Geological History of the Great Altai: Implications for Mineral Exploration
Abstract
:1. Introduction
2. Geological Structures and Metallogenic Zones of the Great Altai
3. Materials and Methods
4. Largest Mineral Deposits
4.1. Rudny-Altai Metallogenic Belt
4.2. Kalba-Narym Metallogenic Belt
4.3. West Kala Metallogenic Belt
4.4. Zharma-Saur Metallogenic Belt
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zonenshain, L.P.; Kuzmin, M.I.; Natapov, L.M. Geology of the USSR: A Plate Tectonic Synthesis. Geodynamic Series 21; American Geophysical Union: Washington, DC, USA, 1990; 242p. [Google Scholar]
- Sengor, A.C.; Natal’in, B.A.; Burtman, V.S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 1993, 364, 299–306. [Google Scholar] [CrossRef]
- Dobretsov, N.L.; Berzin, N.A.; Buslov, M.M. Opening and tectonic evolution of the Paleo-Asian Ocean. Int. Geol. Rev. 1995, 35, 335–360. [Google Scholar] [CrossRef]
- Filippova, I.B.; Bush, V.A.; Didenko, A.N. Middle Paleozoic subduction belts: The leading factor in the formation of the Central Asian fold-and-thrust belt. Russ. J. Earth Sci. 2001, 3, 405–426. [Google Scholar] [CrossRef]
- Windley, B.F.; Alexeiev, D.; Xiao, W.; Kröner, A.; Badarch, G. Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. Lond. 2007, 164, 31–47. [Google Scholar] [CrossRef]
- Xiao, W.J.; Huang, B.; Han, C.; Sun, S.; Li, J. A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens. Gondwana Res. 2010, 18, 253–273. [Google Scholar] [CrossRef]
- Xiao, W.J.; Windley, B.F.; Han, C.M.; Liu, W.; Wan, B.; Zhang, J.; Ao, S.J.; Zhang, Z.Y.; Song, D.F. Late Paleozoic to Early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia. Earth Sci. Rev. 2018, 186, 94–128. [Google Scholar] [CrossRef]
- Dyachkov, B.A.; Mizernaya, M.A.; Kuzmina, O.N.; Zimanovskaya, N.A.; Oitseva, T.A. Tectonics and metallogeny of East Kazakhstan. In Tectonics Problems of Regional Setting; IntechOpen Limited: London, UK, 2018; pp. 67–84. [Google Scholar]
- Yolkin, E.A.; Sennikov, N.V.; Buslov, M.M.; Yazikov, A.Y.; Gratsianova, R.T.; Bakharev, N.K. Paleogeographic reconstruction of the Western Altai-Sayan area in the Ordovician, Silurian, and Devonian and their geodynamic interpretation. Russ. Geol. Geophys. 1994, 35, 118–144. [Google Scholar]
- Saraev, S.V.; Baturina, T.P.; Bakharev, N.K.; Izokh, N.G.; Sennikov, N.V. Middle–Late Devonian island-arc volcanosedimentary complexes in northwestern Rudny Altai. Russ. Geol. Geophys. 2012, 53, 982–996. [Google Scholar] [CrossRef]
- Kuibida, M.L.; Murzin, O.V.; Kruk, N.N.; Safonova, I.Y.; Sun, M.; Komiya, T.; Wong, J.; Aoki, S.; Murzina, N.M.; Nikolaeva, I.V.; et al. Whole-rock geochemistry and U-Pb ages of Devonian bimodal-type rhyolites from the Rudny Altai, Russia: Petrogenesis and tectonic settings. Gondwana Res. 2020, 81, 312–338. [Google Scholar] [CrossRef]
- Glorie, S.; De Grave, J.; Delvaux, D.; Buslov, M.M.; Zhimulev, F.I.; Vanhaecke, F.; Elburg, M.A.; Van den Haute, P. Tectonic history of the Irtysh shear zone (NE Kazakhstan): New constraints from zircon U/Pb dating, apatite fission track dating and palaeostress analysis. J. Asian Earth Sci. 2012, 45, 138–149. [Google Scholar] [CrossRef]
- Ermolov, P.V. Current Problems of Isotopic Geology and Metallogeny of Kazakhstan; Kazakh-Russian University: Karaganda, Kazakhstan, 2013; 206p. (In Russian) [Google Scholar]
- Li, P.; Sun, M.; Rosenbaum, G.; Cai, K.; Yu, Y. Structural evolution of the Irtysh Shear Zone (northwestern China) and implications for the amalgamation of arc systems in the Central Asian Orogenic Belt. J. Struct. Geol. 2015, 80, 142–156. [Google Scholar] [CrossRef]
- Kotler, P.D.; Kruk, N.N.; Khromykh, S.V.; Navozov, O.V. The composition and sources of Kalba-Narym terrain sediments (Eastern Kazakhstan). Tomsk. State Univ. J. 2015, 400, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Kotler, P.D.; Khromykh, S.V.; Kruk, N.N.; Sun, M.; Li, P.; Khubanov, V.B.; Semenova, D.V.; Vladimirov, A.G. Granitoids of the Kalba batholith, Eastern Kazakhstan: U–Pb zircon age, petrogenesis and tectonic implications. Lithos 2021, 388–389, 106056. [Google Scholar] [CrossRef]
- Khromykh, S.V.; Tsygankov, A.A.; Kotler, P.D.; Navozov, O.V.; Kruk, N.N.; Vladimirov, A.G.; Travin, A.V.; Yudin, D.S.; Burmakina, G.N.; Khubanov, V.B.; et al. Late Paleozoic granitoid magmatism of Eastern Kazakhstan and Western Transbaikalia: Plume model test. Russ. Geol. Geophys. 2016, 57, 773–789. [Google Scholar] [CrossRef]
- Safonova, I.; Komiya, T.; Romer, R.L.; Simonov, V.; Seltmann, R.; Rudnev, S.; Yamamoto, S.; Sun, M. Supra-subduction igneous formations of the Char ophiolite belt, East Kazakhstan. Gondwana Res. 2018, 59, 159–179. [Google Scholar] [CrossRef]
- Khromykh, S.V.; Semenova, D.V.; Kotler, P.D.; Gurova, A.V.; Mikheev, E.I.; Perfilova, A.A. Orogenic volcanism in Eastern Kazakhstan: Composition, age, and geodynamic position. Geotectonics 2020, 54, 510–528. [Google Scholar] [CrossRef]
- Safonova, I.; Perfilova, A.; Obut, O.; Kotler, P.; Aoki, S.; Komiya, T.; Wang, B.; Sun, M. Traces of intra-oceanic arcs recorded in sandstones of eastern Kazakhstan: Implications from U–Pb detrital zircon ages, geochemistry, and Nd–Hf isotopes. Int. J Earth Sci. 2021, 1–20. [Google Scholar] [CrossRef]
- Degtyarev, K.E.; Tretyakov, A.A.; Shatagin, K.N.; Kovach, V.P. The formation processes and isotopic structure of continental crust of the Chingiz range Caledonides (Eastern Kazakhstan). Geotectonics 2015, 49, 485–514. [Google Scholar] [CrossRef]
- Shcherba, G.N.; D’yachkov, B.A.; Stuchevsky, N.I.; Nakhtigal, G.P.; Antonenko, A.N.; Lubetsky, V.N. Great Altai: Geology and Metallogeny. Book 1. Geological Construction; Gylym: Almaty, Kazakhstan, 1998; 304p. (In Russian) [Google Scholar]
- Khromykh, S.V. Basic and associated granitoid magmatism and geodynamic evolution of the Altai accretion–collision system (Eastern Kazakhstan). Russ. Geol. Geophys. 2022, 63, 279–299. [Google Scholar] [CrossRef]
- Volkova, N.I.; Tarasova, E.N.; Polyanskii, N.V.; Vladimirov, A.G.; Khomyakov, V.D. High-pressure rocks in the serpentinite melange of the Chara zone, Eastern Kazakhstan: Geochemistry, petrology, and age. Geochem. Int. 2008, 46, 386–401. [Google Scholar] [CrossRef]
- Vladimirov, A.G.; Kruk, N.N.; Rudnev, S.N.; Khromykh, S.V. Geodynamics and granitoid magmatism of collision orogens. Russ. Geol. Geophys. 2003, 44, 1321–1338. [Google Scholar]
- Vladimirov, A.G.; Kruk, N.N.; Khromykh, S.V.; Polyansky, O.P.; Chervov, V.V.; Vladimirov, V.G.; Travin, A.V.; Babin, G.A.; Kuibida, M.L.; Khomyakov, V.D. Permian magmatism and lithospheric deformation in the Altai caused by crustal and mantle thermal processes. Russ. Geol. Geophys. 2008, 49, 468–479. [Google Scholar] [CrossRef]
- Khromykh, S.V.; Vladimirov, A.G.; Izokh, A.E.; Travin, A.V.; Prokop’ev, I.R.; Azimbaev, E.; Lobanov, S.S. Petrology and geochemistry of gabbro and picrites from the Altai collisional system of Hercynides: Evidence for the activity of the Tarim plume. Russ. Geol. Geophys. 2013, 54, 1288–1304. [Google Scholar] [CrossRef]
- Khromykh, S.V.; Tsygankov, A.A.; Burmakina, G.N.; Kotler, P.D.; Sokolova, E.N. Mantle-crust interaction in petrogenesis of gabbro-granite association in Preobrazhenka intrusion, Eastern Kazakhstan. Petrology 2018, 26, 368–388. [Google Scholar] [CrossRef]
- Khromykh, S.V.; Kotler, P.D.; Izokh, A.E.; Kruk, N.N. A review of Early Permian (300–270 Ma) magmatism in Eastern Kazakhstan and implications for plate tectonics and plume interplay. Geodyn. Tectonophys. 2019, 10, 79–99. [Google Scholar] [CrossRef]
- Khromykh, S.V.; Izokh, A.E.; Gurova, A.V.; Cherdantseva, M.V.; Savinsky, I.A.; Vishnevsky, A.V. Syncollisional gabbro in the Irtysh shear zone, Eastern Kazakhstan: Compositions, geochronology, and geodynamic implications. Lithos 2019, 346–347, 105144. [Google Scholar] [CrossRef]
- Khromykh, S.V.; Volosov, A.S.; Kotler, P.D.; Semenova, D.V.; Alexeev, D.V.; Kulikova, A.V. Mafic dike belts in Zharma zone of Eastern Kazakhstan: Position, age and geodynamic implication. Vestn. D. Serikbaev Ektu 2021, 4, 15–32. [Google Scholar] [CrossRef]
- Kotler, P.D.; Khromykh, S.V.; Vladimirov, A.G.; Travin, A.V.; Kruk, N.N.; Murzintsev, N.G.; Navozov, O.V.; Karavaeva, G.S. New data on the age and geodynamic interpretation of the Kalba-Narym granitic batholith, Eastern Kazakhstan. Dokl. Earth Sci. 2015, 462, 565–569. [Google Scholar] [CrossRef]
- Kuibida, M.L.; Dyachkov, B.A.; Vladimirov, A.G.; Kruk, N.N.; Khromykh, S.V.; Kotler, P.D.; Rudnev, S.N.; Kruk, E.A.; Kuibida, Y.V.; Oitseva, T. Contrasting granitic magmatism of the Kalba fold belt (East Kazakhstan): Evidence for late Paleozoic postorogenic events. J. Asian Earth Sci. 2019, 175, 178–198. [Google Scholar] [CrossRef]
- Shcherba, G.N.; Bespayev, K.H.; D’yachkov, B.; Mysnik, A.; Ganzhenko, G.; Sapargaliyev, E. Great Altai: Geology and Metallogeny. Book 2. Metallogeny; RIO VAK RK: Almaty, Kazakhstan, 2000; 400p. (In Russian) [Google Scholar]
- Chekalin, V.M.; Dyachkov, B.A. Rudny Altai base-metal belt: Localization of massive sulfide mineralization. Geol. Ore Depos. 2013, 55, 438–454. [Google Scholar] [CrossRef]
- Gaskov, I.V. Specific features of pyrite ore-magmatic systems development in the island arc environments of Rudny Altai and Southern Urals. Litosfera 2015, 2, 17–39. (In Russian) [Google Scholar]
- Fedorov, D.T. Massive sulfide-polymetallic deposits of the Kamyshin ore field, Eastern Kazakhstan. Int. Geol. Rev. 1993, 35, 758–774. [Google Scholar] [CrossRef]
- Yudovskaya, M.A.; Grinenko, L.N.; Eremin, N.I. Genesis of the Maleev massive sulfide-polymetallic deposit (Rudnyi Altai, Kazakhstan). Geol. Ore Depos. 1997, 39, 138–155. [Google Scholar]
- Zhukov, N.M.; Kolesnikov, V.V.; Miroshnichenko, L.M.; Egembaev, K.M.; Pavlova, Z.N.; Bakarasov, E.V. Copper Deposits of Kazakhstan. Reference Book; Ministry of Ecology and Natural Resources of the Republic of Kazakhstan: Almaty, Kazakhstan, 1998; 136p.
- Lobanov, K.V. Types of massive sulfide deposits in the Rudny Altay and linear belts of their distribution. Abstracts of CERCAMS-15/SEG. In Proceedings of the Workshop Presentations “Cu-Au deposits of Central Asia”, Almaty, Kazakhstan, 17–27 October 2011. [Google Scholar]
- Ganzhenko, G.D.; Yudovskaya, M.A.; Vikentyev, I.V. Gold–polymetallic mineralization of the Ridder–Sokolnoye deposit in the Rudny Altai (Eastern Kazakhstan). Mineralogy 2018, 4, 8–34. (In Russian) [Google Scholar]
- Parilov, Y.S. Origin of Main Type of Non-Ferrous Metals Deposits from Kazakhstan (on Results of Fluid Inclusions Research); Book Print: Almaty, Kazakhstan, 2012; 266p. (In Russian) [Google Scholar]
- Chekalin, V.M. Main regularities of distribution and principal model of pyrite-polymetallic deposits in northwestern Rudny Altai. Geol. Geoph. 1991, 32, 64–74. [Google Scholar]
- Eremin, N.I.; Dergachev, A.L.; Sergeeva, N.E.; Pozdnyakova, N.V. Types of massive sulfide deposits of volcanic association. Geol. Ore Depos. 2000, 42, 177–190. (In Russian) [Google Scholar]
- Cheprasov, B.A.; Pokrovskaya, I.V.; Kovrigo, O.A. On the polygenic nature of the mineralization of the Ridder-Sokolnoye deposit. Geol. Ore Depos. 1972, 6, 30–45. (In Russian) [Google Scholar]
- Dyachkov, B.A.; Titov, D.V.; Sapargaliev, E.M. Ore belts of the Greater Altai and their ore resource potential. Geol. Ore Depos. 2009, 51, 197–211. [Google Scholar] [CrossRef]
- Dyachkov, B.A.; Mizernaya, M.A.; Pyatkova, A.P.; Bissatova, A.Y.; Miroshnikova, A.P.; Kuzmina, O.N.; Zimanovskaya, N.A.; Oitseva, T.A.; Chernenko, Z.I. On genesis of massive sulfide polymetallic ore deposits of Rudny Altai. Natl. Geol. 2021, 5, 3–16. (In Russian) [Google Scholar] [CrossRef]
- Khromykh, S.V.; Oitseva, T.A.; Kotler, P.D.; D’yachkov, B.A.; Smirnov, S.Z.; Travin, A.V.; Vladimirov, A.G.; Sokolova, E.N.; Kuzmina, O.N.; Mizernaya, M.A.; et al. Rare-Metal Pegmatite Deposits of the Kalba Region, Eastern Kazakhstan: Age, Composition and Petrogenetic Implications. Minerals 2020, 10, 1017. [Google Scholar] [CrossRef]
- Dyachkov, B.; Aitbayeva, S.; Mizernaya, M.; Amralinova, B.; Bissatova, A. New data on non-traditional types of East Kazakhstan rare metal ore. Sci. Bull. Nat. Min. Univ. 2020, 4, 11–16. [Google Scholar] [CrossRef]
- D’yachkov, B.A.; Bissatova, A.Y.; Mizernaya, M.A.; Khromykh, S.V.; Oitseva, T.A.; Kuzmina, O.N.; Zimanovskaya, N.A.; Aitbayeva, S.S. Mineralogical Tracers of Gold and Rare-Metal Mineralization in Eastern Kazakhstan. Minerals 2021, 11, 253. [Google Scholar] [CrossRef]
- Smirnov, S.Z. ScienceDirect the Fluid Regime of Crystallization of Water-Saturated Granitic and Pegmatitic Magmas: A Physicochemical Analysis. Russ. Geol. Geophys. 2015, 56, 1292–1307. [Google Scholar] [CrossRef]
- Dyachkov, B.A.; Mataibaeva, I.E.; Frolova, O.V.; Gavrilenko, O.D. Types of rare metal deposits in East Kazakhstan and mineral potential estimation. Gorn. Zhurnal 2017, 8, 45–50. (In Russian) [Google Scholar] [CrossRef]
- Daukeev, S.Z.; Uzhkenov, B.S.; Bespaev, K.A.; Miroshnichenko, L.A.; Mazurov, A.K.; Sayduakasov, M.A. Atlas of Mineral Deposit Models; K.I. Satpaev Institute of Geological Sciences: Almaty, Kazakhstan, 2004; 141p. (In Russian) [Google Scholar]
- Yong, T.; Hong, W.; Hui, Z. K-feldspar composition as an exploration tool for pegmatite-type rare metal deposits in Altay, NW China. J. Geochem. Explor. 2018, 185, 130–138. [Google Scholar]
- Dittrich, T.; Seifert, T.; Schulz, B.; Hagemann, S.; Gerdes, A.; Pfänder, J. Archean Rare-Metal Pegmatites in Zimbabwe and Western Australia: Geology and Metallogeny of Pollucite Mineralisations; Springer Briefs in Worlds Mineral Deposits; Springer: Cham, Switzerland, 2019; p. 125. [Google Scholar]
- Gonçalves, A.O.; Melgarejo, J.-C.; Alfonso, P.; Amores, S.; Paniagua, A.; Neto, A.B.; Morais, E.A.; Camprubí, A. The distribution of rare metals in the LCT pegmatites from the Giraúl field, Angola. Minerals 2019, 9, 580. [Google Scholar] [CrossRef]
- Rafailovich, M.S. Gold of the Bowels of Kazakhstan: Geology, Metallogeny, Predictive and Search Models; Almaty, Kazakhstan, 2009; 304p, Available online: https://www.geokniga.org/books/15494 (accessed on 28 March 2022). (In Russian)
- Narseev, V.A.; Gostev, Y.V.; Zakharov, A.V.; Kozlyaninov, D.M.; Matvienko, V.N.; Favorov, V.A.; Frankovskaya, N.M.; Shiganov, A.A. Bakyrchik (Geology, Geochemistry, Mineralization); TsNIGRI: Moscow, Russia, 2001; 174p. (In Russian) [Google Scholar]
- Rafailovich, M.; Mizernaya, M.; D’Yachkov, B. Large Gold Deposits in Black Shales: Formation Conditions and Features of Similarity; Luxe Media Group: Almaty, Kazakhstan, 2011; 272p. (In Russian) [Google Scholar]
- Rafailovich, M.S. Geology of Gold in Central Asia: Evolution of Mineralization, Metasomatic Formations, Explosive Breccias; Book Print: Almaty, Kazakhstan, 2013; 423p. (In Russian) [Google Scholar]
- Mizernaya, M.; Dyackov, B.; Miroshnikova, A.; Mizerny, A.; Orazbekova, G. Large sulfide-quartz stockwork gold deposits of Kazakhstan-formation conditions and predicting criteria. Visnyk Taras Shevchenko Natl. Univ. Kyiv.-Geol. 2017, 3, 82–88. [Google Scholar] [CrossRef]
- Baibatsha, A.B. Models of Precious Metal Deposits. Monograph; KazNTU: Almaty, Kazakhstan, 2014; 452p. (In Russian) [Google Scholar]
- Mizernaya, M.A.; Miroshnikova, A.P.; Pyatkova, A.P.; Akilbaeva, A.T. Main geological-industrial types of gold deposits in East Kazakhstan. Nauk. Visnyk Natsionalnoho Hirnychoho Universytetu 2019, 5, 5–11. [Google Scholar] [CrossRef]
- Mizernaya, M.; Aitbayeva, S.; Mizerny, A.; D’yachkov, B. Geochemical characteristics and metallogeny of Herzinian granitoid complexes (Eastern Kazakhstan). Nauk. Visnyk Natsionalnoho Hirnychoho Universytetu 2020, 1, 5–10. [Google Scholar] [CrossRef]
- Yakubchuk, A.; Seltmann, R.; Shatov, V.; Cole, A. The Altaids: Tectonic evolution and metallogeny. SEG Discov. 2001, 46, 1–14. [Google Scholar] [CrossRef]
- Marchenko, L.G. Micro-Nanomineralogy of Gold and Platinoids in Black Shales; Interpress: Almaty, Kazakhstan, 2010; 146p. (In Russian) [Google Scholar]
- Laumullin, T.M.; Gubaydullin, F.G. Deposits of Rare Metals and Rare-Earths Elements of Kazakhstan, Handbook; Qazgeoaqparat: Almaty, Kazakhstan, 2015; 266p. (In Russian) [Google Scholar]
- Gysi, A.P.; Williams-Jones, A.E.; Collins, P. Lithogeochemical vectors for hydrothermal processes in the Strange Lake peralkaline granitic REE-Zr-Nb deposit. Econ. Geol. 2016, 111, 1241–1276. [Google Scholar] [CrossRef]
- Mineev, D.A. Geochemistry of Apogranites and Rare-Metal Metasomatites of Northwestern Tarbagatai; Nauka: Moscow, Russia, 1968; 185p. (In Russian) [Google Scholar]
- Baisalova, A.O.; Dolgopolova, A.V.; Seltmann, R.; Stepanov, A.V.; Bekenova, G.K. Variations of chemical composition of gagarinite from the Verkhnee Espe deposit, as indicator of mineral forming conditions and position in metasomatic column. News Natl. Acad. Repub. Kazakhstan. Ser. Geol. Tech. Sci. 2017, 2, 37–45. [Google Scholar]
- Mikhailova, J.A.; Pakhomovsky, Y.A.; Ivanyuk, G.Y.; Bazai, A.V.; Yakovenchuk, V.N.; Elizarova, I.R.; Kalashnikov, A.O. REE mineralogy and geochemistry of the Western Keivy peralkaline granite massif, Kola Peninsula, Russia. Ore Geol. Rev. 2017, 82, 181–197. [Google Scholar] [CrossRef]
- Dyachkov, B.A.; Amralinova, B.B.; Mataybaeva, I.E.; Dolgopolova, A.V.; Mizerny, A.I.; Miroshnikova, A.P. Laws of formation and criteria for predicting nickel content in weathering crusts of east Kazakhstan. J. Geol. Soc. India 2017, 89, 605–609. [Google Scholar] [CrossRef]
- Lobanov, K.V.; Gaskov, I.V. The Karchiga copper massive sulfide deposit in the high-grade metamorphosed rocks of the Kurchum block: Geologic structure, formation, and metamorphism (Rudny Altai). Russ. Geol. Geophys. 2012, 53, 77–91. [Google Scholar] [CrossRef]
- Bespayev, K.A.; Globa, B.A.; Abishev, V.M.; Gulyaeva, H.Y. Gold Deposits of Kazakhstan, Directory; Qazgeoaqparat: Almaty, Kazakhstan, 2019; 298p. (In Russian) [Google Scholar]
- Mekhonoshin, A.S.; Kolotilina, T.B.; Vladimirov, A.G.; Sokol’nikova, Y.V.; Doroshkov, A.A. First data on the concentrations and distribution of noble metals in Ni-Cu sulfide ores of the South Maksut deposit (East Kazakhstan). Geodyn. Tectonophys. 2017, 8, 515–519. [Google Scholar] [CrossRef]
- Kalinin, Y.A.; Kovalev, K.R.; Serdyukov, A.N.; Gladkov, A.S.; Sukhorukov, V.P.; Naumov, E.A.; Travin, A.V.; Semenova, D.V.; Serebryakov, E.V.; Greku, E.D. Age constraints and metallogenic prediction of gold deposits in the Akzhal-Boko-Ashalin ore zone (Altai accretion-collision system). Geodyn. Tectonophys. 2021, 12, 392–408. [Google Scholar] [CrossRef]
- Mao, J.W.; Pirajno, F.; Zhang, Z.H.; Chai, F.M.; Wu, H.; Chen, S.P.; Cheng, L.S.; Yang, J.M.; Zhang, C.Q. A review of the Cu–Ni sulphide deposits in the Chinese Tianshan and Altay orogens (Xinjiang Autonomous Region, NW China): Principal characteristics and ore-forming processes. J. Asian Earth Sci. 2008, 32, 184–203. [Google Scholar] [CrossRef]
- Suiekpayev, Y.; Sapargaliyev, Y.; Bekenova, G.; Kravchenko, M.; Dolgopolova, A.; Seltmann, R. Mineralogical and geochemical features of Satpaev Ti-Zr placer deposit, East Kazakhstan. News Acad. Sci. Ser. Geol. Tech. Sci. Repub. Kazakhstan 2019, 433, 6–22. [Google Scholar] [CrossRef]
- Suiekpayev, Y.S.; Sapargaliyev, Y.M.; Dolgopolova, A.V.; Pirajno, F.; Seltmann, R.; Khromykh, S.V.; Bekenova, G.K.; Kotler, P.D.; Kravchenko, M.M.; Azelhanov, A.Z. Mineralogy, geochemistry and U-Pb zircon age of the Karaotkel Ti-Zr placer deposit, Eastern Kazakhstan and its genetic link to the Karaotkel-Preobrazhenka intrusion. Ore Geol. Rev. 2021, 131, 104015. [Google Scholar] [CrossRef]
- Uzhkenov, B.S. Rare Metals and Rare-Earths Elements of Kazakhstan; Book Print: Almaty, Kazakhstan, 2011; 277p. (In Russian) [Google Scholar]
- Polyansky, N.V.; Dobretsov, N.L.; Ermolov, P.V.; Kuzebny, V.S. Structure and geological history of Charsk ophiolitic belt. Geol. Geofiz. 1979, 5, 66–78. (In Russian) [Google Scholar]
- Dergachev, A.L.; Eremin, N.I.; Sergeeva, N.E. Volcanic-associated Besshi-type copper sulfide deposits. Mosc. Univ. Geol. Bull. 2011, 66, 274. [Google Scholar] [CrossRef]
- Polyakov, G.V.; Izokh, A.E.; Borisenko, A.S. Permian ultramafic-mafic magmatism and accompanying Cu-Ni mineralization in the Gobi-Tien Shan belt as a result of the Tarim plume activity. Russ. Geol. Geophys. 2008, 49, 455–467. [Google Scholar] [CrossRef]
- Gao, R.; Xiao, L.; Pirajno, F.; Wang, G.; He, X.; Yang, G.; Yan, S. Carboniferous–Permian extensive magmatism in the West Junggar, Xinjiang, northwestern China: Its geochemistry, geochronology, and petrogenesis. Lithos 2014, 204, 125–143. [Google Scholar] [CrossRef]
- Ernst, R.E. Large Igneous Provinces; Cambridge University Press: Cambridge, UK, 2014; 653p. [Google Scholar]
- Yarmolyuk, V.V.; Kuzmin, M.I.; Ernst, R.E. Intraplate geodynamics and magmatism in the evolution of the Central Asian Orogenic Belt. J. Asian Earth Sci. 2014, 93, 158–179. [Google Scholar] [CrossRef]
- Yakubchuk, A.S. Architecture and mineral deposit settings of the Altaid orogenic collage: A revised model. J. Asian Earth Sci. 2004, 23, 761–779. [Google Scholar] [CrossRef]
- Shen, P.; Pan, H.; Xiao, W.; Chen, X.; Seitmuratova, E.; Shen, Y. Two geodynamic-metallogenic events in the Balkhash (Kazakhstan) and the West Junggar (China): Carbiniferous porphyry Cu and Permian greisen W-Mo mineralization. Int. Geol. Rev. 2013, 55, 1660–1687. [Google Scholar] [CrossRef]
- Borisenko, A.S.; Sotnikov, V.I.; Izokh, A.E.; Polyakov, G.V.; Obolensky, A.A. Permo-Triassic mineralization in Asia and its relation to plume magmatism. Russ. Geol. Geophys. 2006, 47, 166–182. [Google Scholar]
- Pirajno, F.; Seltmann, R.; Yang, Y. A review of mineral systems and associated tectonic settings of northern Xinjiang, NW China. Geosci. Front. 2011, 2, 157–185. [Google Scholar] [CrossRef]
- Dobretsov, N.L.; Vladimirov, A.G.; Kruk, N.N. Permian–Triassic magmatism in the Altai-Sayan Fold System as a reflection of the Siberian superplume. Dokl. Earth Sci. 2005, 400, 40–43. [Google Scholar]
- Reichow, M.K.; Pringle, M.S.; Al’Mukhamedov, A.I.; Allen, M.B.; Andreichev, V.L.; Buslov, M.M.; Davies, C.E.; Fedoseev, G.S.; Fitton, J.G.; Inger, S.; et al. The timing and extent of the eruption of the Siberian Traps large igneous province: Implications for the end-Permian environmental crisis. Earth Planet Sci. Lett. 2009, 277, 9–20. [Google Scholar] [CrossRef]
- Dobretsov, N.L.; Kirdyashkin, A.A.; Kirdyashkin, A.G.; Vernikovsky, V.A.; Gladkov, I.N. Modeling of thermochemical plumes and implications for the origin of the Siberian Traps. Lithos 2008, 100, 66–92. [Google Scholar] [CrossRef]
- Sobolev, A.V.; Kuzmin, D.V.; Krivolutskaya, N.A. Petrology of the parental melts and mantle sources of Siberian Trap magmatism. Petrology 2009, 17, 253–286. [Google Scholar] [CrossRef]
- Ivanov, A.V.; He, H.; Yan, L.; Ryabov, V.V.; Shevko, A.Y.; Palesskii, S.V.; Nikolaeva, I.V. Siberian Traps large igneous province: Evidence for two flood basalt pulses around the Permo-Triassic boundary and in the Middle Triassic, and contemporaneous granitic magmatism. Earth-Sci. Rev. 2013, 122, 58–76. [Google Scholar] [CrossRef]
- Vernikovsky, V.A.; Pease, V.L.; Vernikovskaya, A.E.; Romanov, A.P.; Gee, D.G.; Travin, A.V. First report of early Triassic A-type granite and syenite intrusions from Taimyr: Product of the northern Eurasian superplume? Lithos 2003, 66, 23–36. [Google Scholar] [CrossRef]
- Vrublevskii, V.V.; Gertner, I.F.; Polyakov, G.V.; Izokh, A.E.; Krupchatnikov, V.I.; Travin, A.V.; Voitenko, N.N. Ar–Ar isotopic age of lamproite dikes of the Chua complex, Gornyi Altai. Dokl. Earth Sci. 2004, 399A, 1252–1255. [Google Scholar]
- Vernikovskaya, A.E.; Vernikovsky, V.A.; Matushkin, N.Y.; Romanova, V.I.; Berejnaya, N.G.; Larionov, A.N.; Travin, A.V. Middle Paleozoic and Early Mesozoic anorogenic magmatism of the South Yenisei Ridge: First geochemical and geochronological data. Russ. Geol. Geophys. 2010, 51, 548–562. [Google Scholar] [CrossRef]
- Kruk, N.N.; Plotnikov, A.V.; Vladimirov, A.G.; Kutolin, V.A. Geochemistry and geodynamic conditions of the trap rock formation in the Kuznetsk basin. Dokl. Earth Sci. 1999, 369A, 1387–1390. [Google Scholar]
- Buslov, M.M.; Safonova, I.Y.; Fedoseev, G.S.; Reichow, M.K.; Davies, K.; Babin, G.A. Permo-Triassic plume magmatism of the Kuznetsk Basin, Central Asia: Geology, geochronology, and geochemistry. Russ. Geol. Geophys. 2010, 51, 1021–1036. [Google Scholar] [CrossRef]
- Vasyukova, E.A.; Izokh, A.E.; Borisenko, A.S.; Pavlova, G.G.; Sukhorukov, V.P.; Anh, T.T. Early Mesozoic lamprophyres in Gorny Altai: Petrology and age boundaries. Russ. Geol. Geophys. 2011, 52, 1574–1591. [Google Scholar] [CrossRef]
- Krupchatnikov, V.I.; Vrublevskii, V.V.; Kruk, N.N. Early Mesozoic lamproites and monzonitoids of Southeastern Gorny Altai: Geochemistry, Sr-Nd isotope composition, and sources of melts. Russ. Geol. Geophys. 2015, 56, 825–843. [Google Scholar] [CrossRef]
- Gavryushkina, O.A.; Kruk, N.N.; Semenov, I.V.; Vladimirov, A.G.; Kuibida, Y.V.; Serov, P.A. Petrogenesis of Permian-Triassic intraplate gabbro-granitic rocks in the Russian Altai. Lithos 2019, 326–327, 71–89. [Google Scholar] [CrossRef]
- Vetrov, E.V.; De Grave, J.; Kotler, P.D.; Kruk, N.N.; Zhigalov, S.V.; Babin, G.A.; Fedoseev, G.S.; Vetrova, N.I. Evolution of the Kolyvan-Tomsk granitoid magmatism (Central Siberia): Insights into the tectonic transition from post-collision to intraplate settings in the northwestern part of the Central Asian Orogenic Belt. Gondwana Res. 2021, 93, 26–47. [Google Scholar] [CrossRef]
- Lyons, J.J.; Coe, R.S.; Zhao, X.X.; Renne, P.R.; Kazansky, A.Y.; Izokh, A.E.; Kungurtsev, L.V.; Mitrokhin, D.V. Paleomagnetism of the early Triassic Semeitau igneous series, eastern Kazakstan. J. Geophys. Res. Solid Earth 2002, 107, 2139. [Google Scholar] [CrossRef]
- Vladimirov, A.G.; Kozlov, M.S.; Shokalsky, S.P.; Khalilov, V.A.; Rudnev, S.N.; Kruk, N.N.; Vystavnoi, S.A.; Borisov, S.M.; Berezikov, Y.K.; Metsner, A.N.; et al. Major epochs of intrusive magmatism of Kuznetsk Alatau, Altai, and Kalba (from U-Pb isotope dates). Geol. Geofiz. Russ. Geol. Geophys. 2001, 42, 1157–1178. [Google Scholar]
Stage | Age, Ma | Method, Shcherba, 2000 | Mineralization | Deposits |
---|---|---|---|---|
Emsian | 394-390 | U-Pb | Fe (Mn, Pb, Zn) | Kholzun, Pnevsky |
Emsian-Eifelian | 390-387 | U-Pb | Zn, Pb (Cu, Au, Ag) | Ridder-Sokolny, Tishinsky |
Eifelian | 385-380 | U-Pb | Cu, Zn, Pb | Orlovka, Maleevsk |
Givetian | 378-374 | U-Pb | Cu, Zn (Pb, Au) | Nikolaevsk, Artemiev |
Orogeny | Geodynamic Settings | Rudny Altai | Kalba-Narym | West Kalba | Zharma-Saur |
---|---|---|---|---|---|
Early Paleozoic | Oceanic (O-S) | Copper sulfide (Cu, Fe, S) Karchiga deposit [73] | Cr, Ni, Co in ultramafics Char deposit [72] | ||
Late Paleozoic–Early Mesozoic | Subduction (D1-C1) | VMS Cu, Zn, Pb, Au, Ag Ridder–Sokolnoye, Artemiev deposit (this study) | |||
Collisional (C1-C2) | No magmatic events | ||||
Late Collisional (C2) | Au, Ag, Te in granodiorites and granites Sekisovka deposit [61,63] | Cu, Ni in peridotites and gabbro Alisher deposit [30] | Au, As, Ag in plagiogranites and granodiorites Bakyrchik deposit (this study) | Au in dacites and granodiorites Vasil’evka deposit [74] | |
Postcollisional (P1) Postcollisional (P2-T1) | Ta, Nb, Be, Li, Cs in granites and pegmatites Bakennoe, Yubileinoye, Belaya Gora, Kvartsevoye deposits Li, Cs pegmatites Tochka, Akhmetka deposits [48,49,50,52,77] | Au, As in monzodiorites and granites Akzhal, Achaly deposits [76] Sn, Be in granites and leucogranites Delbegetey deposit [67] | Cu, Ni, PGE in gabbro and picrite Maksut [27,75] Ta, Nb, Zr in alkaline granites Verkhnee Espe deposit (this study) | ||
Middle-Late Mesozoic | Intracontinental (K2-Pg2) | Ti, Zr in kaolinite weathering profiles Satpayev, Karaotkel deposits [78,79] Ni, Co in nontronite weathering profiles Belogorskoye deposit [72,80] | Au in kaolinite-sericite weathering profiles Zhanan deposit [74] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’yachkov, B.A.; Mizernaya, M.A.; Khromykh, S.V.; Bissatova, A.Y.; Oitseva, T.A.; Miroshnikova, A.P.; Frolova, O.V.; Kuzmina, O.N.; Zimanovskaya, N.A.; Pyatkova, A.P.; et al. Geological History of the Great Altai: Implications for Mineral Exploration. Minerals 2022, 12, 744. https://doi.org/10.3390/min12060744
D’yachkov BA, Mizernaya MA, Khromykh SV, Bissatova AY, Oitseva TA, Miroshnikova AP, Frolova OV, Kuzmina ON, Zimanovskaya NA, Pyatkova AP, et al. Geological History of the Great Altai: Implications for Mineral Exploration. Minerals. 2022; 12(6):744. https://doi.org/10.3390/min12060744
Chicago/Turabian StyleD’yachkov, Boris A., Marina A. Mizernaya, Sergey V. Khromykh, Ainel Y. Bissatova, Tatiana A. Oitseva, Anastassiya P. Miroshnikova, Olga V. Frolova, Oxana N. Kuzmina, Natalya A. Zimanovskaya, Anna P. Pyatkova, and et al. 2022. "Geological History of the Great Altai: Implications for Mineral Exploration" Minerals 12, no. 6: 744. https://doi.org/10.3390/min12060744
APA StyleD’yachkov, B. A., Mizernaya, M. A., Khromykh, S. V., Bissatova, A. Y., Oitseva, T. A., Miroshnikova, A. P., Frolova, O. V., Kuzmina, O. N., Zimanovskaya, N. A., Pyatkova, A. P., Zikirova, K., Ageyeva, O. V., & Yeskaliyev, Y. T. (2022). Geological History of the Great Altai: Implications for Mineral Exploration. Minerals, 12(6), 744. https://doi.org/10.3390/min12060744