Singular crypto- and microcrystalline hydrothermal zircon aggregates occur in peralkaline granites from the Corupá Pluton of “A-type” granites and syenites in Graciosa Province, Southern Brazil, and are herein characterized for their morphological, textural and geochemical (major, minor and trace elements, and Lu-Hf isotopes) properties. The aggregates were found to present a variety of habits, such as dendritic, oolitic, botryoidal and spherulitic, and they are associated with typical hydrothermal minerals (alkali-feldspars, quartz, fluorite, epidote-group minerals, phyllosilicates and Fe oxides) in micro-fractures and small miarolitic cavities in the host rock. They precipitated directly from a hydrothermal fluid and, compared to magmatic zircon crystals from the host, were found to contain relatively high abundances of the “non-formula” elements (e.g., Fe, Al, and Ca) and HFSEs (High-Field-Strength Elements), particularly the L- and MREEs (Light and Medium Rare Earth Elements), features most typical of hydrothermal zircon, as well as high Th/U ratios, whereas the Lu-Hf isotopic signatures were found to be similar. The formation of the zircon aggregates and the associated epidote-groups minerals was probably due to the interaction between an orthomagmatic, F-bearing, aqueous fluid transporting the HFSEs with the host-rock and/or with an external meteoritic fluid from the country rocks. The preservation of an amorphous-like Zr-silicate compound and crypto-to-microcrystalline zircon varieties is arguably related to the inefficient fluid flux and/or elemental diffusion in a low-temperature oxidizing environment.
View Full-Text
►▼
Show Figures
This is an open access article distributed under the
Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited