On the Morphology and Geochemistry of Hydrothermal Crypto- and Microcrystalline Zircon Aggregates in a Peralkaline Granite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Characterization
2.2. Analytical Techniques
3. Results
3.1. Textural and Micro-Structural Patterns
3.2. Elemental and Isotope Geochemistry
3.2.1. Trace Element and REE Patterns
3.2.2. Lu-Hf Isotope Geochemistry
4. Discussion
4.1. The Formation of Crypto- and Microcrystalline Zircon Aggregates
4.2. Crystallization Conditions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wayne, D.M.; Sinha, A.K.; Hewitt, D.A. Differential response of zircon U-Pb systematics to metamorphism across a lithologic boundary: An example from the Hope Valley Shear Zone, southeastern Massachusetts, USA. Contrib. Mineral. Petrol. 1992, 109, 408–420. [Google Scholar] [CrossRef]
- Ireland, T.R.; Williams, I.S. Considerations in zircon geochronology by SIMS. Rev. Mineral. Geochem. 2003, 53, 215–241. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Scharltegger, U. The compositions of zircon in igneous and metamorphic petrogenesis. Rev. Mineral. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Harley, S.L.; Kelly, N.M. Zircon. Tiny but timely. Elements 2007, 3, 13–18. [Google Scholar] [CrossRef]
- Harley, S.L.; Kelly, N.M.; Möller, A. Zircon behavior and thermal histories of Mountain Chains. Elements 2007, 3, 25–30. [Google Scholar] [CrossRef]
- Scherer, E.E.; Whitehouse, M.J.; Münker, C. Zircon as a monitor of crustal growth. Elements 2007, 3, 19–24. [Google Scholar] [CrossRef]
- Troch, J.; Ellis, B.S.; Schmitt, A.K.; Bouvier, A.-S.; Bachmann, O. The dark side of zircon: Textural, age, oxygen isotopic and trace element evidence of fluid saturation in the subvolcanic reservoir of the Island Park-Mount Jackson Rhyolite, Yellowstone (USA). Contrib. Mineral. Petrol. 2018, 173, 54. [Google Scholar] [CrossRef]
- Watson, E.B.; Harrison, T.M. Zircon saturation revisited: Temperature and composition effects in a variety of magma types. Earth Planet. Sci. Lett. 1983, 64, 295–304. [Google Scholar] [CrossRef]
- Ferry, J.M.; Watson, E.B. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib. Mineral. Petrol. 2007, 154, 429–437. [Google Scholar] [CrossRef]
- Gervasoni, F.; Klemme, S.; Rocha-Junior, E.R.; Berndt, J. Zircon saturation in silicate melts: A new and improved model for aluminous and alkaline melts. Contrib. Mineral. Petrol. 2016, 171, 21. [Google Scholar] [CrossRef]
- Schiller, D.; Finger, F. Application of Ti-in-zircon thermometry to granite studies: Problems and possible solutions. Contrib. Mineral. Petrol. 2019, 174, 51–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballard, J.R.; Palin, M.J.; Campbell, I.H. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: Application to porphyry copper deposits. Contrib. Mineral. Petrol. 2002, 144, 347–364. [Google Scholar] [CrossRef]
- Trail, D.; Watson, E.B.; Tailby, N.D. Ce and Eu anomalies in zircon as proxies of the oxidation state of magmas. Geochim. Cosmochim. Acta 2012, 97, 70–87. [Google Scholar] [CrossRef]
- Belousova, E.A.; Griffin, W.L.; O’Reilly, S.Y.; Fisher, N.J. Igneous zircon: Trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol. 2002, 143, 602–622. [Google Scholar] [CrossRef]
- Hanchar, J.M.; van Westrenen, W. Rare earth element behavior in zircon-melt systems. Elements 2007, 3, 37–42. [Google Scholar] [CrossRef]
- Kemp, A.I.S.; Hawkesworth, C.J. Using hafnium and oxygen isotopes in zircon to unravel the record of crustal evolution. Chem. Geol. 2006, 226, 133–162. [Google Scholar]
- Valley, J.W.; Lackey, J.S.; Cavosie, A.J.; Clechenko, C.C.; Spicuzza, M.J.; Basei, M.A.S.; Bindeman, I.N.; Ferreira, V.P.; Sial, A.N.; King, E.M.; et al. 4.4 billion years of crustal maturation: Oxygen isotope ratios of magmatic zircon. Contrib. Mineral. Petrol. 2005, 150, 561–580. [Google Scholar] [CrossRef]
- Watson, E.B. Zircon in technology and everyday life. Elements 2007, 3, 52. [Google Scholar]
- Corfu, F.; Hanchar, J.M.; Hoskin, P.W.O.; Kinny, P. Atlas of zircon textures. Rev. Mineral. Geochem. 2003, 53, 469–500. [Google Scholar] [CrossRef]
- Hoskin, P.W.O. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim. Cosmochim. Acta 2005, 69, 637–648. [Google Scholar] [CrossRef]
- Geisler, T.; Schaltegger, U.; Tomaschek, F. Re-equilibration of zircon in aqueous fluids and melts. Elements 2007, 3, 43–50. [Google Scholar] [CrossRef]
- Estrade, G.; Salvi, S.; Béziat, D. Crystallization and destabilization of eudialyte-group minerals in peralkaline granite and pegmatite: A case study from the Ambohimirahavavy complex, Madagascar. Mineral. Mag. 2018, 82, 375–399. [Google Scholar] [CrossRef]
- Rubin, J.N.; Henry, C.D.; Price, J.G. Hydrothermal zircons and zircon overgrowths, Sierra Blanca Peaks, Texas. Am. Mineral. 1989, 74, 865–869. [Google Scholar]
- Bell, E.A.; Boehnke, P.; Barboni, M.; Harrison, T.M. Tracking chemical alteration in magmatic zircon using rare earth element abundances. Chem. Geol. 2019, 510, 56–71. [Google Scholar] [CrossRef]
- Vilalva, F.C.J.; Simonetti, A.; Vlach, S.R.F. Insights in the origin of the Graciosa A-type granites and syenites (Southern Brazil) from zircon U-Pb geochronology, chemistry, and Hf and O isotope data. Lithos 2019, 340–341, 20–33. [Google Scholar] [CrossRef]
- Gieré, R. Formation of rare earth minerals in hydrothermal systems. In Rare Earth Minerals. Chemistry, Origin and Ore Deposits, 1st ed.; Jones, A.P., Wall, F., Williams, C.T., Eds.; Chapman & Hall: London, UK, 1996; pp. 105–149. [Google Scholar]
- Chao, L.; Lin, L.; Sheng-Rong, L.; Santosh, M.; Jun-Feng, S. Geochemistry of hydrothermal zircon as a proxy to fingerprint ore fluids in late Mesozoic decratonic gold deposits. Ore Geol. Rev. 2022, 143, 104703. [Google Scholar]
- Geisler, T.; Rashwan, A.A.; Rahn, M.K.W.; Poller, U.; Zwingmann, H.; Pidgeon, R.T.; Schleicher, H.; Tomaschek, F. Low-temperature hydrothermal alteration of natural metamict zircons from the Eastern Desert, Egypt. Mineral. Mag. 2003, 67, 485–508. [Google Scholar] [CrossRef]
- Schaltegger, U. Hydrothermal zircon. Elements 2007, 3, 51–79. [Google Scholar] [CrossRef]
- Gualda, G.A.R.; Vlach, S.R.F. The Serra da Graciosa A-type Granites & Syenites, southern Brazil. Part 1: Regional setting and geological characterization. An. Acad. Bras. Cien. 2007, 79, 405–430. [Google Scholar]
- Vlach, S.R.F.; Siga, O., Jr.; Harara, O.M.M.; Gualda, G.A.R.; Basei, M.A.S.; Vilalva, F.C.J. Crystallization ages of the A-type magmatism of the Graciosa Province (southern Brazil): Constraints from the zircon U-Pb (ID-TIMS) dating of coeval K-rich gabbrodioritic rocks. J. S. Am. Earth Sci. 2011, 32, 407–415. [Google Scholar] [CrossRef]
- Garin, Y. Mineralogia e Petrologia da Associação Alcalina de Sienitos e Granitos de Tipo-A Do Maciço Corupá (SC). Master´s Dissertation, Institute of Geoscience, University of São Paulo, São Paulo, Brazil, 2002. (In Portuguese). [Google Scholar]
- Vlach, S.R.F. Micro-structural and major-an trace-element compositional variations of hydrothermal epidote-group minerals from a peralkaline granite, Corupá Pluton, Graciosa Province, South Brazil, and their petrological implications. An. Acad. Bras. Ciên. 2012, 84, 407–425. [Google Scholar] [CrossRef] [Green Version]
- Prazeres Filho, H.J.; Harara, O.M.M.; Basei, M.A.S.; Passarelli, C.R.; Siga, O., Jr. Litoquímica, Geocronologia U-Pb e Geologia Isotópica (Sr-Nd-Pb) das Rochas Graníticas dos Batólitos Cunhaporanga e Três Córregos na Porção Sul do Cinturão Ribeira, Estado do Paraná. Geol. USP 2003, 3, 51–70. [Google Scholar] [CrossRef] [Green Version]
- Bastin, G.F.; Heijligers, H.J.M. Progress in electron-probe microanalysis. Materwiss. Werksttech. 1990, 21, 90–92. [Google Scholar] [CrossRef] [Green Version]
- Vlach, S.R.F. Th-U-PbT dating by the electron probe microanalyzer, Part 1. Monazite: Analytical procedures and data treatment. Geol. USP Sér. Cient. 2010, 10, 61–85. [Google Scholar] [CrossRef] [Green Version]
- Andrade, S. Análises por LA-ICPMS em Zircões de Rochas Graníticas da Faixa Ribeira no Estado de São Paulo—SE Brasil: Implicações Genéticas e Geocronológicas. Doctoral’s Thesis, Institute of Geoscience, University of São Paulo, São Paulo, Brazil, 2016. (In Portuguese). [Google Scholar]
- van Achterbergh, E.; Rayan, C.G.; Griffin, W.L. Glitter User’s Manual; On line interactive data reduction for the LA-ICPMS microprobe v. 4.4; Gemoc National Key Centre, Macquarie University: Ryde, Australia, 2007; 30p. [Google Scholar]
- Jochum, K.P.; Nohl, U.; Herwig, K.; Lammel, E.; Stoll, B.; Hofmann, A.W. GeoRem: A new geochemical database for reference materials and isotopic standards. Geostand. Geoanal. Res. 2005, 29, 333–338. [Google Scholar] [CrossRef]
- Yuan, H.L.; Gao, S.; Daí, M.N.; Zong, C.L.; Gunther, D.; Fontaine, G.H.; Liu, X.M.; Diwu, C. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by Excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chem. Geol. 2008, 247, 100–118. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Z.; Zong, K.; Gao, C.G.; Gao, S.; Xu, J.; Chen, H.H. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chin. Sci. Bull. 2010, 55, 1535–1546. [Google Scholar] [CrossRef]
- Sato, K.; Siga, O.; da Silva, J.A.; Mcreath, I.; Dunyi, L.; Iizuka, T.; Rino, S.; Hirata, T.; Sproesser, W.; Basei, M.A. In situ isotopic analyses of U and Pb in zircon by remotely operated SHRIMP II, and Hf by LA-ICP-MS: An example of dating and genetic evolution of zircon by 176Hf/177Hf from the Ita quarry in the Atuba Complex, SE Brazil. Geol. USP 2009, 9, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Söderlund, U.; Patchett, P.J.; Vervoort, J.D.; Isachsen, C.E. The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematic of Precambrian mafic intrusions. Earth Planet. Sci. Lett. 2004, 219, 311–324. [Google Scholar] [CrossRef]
- Salvi, S.; Williams-Jones, A.E. Zirconosilicate phase-relations in the Strange Lake (Lac-Brisson) pluton, Quebec-Labrador, Canada. Am. Mineral. 1995, 80, 1031–1040. [Google Scholar] [CrossRef]
- Bernard, C. Concentration and Fractionation of Rare Earth Elements in Alkaline Complexes: The Role of Fluids. Doctoral Thesis, Université de Toulouse, Toulouse, France, 2020. [Google Scholar]
- Warr, L.N. IMA-CNMC approved mineral symbols. Min. Mag. 2021, 85, 291–320. [Google Scholar] [CrossRef]
- Krogh, T.E.; Davis, G.L. Alteration in zircons and differential dissolution of altered and metamict zircon. Carnegie Inst. Wash. Yearb. 1975, 74, 619–623. [Google Scholar]
- Nasdala, L.; Kronz, A.; Wirth, R.; Váczi, T.; Pérez-Soba, C.; Willner, A.; Kenedy, A.K. The phenomenon of deficient electron microprobe totals in radiation-damaged and altered zircon. Geochim. Cosmochim. Acta 2009, 73, 1637–1650. [Google Scholar] [CrossRef] [Green Version]
- Finch, R.J.; Hanchar, J.M. Structure and chemistry of zircon and zircon-group minerals. Rev. Mineral. Geochem. 2003, 53, 1–25. [Google Scholar] [CrossRef]
- Boynton, W.V. Cosmochemistry of the rare earth elements: Meteorite studies. In Rare Earth Element Geochemistry, 1st ed.; Henderson, P., Ed.; Elsevier: Amsterdam, The Netherlands, 1984; pp. 63–114. [Google Scholar]
- Heaney, P.J. A proposed mechanism for the growth of chalcedony. Contrib. Mineral. Petrol. 1993, 115, 66–74. [Google Scholar] [CrossRef]
- Frondel, C.; Collette, R.L. Hydrothermal synthesis of zircon, thorite and huttonite. Am. Mineral. 1957, 42, 759–765. [Google Scholar]
- Valéro, R.; Durand, B.; Guth, J.-L.; Chopin, T. Hydrothermal synthesis of porous zircon in basic fluorinated medium. Microporous Mesoporous Mater 1999, 29, 311–318. [Google Scholar] [CrossRef]
- Vlach, S.R.F.; Gualda, G.A.R. Allanite and chevkinite in A-type granites and syenites of the Graciosa Province, southern Brazil. Lithos 2007, 97, 98–121. [Google Scholar] [CrossRef]
- Salvi, S.; Williams-Jones, A.E. The role of hydrothermal processes in concentrating high-field strength elements in the Strange Lake peralkaline complex, northeastern Canada. Geochim. Cosmochim. Acta 1996, 60, 1917–1932. [Google Scholar] [CrossRef]
- Ayers, J.C.; Zhang, L.; Luo, Y.; Peters, T.J. Zircon solubility in alkaline aqueous fluids at upper crustal conditions. Geochim. Cosmochim. Acta 2012, 96, 18–28. [Google Scholar] [CrossRef]
- Williams-Jones, A.E.; Migdisov, A.A.; Samson, I.M. Hydrothermal mobilization of the rare earth elements—A tale of “Ceria” and “Yttria”. Elements 2012, 8, 355–360. [Google Scholar] [CrossRef]
- Estrade, G.; Salvi, S.; Béziat, D.; Rakotovao, S.; Rakotondrazafy, R. REE and HFSE mineralization in peralkaline granites of the Ambohimirahavavy alkaline complex, Ampasindava peninsula, Madagascar. J. Afr. Earth Sci. 2014, 94, 141–155. [Google Scholar] [CrossRef]
- Keppler, H.; Wyllie, P.J. Role of fluids in transport and fractionation of uranium and thorium in magmatic processes. Nature 1990, 348, 531–533. [Google Scholar] [CrossRef]
- Migdisov, A.; Williams-Jones, A.E.; Brugger, J.; Caporuscio, F.A. Hydrothermal transport, deposition, and fractionation of the RRE: Experimental data and thermodynamic calculations. Chem. Geol. 2016, 439, 12–42. [Google Scholar] [CrossRef] [Green Version]
Grain Type | P | P | H1 | H1 | H1 | H2 | H2 | H2 | H2 |
---|---|---|---|---|---|---|---|---|---|
Point ID | 1,c | 3,c | 2,i | 2,i | 3,r | 1,c | 1,r | 2,i | 5,r |
SiO2 | 32.24 | 32.26 | 31.22 | 30.95 | 31.58 | 19.43 | 31.50 | 30.94 | 30.01 |
ZrO2 | 65.34 | 65.45 | 58.39 | 57.97 | 58.61 | 36.25 | 61.38 | 59.10 | 54.25 |
HfO2 | 0.86 | 0.84 | 1.35 | 1.59 | 1.55 | 0.91 | 1.64 | 1.44 | 1.24 |
ThO2 | b.d. | 0.07 | 0.50 | 0.21 | 0.15 | 0.09 | 0.13 | 0.13 | 1.89 |
UO2 | b.d. | 0.05 | 0.06 | 0.07 | 0.04 | 0.06 | 0.11 | 0.13 | 0.11 |
TiO2 | 0.09 | 0.04 | 0.14 | 0.06 | 0.06 | 0.05 | 0.08 | 0.18 | 0.12 |
Al2O3 | 0.02 | b.d. | 0.24 | 0.12 | 0.09 | 0.20 | 0.13 | 0.06 | 0.14 |
La2O3 | 0.05 | 0.07 | 0.09 | n.a. | n.a. | b.d. | 0.09 | n.a. | n.a. |
Ce2O3 | b.d. | b.d. | 0.26 | 0.23 | 0.26 | 0.19 | 0.16 | 0.22 | 0.24 |
Nd2O3 | b.d. | b.d. | 0.05 | 0.20 | 0.12 | 0.10 | 0.07 | 0.15 | 0.17 |
Sm2O3 | b.d. | b.d. | 0.06 | 0.16 | 0.14 | 0.04 | 0.07 | 0.12 | 0.25 |
Gd2O3 | b.d. | 0.09 | 0.07 | 0.34 | 0.40 | b.d. | b.d. | 0.20 | 0.50 |
Dy2O3 | b.d. | 0.06 | 0.11 | 0.52 | 0.53 | 0.04 | 0.11 | 0.24 | 0.63 |
Er2O3 | 0.07 | 0.09 | 0.07 | 0.30 | 0.23 | 0.11 | 0.10 | 0.19 | 0.40 |
Yb2O3 | 0.09 | 0.16 | 0.50 | 0.16 | 0.19 | 0.11 | 0.09 | 0.16 | 0.37 |
Y2O3 | 0.45 | 0.63 | 1.00 | 2.32 | 2.27 | 0.67 | 0.87 | 1.62 | 3.62 |
Fe2O3 | 0.26 | 0.02 | 1.83 | 0.44 | 1.00 | 39.85 | 0.68 | 0.87 | 1.42 |
MnO | 0.02 | b.d. | 0.19 | 0.02 | b.d. | 0.52 | 0.09 | 0.10 | 0.12 |
MgO | b.d. | b.d. | 0.02 | b.d. | b.d. | 0.02 | b.d. | b.d. | b.d. |
CaO | b.d. | b.d. | 0.27 | 0.14 | 0.11 | 0.15 | 0.11 | 0.07 | 0.35 |
Na2O | b.d. | 0.03 | 0.12 | 0.04 | 0.04 | 0.02 | 0.09 | 0.07 | 0.09 |
K2O | b.d. | 0.02 | 0.05 | b.d. | 0.03 | 0.02 | 0.04 | 0.02 | b.d. |
Nb2O5 | b.d. | b.d. | 0.14 | 0.07 | 0.02 | 0.14 | 0.20 | 0.05 | 0.22 |
P2O5 | 0.09 | 0.07 | 0.20 | n.a. | n.a. | b.d. | 0.13 | n.a. | n.a. |
Sum | 99.58 | 99.94 | 96.93 | 95.90 | 97.41 | 98.97 | 97.87 | 96.03 | 96.15 |
Cation proportions on the basis of 4 O | |||||||||
Si | 0.993 | 0.993 | 0.993 | 1.004 | 1.006 | 0.638 | 0.993 | 0.998 | 0.988 |
Zr | 0.982 | 0.983 | 0.906 | 0.917 | 0.910 | 0.580 | 0.944 | 0.929 | 0.871 |
Hf | 0.008 | 0.007 | 0.012 | 0.015 | 0.014 | 0.009 | 0.015 | 0.013 | 0.012 |
Th | 0.000 | 0.000 | 0.004 | 0.002 | 0.001 | 0.001 | 0.001 | 0.001 | 0.014 |
U | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.001 | 0.001 |
Ti | 0.002 | 0.001 | 0.003 | 0.001 | 0.002 | 0.001 | 0.002 | 0.004 | 0.003 |
Al | 0.001 | 0.000 | 0.009 | 0.005 | 0.003 | 0.008 | 0.005 | 0.002 | 0.005 |
La | 0.001 | 0.001 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 |
Ce | 0.000 | 0.000 | 0.003 | 0.003 | 0.003 | 0.002 | 0.002 | 0.003 | 0.003 |
Nd | 0.000 | 0.000 | 0.001 | 0.002 | 0.001 | 0.001 | 0.001 | 0.002 | 0.002 |
Sm | 0.000 | 0.000 | 0.001 | 0.002 | 0.002 | 0.000 | 0.001 | 0.001 | 0.003 |
Gd | 0.000 | 0.001 | 0.001 | 0.004 | 0.004 | 0.000 | 0.000 | 0.002 | 0.005 |
Dy | 0.000 | 0.001 | 0.001 | 0.005 | 0.005 | 0.000 | 0.001 | 0.002 | 0.007 |
Er | 0.001 | 0.001 | 0.001 | 0.003 | 0.002 | 0.001 | 0.001 | 0.002 | 0.004 |
Yb | 0.001 | 0.001 | 0.005 | 0.002 | 0.002 | 0.001 | 0.001 | 0.002 | 0.004 |
Y | 0.007 | 0.010 | 0.017 | 0.040 | 0.038 | 0.012 | 0.015 | 0.028 | 0.063 |
Fe III | 0.006 | 0.000 | 0.044 | 0.011 | 0.024 | 0.984 | 0.016 | 0.021 | 0.035 |
Mn | 0.000 | 0.000 | 0.005 | 0.001 | 0.000 | 0.014 | 0.002 | 0.003 | 0.003 |
Mg | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 |
Ca | 0.000 | 0.000 | 0.009 | 0.005 | 0.004 | 0.005 | 0.004 | 0.002 | 0.012 |
Na | 0.000 | 0.002 | 0.008 | 0.002 | 0.003 | 0.001 | 0.006 | 0.004 | 0.005 |
K | 0.000 | 0.001 | 0.002 | 0.000 | 0.001 | 0.001 | 0.002 | 0.001 | 0.000 |
Nb | 0.000 | 0.000 | 0.002 | 0.001 | 0.000 | 0.002 | 0.003 | 0.001 | 0.003 |
P | 0.002 | 0.002 | 0.005 | 0.000 | 0.000 | 0.000 | 0.003 | 0.000 | 0.000 |
Sum | 2.004 | 2.005 | 2.034 | 2.023 | 2.026 | 2.264 | 2.018 | 2.022 | 2.044 |
Spot ID | P1 | 1σ | P2 | 1σ | H1 | 1σ | H1 | 1σ | H2a | 1σ | H2b | 1σ | H3 | 1σσ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P | 170 | 16 | 154 | 15 | 328 | 63 | 475 | 79 | 719 | 555 | <500 | - | 326 | 64 |
Ti | 3.9 | 0.6 | 5.3 | 0.7 | 491.0 | 23 | 729.0 | 35 | 393.0 | 143 | 858.0 | 159 | 569.0 | 33 |
Mn | 0.7 | 0.4 | 2.7 | 0.4 | 273.0 | 11 | 131.0 | 5 | 1689.0 | 253 | 560.0 | 36 | 474.0 | 20 |
Sr | 0.5 | 0.02 | 0.6 | 0.01 | 105 | 5 | 74 | 3 | 113 | 20 | 22 | 4 | 127 | 6 |
Y | 2773 | 55 | 2908 | 60 | 13,461 | 721 | 19,520 | 956 | 3070 | 485 | 4803 | 257 | 15,218 | 842 |
Nb | 11.30 | 0.02 | 15.30 | 0.02 | 1009 | 55 | 1132 | 49 | 731 | 112 | 735 | 35 | 1366 | 66 |
Mo | 7.3 | 0.2 | 6.5 | 0.1 | 8.3 | 0.6 | 5.7 | 0.6 | 14.0 | 10 | <11 | - | 7.4 | 0.9 |
Ba | <0.1 | - | <0.1 | - | 168 | 8 | 88 | 4 | 329 | 60 | 731 | 50 | 104 | 5 |
La | 5.3 | 0.1 | 1.3 | 0.01 | 876 | 40 | 257 | 10 | 2132 | 339 | 2646 | 103 | 543 | 23 |
Ce | 31.4 | 0.2 | 27.0 | 0.2 | 5005 | 212 | 1017 | 39 | 3523 | 538 | 10,697 | 365 | 2619 | 111 |
Pr | 1.7 | 0.01 | 0.6 | 0.02 | 523 | 23 | 126 | 5 | 330 | 52 | 1327 | 52 | 318 | 15 |
Nd | 13.3 | 0.1 | 6.7 | 0.06 | 3414 | 263 | 986 | 74 | 1154 | 199 | 4648 | 216 | 1991 | 173 |
Sm | 15.4 | 0.1 | 12.9 | 0.1 | 1200 | 91 | 781 | 51 | 299 | 58 | 930 | 64 | 917 | 68 |
Eu | 0.22 | 0.02 | 0.31 | 0.02 | 28 | 2 | 8.6 | 0.7 | 3 | 2 | 9 | 3 | 11 | 1 |
Gd | 70.10 | 0.01 | 65.41 | 0.06 | 1495 | 117 | 1790 | 122 | 285 | 61 | 957 | 71 | 1335 | 105 |
Tb | 25.73 | 0.01 | 25.81 | 0.01 | 325 | 26 | 522 | 38 | 61 | 12 | 142 | 10 | 307 | 26 |
Dy | 304.4 | 0.1 | 301.2 | 0.1 | 2489 | 255 | 3614 | 354 | 427 | 76 | 716 | 45 | 2421 | 274 |
Ho | 109.31 | 0.01 | 105.60 | 0.01 | 528 | 58 | 817 | 86 | 116 | 20 | 145 | 10 | 610 | 75 |
Er | 431.60 | 0.02 | 433.00 | 0.02 | 1622 | 179 | 2420 | 257 | 392 | 66 | 440 | 29 | 2015 | 247 |
Tm | 86.80 | 0.01 | 87.90 | 0.01 | 264 | 31 | 356 | 41 | 71 | 13 | 74 | 7 | 347 | 46 |
Yb | 765.1 | 0.1 | 790.3 | 0.1 | 1876 | 179 | 2295 | 201 | 457 | 84 | 465 | 41 | 2294 | 232 |
Lu | 110.50 | 0.01 | 108.20 | 0.01 | 188 | 20 | 215 | 22 | 54 | 10 | 72 | 7 | 222 | 26 |
Hf | 6827 | 50 | 65,100 | 35 | 12,480 | 869 | 12,852 | 765 | 13,289 | 2050 | 14,867 | 709 | 9538 | 645 |
Ta | 1.10 | 0.01 | 1.30 | 0.01 | 117 | 12 | 92 | 9 | 131 | 22 | 152 | 11 | 271 | 31 |
Pb | 7.6 | 0.1 | 12.0 | 0.1 | 193 | 9 | 135 | 5 | 193 | 34 | 289 | 17 | 220 | 9 |
Th | 138.0 | 0.1 | 132.9 | 0.1 | 1757 | 92 | 1665 | 69 | 615 | 100 | 1215 | 59 | 2296 | 105 |
U | 117.0 | 0.1 | 118.0 | 0.1 | 489 | 22 | 542 | 23 | 338 | 54 | 312 | 16 | 1037 | 49 |
Spot ID | Type | 176Hf/177Hfmeas | 2σ | 176Lu/177Hfmeas | 2σ | ε Hf(0) | 176Hf/177Hf(580) | ε Hf(580) |
---|---|---|---|---|---|---|---|---|
Zr1-1.1 | H1 | 0.28173 | 0.00008 | 0.00418 | 0.00001 | −36.9 | 0.281683 | −25.8 |
Zr2-1.1 | H1 | 0.28179 | 0.00003 | 0.00229 | 0.00002 | −32.4 | 0.281830 | −20.6 |
Zr2-2.1 | H1 | 0.28190 | 0.00003 | 0.00197 | 0.00005 | −30.8 | 0.281879 | −18.8 |
Zr3-3.1 | H1 | 0.28189 | 0.00002 | 0.00145 | 0.00003 | −31.2 | 0.281874 | −19.0 |
Zr4-4.1 | H2 | 0.28187 | 0.00004 | 0.00327 | 0.00017 | −31.9 | 0.281834 | −20.4 |
Zr4-1.1 | H2 | 0.28183 | 0.00003 | 0.00189 | 0.00002 | −33.2 | 0.281812 | −21.2 |
Zr4-1.2 | H2 | 0.28177 | 0.00003 | 0.00216 | 0.00002 | −35.4 | 0.281747 | −23.5 |
Zr5-1.2 | P | 0.28174 | 0.00004 | 0.00343 | 0.00001 | −36.5 | 0.281703 | −25.1 |
Zr6-2.1 | P | 0.28180 | 0.00006 | 0.00283 | 0.00001 | −34.4 | 0.281769 | −22.7 |
Zr6-2.2 | P | 0.28187 | 0.00004 | 0.00338 | 0.00006 | −31.9 | 0.281833 | −20.4 |
Zr7-3.1 | P | 0.28194 | 0.00005 | 0.00263 | 0.00003 | −29.4 | 0.281911 | −17.7 |
Zr7-3.2 | P | 0.28178 | 0.00003 | 0.00272 | 0.00002 | −35.2 | 0.281748 | −23.5 |
Zr8-1.1 | P | 0.28189 | 0.00004 | 0.00261 | 0.00003 | −31.2 | 0.281862 | −19.4 |
Zr9-1.1 | P | 0.28172 | 0.00003 | 0.00235 | 0.00002 | −37.1 | 0.281698 | −25.2 |
Zr10-1.1 | P | 0.28183 | 0.00002 | 0.00252 | 0.00001 | −33.4 | 0.281800 | −21.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vlach, S.R.F. On the Morphology and Geochemistry of Hydrothermal Crypto- and Microcrystalline Zircon Aggregates in a Peralkaline Granite. Minerals 2022, 12, 628. https://doi.org/10.3390/min12050628
Vlach SRF. On the Morphology and Geochemistry of Hydrothermal Crypto- and Microcrystalline Zircon Aggregates in a Peralkaline Granite. Minerals. 2022; 12(5):628. https://doi.org/10.3390/min12050628
Chicago/Turabian StyleVlach, Silvio R. F. 2022. "On the Morphology and Geochemistry of Hydrothermal Crypto- and Microcrystalline Zircon Aggregates in a Peralkaline Granite" Minerals 12, no. 5: 628. https://doi.org/10.3390/min12050628