Hyperspectral and Geochemical Analysis of Chlorites at the Gongchangling High-Grade Magnetite Deposit, NE China: Implications for Alteration Processes
Abstract
:1. Introduction
2. Geologic Setting
3. Samples and Methods
3.1. Sampling
3.2. HySpex Laboratory Hyperspectral Imagery
3.3. Whole Rock Geochemical Analysis
3.4. Electron Probe Microanalysis (EPMA)
4. Result
4.1. Hyperspectral Characteristics of Chlorites
4.2. Microscopy Observation of Chlorite
4.3. EPMA of Chlorite
4.4. Whole Rock Geochemistry
4.4.1. Major Elements
4.4.2. Trace and Rare Earth Elements
5. Discussion
5.1. The Spectral Implication for Alteration Processes
5.2. The Elemental Migration and Concentration during Alteration Processes
6. Conclusions
- Hyperspectral imaging is a reliable and diagnostic method to divide the sub-types of chlorite. Based on the Fe-OH band near 2250 nm, three wavelength position ranges of chlorite were identified in the Gongchangling deposit, including 2250–2255 nm for chlorite-I, 2255–2260 nm for chlorite-II, and 2260–2265 nm for chlorite-III. The chlorite-I defined a high Mg content, while chlorite-III presented high Fe content. The Mg and Fe content in chlorite-II has an intermediate value between chlorite-I and chlorite-II.
- The Fe-Mg chlorite enriched in alteration rocks was close to the iron ores, whereas Fe chlorite primarily occurred in rocks distal from high-grade iron ores. The chlorite with intermediate Mg and Fe content is dominantly distributed in the intermediate. This distribution pattern was probably determined by the water/rock ratio and temperature of fluid.
- The formation of high-grade magnate ores was attributed to the concentration of iron and the loss of silicon during submarine magmatic hydrothermal alteration processes.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, L.-X.; Zi, J.-W.; Li, H.-M.; Rasmussen, B.; Wilde, S.A.; Sheppard, S.; Ma, Y.-B.; Meng, J.; Song, Z. High-Grade Magnetite Mineralization at 1.86 Ga in Neoarchean Banded Iron Formations, Gongchangling, China: In Situ U-Pb Geochronology of Metamorphic-Hydrothermal Zircon and Monazite. Econ. Geol. 2019, 114, 1159–1175. [Google Scholar] [CrossRef]
- Wang, E.-D.; Xia, J.-M.; Fu, J.-F.; Jia, S.-S.; Men, Y.-K. Formation mechanism of Gongchangling high-grade magnetite deposit hosted in Archean BIF, Anshan-Benxi area, Northeastern China. Ore Geol. Rev. 2014, 57, 308–321. [Google Scholar] [CrossRef]
- Han, C.; Xiao, W.; Su, B.-X.; Sakyi, P.A.; Chen, Z.; Zhang, X.; Ao, S.; Zhang, J.; Wan, B.; Zhang, Z.; et al. Formation age and genesis of the Gongchangling Neoarchean banded iron deposit in eastern Liaoning Province: Constraints from geochemistry and SHRIMP zircon U–Pb dating. Precambrian Res. 2014, 254, 306–322. [Google Scholar] [CrossRef]
- Li, L.; Li, H.-M.; Liu, M.-J.; Yang, X.-Q.; Meng, J. Timing of deposition and tectonothermal events of banded iron formations in the Anshan–Benxi area, Liaoning Province, China: Evidence from SHRIMP U-Pb zircon geochronology of the wall rocks. J. Asian Earth Sci. 2016, 129, 276–293. [Google Scholar] [CrossRef]
- Zheng, Z.; Lan, H. Discussion on geological characteristics and genesis of Gongchangling Rich iron ore deposit. Mod. Mine 2009, 25, 67–70. (In Chinese) [Google Scholar]
- Hillier, S.; Velde, B. Octahedral occupancy and the chemical composition of diagenetic (low-temperature) chlorites. Clay Miner. 2018, 26, 149–168. [Google Scholar] [CrossRef]
- Inoue, A.; Kurokawa, K.; Hatta, T. Application of Chlorite Geothermometry to Hydrothermal Alteration in Toyoha Geothermal System, Southwestern Hokkaido, Japan. Resour. Geol. 2010, 60, 52–70. [Google Scholar] [CrossRef]
- Foster, M.D. Interpretation of the composition and a classification of the chlorites. U.S. Gov. Print. Off. 1962, 414, 1–33. [Google Scholar] [CrossRef][Green Version]
- Lauf, R.J. Collector’s Guide to the Chlorite Group. Rocks Miner. 2010, 85, 318–325. [Google Scholar] [CrossRef]
- Miyashiro, A.; Shido, F. Tschermak Substitution in Low- and Middle-grade Pelitic Schists. J. Pet. 1985, 26, 449–487. [Google Scholar] [CrossRef]
- Laakso, K.; Rivard, B.; Peter, J.M.; White, H.P.; Maloley, M.; Harris, J.; Rogge, D. Application of Airborne, Laboratory, and Field Hyperspectral Methods to Mineral Exploration in the Canadian Arctic: Recognition and Characterization of Volcanogenic Massive Sulfide-Associated Hydrothermal Alteration in the Izok Lake Deposit Area, Nunavut, Canada. Econ. Geol. 2015, 110, 925–941. [Google Scholar] [CrossRef]
- Hunt, G.R. Spectra of altered rocks in the visible and near infrared. Econ. Geol. 1979, 74, 1613–1629. [Google Scholar] [CrossRef]
- Bourdelle, F.; Parra, T.; Beyssac, O.; Chopin, C.; Vidal, O. Clay minerals as geo-thermometer: A comparative study based on high spatial resolution analyses of illite and chlorite in Gulf Coast sandstones (Texas, U.S.A.). Am. Miner. 2013, 98, 914–926. [Google Scholar] [CrossRef]
- Bishop, J.L.; Lane, M.D.; Dyar, M.D.; Brown, A.J. Reflectance and emission spectroscopy study of four groups of phyllosilicates: Smectites, kaolinite-serpentines, chlorites and micas. Clay Miner. 2008, 43, 35–54. [Google Scholar] [CrossRef]
- Clark, R.N.; Swayze, G.A.; Wise, R.A.; Livo, K.E.; Hoefen, T.M.; Kokaly, R.F.; Sutley, S.J. USGS Digital Spectral Library splib06a; Data Series 231; USGS: Reston, VA, USA, 2007.
- Post, J.L.; Noble, P.N. The Near-Infrared Combination Band Frequencies of Dioctahedral Smectites, Micas, and Illites. Clays Clay Miner. 1993, 41, 639–644. [Google Scholar] [CrossRef]
- Duke, E.F. Near infrared spectra of muscovite, Tschermak substitution, and metamorphic reaction progress: Implications for remote sensing. Geology 1994, 22, 621–624. [Google Scholar] [CrossRef]
- Song, K.; Wang, E.; Yao, Y.; Fu, J.; Hao, D.; You, X. Spectral Alteration Zonation Based on Close Range HySpex-320 m Imaging Spectroscopy: A Case Study in the Gongchangling High-Grade Iron Ore Deposit, Liaoning Province, NE China. Appl. Sci. 2020, 10, 8369. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Z.; Li, L.; Zhang, Z.; Chen, J.; Yao, T. Types and general characteristics of the BIF-related iron deposits in China. Ore Geol. Rev. 2014, 57, 264–287. [Google Scholar] [CrossRef]
- Li, H.-M.; Li, L.-X.; Yang, X.-Q.; Cheng, Y.-B. Types and geological characteristics of iron deposits in China. J. Asian Earth Sci. 2015, 103, 2–22. [Google Scholar] [CrossRef]
- Li, H.-M.; Yang, X.-Q.; Li, L.-X.; Zhang, Z.-C.; Liu, M.-J.; Yao, T.; Chen, J. Desilicification and iron activation–reprecipitation in the high-grade magnetite ores in BIFs of the Anshan-Benxi area, China: Evidence from geology, geochemistry and stable isotopic characteristics. J. Asian Earth Sci. 2015, 113, 998–1016. [Google Scholar] [CrossRef]
- Zhai, M.; Zhu, X.; Zhou, Y.; Zhao, L.; Zhou, L. Continental crustal evolution and synchronous metallogeny through time in the North China Craton. J. Asian Earth Sci. 2020, 194, 104169. [Google Scholar] [CrossRef]
- Zhou, S. Geology of BIF Iron Deposits in Anshan-Benxi; Geological Publishing House: Beijing, China, 1994; pp. 1–278. (In Chinese) [Google Scholar]
- Boardman, J.W. Inversion of high spectral resolution data. In Imaging Spectroscopy of the Terrestrial Environment; The International Society for Optical Engineering: Bellingham, DC, USA, 1990; Volume 1298, pp. 222–233. [Google Scholar]
- Deer, W.A.; Howie, R.A.; Zussman, J. An Introduction to the Rock-Forming Minerals, 2nd ed.; Mineralogical Society of Great Britain and Ireland: London, UK, 2013; ISBN 058-2300-940. [Google Scholar]
- Hey, M.H. A new review of the chlorites. Miner. Mag. J. Miner. Soc. 2018, 30, 277–292. [Google Scholar] [CrossRef]
- Zane, A.; Weiss, Z. A procedure for classifying rock-forming chlorites based on microprobe data. Rend. Lincei 1998, 9, 51–56. [Google Scholar] [CrossRef]
- Yang, K.; Lian, C.; Huntington, J.F.; Peng, Q.; Wang, Q. Infrared spectral reflectance characterization of the hydrothermal alteration at the Tuwu Cu–Au deposit, Xinjiang, China. Miner. Depos. 2005, 40, 324–336. [Google Scholar] [CrossRef]
- Eggleston, R.A.; Bailey, S.W. Structural Aspects of Dioctahedral Chlorite. Am. Mineral. 1967, 52, 673–689. [Google Scholar]
- Shirzu, H. Infrared Spectra of Trioctahedral Chlorites in Relation to Chemical Composition. Clay Sci. 1985, 6, 167–176. [Google Scholar] [CrossRef]
- Zang, W.; Fyfe, W.S. Chloritization of the hydrothermally altered bedrock at the Igarapé Bahia gold deposit, Carajás, Brazil. Miner. Depos. 1995, 30, 30–38. [Google Scholar] [CrossRef]
- Parry, W.T.; Downey, L.M. Geochemistry of hydrothermal chlorite replacing igneous biotite. Clays Clay Miner. 1982, 30, 81–90. [Google Scholar] [CrossRef]
- Kogure, T.; Banfield, J.F. New insights into the mechanism for chloritization of biotite using polytype analysis. Am. Miner. 2000, 85, 1202–1208. [Google Scholar] [CrossRef]
- Evans, K.; McCuaig, T.C.; Leach, D.; Angerer, T.; Hagemann, S. Banded iron formation to iron ore: A record of the evolution of Earth environments? Geology 2013, 41, 99–102. [Google Scholar] [CrossRef]
- Wang, K.; Yao, P. China’s Iron Deposit Review; Metallurgy Press House: Beijing, China, 1992; pp. 1–584. (In Chinese) [Google Scholar]
- López-Moro, F.J. EASYGRESGRANT—A Microsoft Excel spreadsheet to quantify volume changes and to perform mass-balance modeling in metasomatic systems. Comput. Geosci. 2012, 39, 191–196. [Google Scholar] [CrossRef]
- Dong, K.; Chen, S.; Graham, I.; Zhao, J.; Fu, P.; Xu, Y.; Tian, G.; Qin, W.; Chen, J. Geochemical behavior during mineralization and alteration events in the Baiyinchang volcanic-hosted massive sulfide deposits, Gansu Province, China. Ore Geol. Rev. 2017, 91, 559–572. [Google Scholar] [CrossRef]
- Grant, J.A. The isocon diagram; a simple solution to Gresens’ equation for metasomatic alteration. Econ. Geol. 1986, 81, 1976–1982. [Google Scholar] [CrossRef]
- Klein, C. Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins. Am. Miner. 2005, 90, 1473–1499. [Google Scholar] [CrossRef]
Sample | SiO2 | Al2O3 | MgO | Na2O | K2O | P2O5 | TiO2 | CaO | TFe2O3 | MnO | LOI | TOTAL |
---|---|---|---|---|---|---|---|---|---|---|---|---|
G01 | 1.79 | 0.20 | 0.10 | 0.02 | 0.04 | 0.01 | 0.03 | 0.55 | 102.04 | 0.05 | −2.61 | 102.24 |
G02 | 34.57 | 17.90 | 2.66 | 0.04 | 0.03 | 0.03 | 0.74 | 0.36 | 40.38 | 0.18 | 1.63 | 98.52 |
G03 | 3.90 | 1.05 | 0.30 | 0.02 | 0.02 | 0.01 | 0.04 | 0.71 | 96.067 | 0.08 | −1.63 | 101.18 |
G04 | 1.88 | 0.47 | 0.14 | 0.03 | 0.08 | 0.01 | 0.03 | 0.12 | 101.40 | 0.03 | −2.19 | 102.00 |
G05 | 29.60 | 18.91 | 7.63 | 0.03 | 0.03 | 0.02 | 0.48 | 0.17 | 41.50 | 0.13 | 4.07 | 102.57 |
G06 | 34.16 | 19.17 | 2.30 | 0.03 | 0.03 | 0.03 | 0.50 | 0.40 | 44.09 | 0.15 | −0.56 | 100.30 |
G07 | 36.47 | 17.88 | 2.74 | 0.03 | 0.03 | 0.03 | 0.69 | 0.34 | 44.40 | 0.15 | −0.17 | 102.59 |
G08 | 58.56 | 13.99 | 7.12 | 2.08 | 1.79 | 0.10 | 0.36 | 3.53 | 10.75 | 0.10 | 2.87 | 101.26 |
G09 | 54.37 | 14.63 | 6.87 | 2.63 | 2.14 | 0.10 | 0.54 | 5.91 | 10.92 | 0.18 | 2.00 | 100.30 |
Sample | Li | Be | Sc | Ti | V | Mn | Co | Ni | Cu | Zn | Ga | Rb | Sr | Y | Zr | Nb | Mo | Sn | Hf | Ta | W | Tl | Pb | Th | U |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G01 | 0.67 | 0.65 | 0.32 | 11.46 | 2.34 | 523.96 | 4.14 | 9.78 | 5.15 | 23.94 | 2.01 | 3.91 | 5.28 | 5.67 | 0.73 | 0.81 | 0.85 | 16.08 | 0.02 | 0.09 | 3.79 | 0.01 | 0.43 | 0.06 | 0.30 |
G02 | 67.18 | 2.54 | 49.47 | 4321.15 | 148.11 | 1616.99 | 23.00 | 54.77 | 13.96 | 53.16 | 9.53 | 4.09 | 2.77 | 13.35 | 26.95 | 52.47 | 0.24 | 3.84 | 1.00 | 52.19 | 1.17 | 0.04 | 4.45 | 0.29 | 0.41 |
G03 | 1.40 | 0.67 | 1.13 | 19.50 | 2.24 | 782.05 | 8.02 | 20.90 | 5.61 | 12.75 | 1.36 | 1.43 | 4.07 | 6.01 | 3.90 | 1.55 | 0.57 | 0.49 | 0.17 | 0.48 | 1.32 | 0.01 | 0.46 | 0.97 | 0.59 |
G04 | 1.00 | 0.29 | 0.78 | 8.37 | 4.85 | 301.92 | 22.63 | 22.24 | 1.75 | 45.24 | 3.33 | 11.29 | 4.03 | 6.76 | 0.81 | 0.92 | 1.12 | 7.39 | 0.11 | 1.55 | 2.22 | 0.18 | 2.38 | 0.16 | 0.61 |
G05 | 31.44 | 1.06 | 28.74 | 2817.45 | 195.84 | 1184.03 | 69.98 | 436.67 | 19.57 | 81.38 | 23.99 | 4.87 | 1.93 | 15.44 | 33.23 | 5.13 | 0.50 | 1.85 | 0.93 | 10.79 | 1.00 | 0.04 | 2.43 | 3.71 | 2.30 |
G06 | 55.39 | 2.01 | 36.28 | 2846.37 | 162.66 | 1361.11 | 23.67 | 54.05 | 3.20 | 34.93 | 9.29 | 3.87 | 1.87 | 7.57 | 20.74 | 19.69 | 0.37 | 3.70 | 0.66 | 18.24 | 0.82 | 0.04 | 1.25 | 0.15 | 0.21 |
G07 | 43.95 | 3.40 | 50.77 | 3975.05 | 211.70 | 1338.82 | 24.14 | 104.77 | 4.86 | 36.10 | 9.83 | 6.03 | 3.48 | 11.40 | 32.33 | 36.14 | 0.52 | 4.59 | 0.88 | 14.05 | 0.94 | 0.05 | 0.83 | 0.21 | 0.16 |
G08 | 82.20 | 14.78 | 18.32 | 2199.87 | 138.56 | 784.08 | 29.26 | 99.31 | 18.73 | 53.23 | 12.38 | 204.83 | 141.51 | 13.31 | 27.53 | 12.56 | 1.02 | 1.33 | 1.87 | 93.55 | 0.96 | 0.62 | 34.64 | 2.23 | 3.62 |
G09-1 | 64.25 | 5.95 | 32.75 | 3435.09 | 220.63 | 1438.52 | 44.49 | 75.75 | 67.71 | 58.82 | 13.53 | 171.53 | 221.95 | 13.79 | 40.79 | 2.27 | 0.15 | 1.18 | 1.17 | 0.20 | 0.65 | 0.51 | 21.93 | 0.36 | 0.13 |
G09-2 | 63.10 | 5.73 | 32.66 | 3427.05 | 218.69 | 1431.96 | 44.13 | 75.95 | 69.43 | 58.23 | 13.39 | 169.89 | 220.57 | 13.63 | 42.00 | 2.27 | 0.10 | 1.14 | 1.17 | 0.15 | 0.60 | 0.50 | 21.34 | 0.37 | 0.12 |
Sample | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G01 | 1.34 | 2.09 | 0.27 | 1.08 | 0.29 | 0.09 | 0.39 | 0.06 | 0.45 | 0.11 | 0.36 | 0.06 | 0.39 | 0.07 |
G02 | 0.75 | 1.92 | 0.35 | 1.91 | 0.99 | 0.41 | 1.61 | 0.31 | 2.41 | 0.52 | 1.61 | 0.24 | 1.64 | 0.24 |
G03 | 1.52 | 2.94 | 0.38 | 1.36 | 0.35 | 0.16 | 0.43 | 0.07 | 0.56 | 0.13 | 0.44 | 0.07 | 0.50 | 0.08 |
G04 | 1.73 | 2.72 | 0.35 | 1.31 | 0.31 | 0.10 | 0.46 | 0.08 | 0.58 | 0.15 | 0.48 | 0.08 | 0.46 | 0.08 |
G05 | 2.85 | 6.21 | 0.97 | 4.13 | 1.20 | 0.25 | 1.88 | 0.35 | 2.64 | 0.55 | 1.60 | 0.24 | 1.59 | 0.24 |
G06 | 0.54 | 1.36 | 0.28 | 1.84 | 0.75 | 0.37 | 0.97 | 0.19 | 1.33 | 0.29 | 0.86 | 0.13 | 0.87 | 0.13 |
G07 | 0.91 | 2.32 | 0.41 | 2.41 | 1.21 | 0.48 | 1.50 | 0.25 | 1.89 | 0.43 | 1.42 | 0.22 | 1.59 | 0.24 |
G08 | 1.26 | 3.39 | 0.60 | 3.01 | 1.44 | 0.39 | 2.16 | 0.37 | 2.64 | 0.54 | 1.58 | 0.24 | 1.63 | 0.25 |
G09-1 | 3.04 | 7.29 | 1.13 | 5.15 | 1.76 | 0.62 | 2.30 | 0.39 | 2.74 | 0.57 | 1.64 | 0.25 | 1.58 | 0.24 |
G09-2 | 3.02 | 7.20 | 1.11 | 5.07 | 1.75 | 0.61 | 2.27 | 0.37 | 2.70 | 0.55 | 1.61 | 0.24 | 1.61 | 0.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, E.; Song, K.; Yao, Y.; Fu, J.; Hao, D.; Ma, S. Hyperspectral and Geochemical Analysis of Chlorites at the Gongchangling High-Grade Magnetite Deposit, NE China: Implications for Alteration Processes. Minerals 2022, 12, 629. https://doi.org/10.3390/min12050629
Wang E, Song K, Yao Y, Fu J, Hao D, Ma S. Hyperspectral and Geochemical Analysis of Chlorites at the Gongchangling High-Grade Magnetite Deposit, NE China: Implications for Alteration Processes. Minerals. 2022; 12(5):629. https://doi.org/10.3390/min12050629
Chicago/Turabian StyleWang, Ende, Kun Song, Yuzeng Yao, Jianfei Fu, Dahai Hao, and Sishun Ma. 2022. "Hyperspectral and Geochemical Analysis of Chlorites at the Gongchangling High-Grade Magnetite Deposit, NE China: Implications for Alteration Processes" Minerals 12, no. 5: 629. https://doi.org/10.3390/min12050629