Scholar] [CrossRef]
Sample | Weight of Input Materials (g) | |||||||
---|---|---|---|---|---|---|---|---|
GP and Additives | Activators | Foaming Agents | ||||||
MK | Ca(OH)2 | F-SiO2 | KOH | K2SiO3 | H2O | H2O2 | SDS | |
H-5% | 20 | 1.50 | 0.60 | 6.36 | 6.67 | 17.29 | 1 | - |
H-10% | 20 | 1.50 | 0.60 | 6.36 | 6.67 | 17.29 | 2 | - |
H-15% | 20 | 1.50 | 0.60 | 6.36 | 6.67 | 17.29 | 3 | - |
HS-5% | 20 | 1.50 | 0.60 | 6.36 | 6.67 | 17.29 | 1 | 1 |
HS-10% | 20 | 1.50 | 0.60 | 6.36 | 6.67 | 17.29 | 2 | 1 |
HS-15% | 20 | 1.50 | 0.60 | 6.36 | 6.67 | 17.29 | 3 | 1 |
Material | Foam Agent | Bulk-Density (g/cm3) | Curing Time (d) | Porosity (%) | σC (MPa) | TC (W/m·K) | Ref. | |
---|---|---|---|---|---|---|---|---|
MK | H2O2 | 0.30–0.58 | ~780 | 14 (C) | 74–87 | 0.30–4.40 | 0.09–0.16 | [46] |
MK | H2O2 | 0.40–0.51 | ~247 | 10 (C) | 62–81 | 2.19–3.11 | NA | [47] |
MK | H2O2 ★ | 0.48 | ~30 | 5 | ~54 | 3.63 | 0.0803 | This work |
MK | H2O2 | 0.75 | ~100 | 5 | ~29 | 1.57 | 0.0654 | |
Fly ash | H2O2 | 0.24–0.34 | ~300 | 2 (C) | 79–81 | 0.60–0.38 | 0.07–0.09 | [23] |
Biomass fly ash | H2O2 | 0.56–1.20 | ~105 | 28 | NA | 0.12–0.42 | 0.005–0.39 | [25] |
Fly ash | H2O2 ★ | 0.13–0.58 | ~600 | 4 (C) | NA | 2.60–12.20 | NA | [48] |
MK + Fly ash | H2O2 | 0.44–1.10 | ~300 | 28 | 52–81 | 0.26–10.00 | 0.08–0.22 | [49] |
MK + Fly ash | H2O2 ★ | 0.22–0.50 | ~160 | ~1 (C) | NA | 0.50–1.85 | 0.07–0.12 | [50] |
MK + Slag | H2O2 ★ | 0.26–0.48 | ~285 | 28 | NA | 0.53–3.34 | 0.084–0.139 | [51] |
MK | H2O2 | 0.23–1.10 | 150~3000 | ~1(C) | 28–83 | 0.57–5.90 | NA | [52] |
MK | H2O2 | 0.21–0.63 | ~100 | 7(C) | 67–93 | 0.10–5.70 | NA | [53] |
MK + Fly ash | H2O2 | 0.15–0.30 | 570–1130 | 0.5(C) | 72–85 | 0.70–2.24 | 0.062–0.085 | [54] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.W.; Lim, H.M.; Yoon, S.-Y.; Ko, H. Fast-Curing Geopolymer Foams with an Enhanced Pore Homogeneity Derived by Hydrogen Peroxide and Sodium Dodecyl Sulfate Surfactant. Minerals 2022, 12, 821. https://doi.org/10.3390/min12070821
Kim KW, Lim HM, Yoon S-Y, Ko H. Fast-Curing Geopolymer Foams with an Enhanced Pore Homogeneity Derived by Hydrogen Peroxide and Sodium Dodecyl Sulfate Surfactant. Minerals. 2022; 12(7):821. https://doi.org/10.3390/min12070821
Chicago/Turabian StyleKim, Kyung Won, Hyung Mi Lim, Seog-Young Yoon, and Hyunseok Ko. 2022. "Fast-Curing Geopolymer Foams with an Enhanced Pore Homogeneity Derived by Hydrogen Peroxide and Sodium Dodecyl Sulfate Surfactant" Minerals 12, no. 7: 821. https://doi.org/10.3390/min12070821
APA StyleKim, K. W., Lim, H. M., Yoon, S.-Y., & Ko, H. (2022). Fast-Curing Geopolymer Foams with an Enhanced Pore Homogeneity Derived by Hydrogen Peroxide and Sodium Dodecyl Sulfate Surfactant. Minerals, 12(7), 821. https://doi.org/10.3390/min12070821