Mineral-Melt Equilibria and Geothermobarometry of Campi Flegrei Magmas: Inferences for Magma Storage Conditions
Abstract
:1. Introduction
2. The Campi Flegrei Volcanic Field
3. Materials and Methods
4. Results
4.1. Mineral Chemistry
4.1.1. Olivine
4.1.2. Clinopyroxene
4.1.3. Feldspars
4.2. Mineral-Melt Equilibrium
4.2.1. The “Classic” Method for Assessing Equilibrium between Olivine or Clinopyroxene and Their Melt: The Fe-MgKdmin-liq Exchange Coefficient (Test 1)
4.2.2. An Alternative Equilibrium Test for Clinopyroxene: The Measured versus Predicted Components (Test 2)
4.2.3. Equilibrium Tests for Alkali-Feldspar and Plagioclase (Tests 3 and 4)
4.3. Geothermobarometric Estimates
5. Discussion
5.1. Magmatic Environments Reconstructed Based on Campi Flegrei Mineral Compositions
5.2. Reliability of the Equilibrium Tests for the Campi Flegrei Minerals
5.3. Reliability of the Temperatures Estimated for the Campi Flegrei Minerals
5.4. Reliability of Pressures Estimated for Campi Flegrei Minerals
5.5. Reliability of the Different Geothermobarometers Based on Different Equilibrium Tests for the Campi Flegrei Minerals
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eichelberger, J.C. Vesiculation of mafic magma during replenishment of silicic magma reservoirs. Nature 1980, 288, 446–450. [Google Scholar] [CrossRef]
- Anderson, A.T. Probable relations between plagioclase zoning and magma dynamics, Fuego volcano, Guatemala. Am. Min. 1984, 69, 660–676. [Google Scholar]
- Helz, R.T. Diverse olivine types in lavas of the 1959 eruption of Kilauea volcano and their bearing on eruption dynamics. In Volcanism at Hawaii; Geological Survey Professional Paper; Decker, R.W., Wright, T.L., Stauffer, P.H., Eds.; United States Government Printing Office: Washington, DC, USA, 1987; Volume 1350, pp. 691–722. [Google Scholar]
- Hibbard, M.J. The magma mixing origin of mantled feldspars. Contrib. Mineral. Petrol. 1981, 76, 158–170. [Google Scholar] [CrossRef]
- Humphreys, M.C.S.; Blundy, J.D.; Sparks, R.S.J. Magma evolution and open-system processes at Shiveluch volcano: Insights from phenocryst zoning. J. Petrol. 2006, 47, 2303–2334. [Google Scholar] [CrossRef][Green Version]
- Singer, B.S.; Dungan, M.A.; Layne, G.D. Textures and Sr, Ba, Mg, Fe, K, and Ti compositional profiles in volcanic plagioclase: Clues to the dynamics of calc-alkaline magma chambers. Amer. Min. 1995, 80, 776–798. [Google Scholar] [CrossRef]
- Wallace, G.S.; Bergantz, G.W. Wavelet-based correlation (WBC) of zoned crystal populations and magma mixing. Earth Planet Sci. Lett. 2002, 202, 133–145. [Google Scholar] [CrossRef]
- Wallace, G.S.; Bergantz, G.W. Constraints on mingling of crystal populations from off-center zoning profiles: A statistical approach. Am. Min. 2004, 89, 64–73. [Google Scholar] [CrossRef]
- Wallace, G.S.; Bergantz, G.W. Reconciling heterogeneity in crystal zoning data: An application of shared characteristic diagrams at Chaos Crags, Lassen Volcanic Center California. Contrib. Mineral. Petrol. 2005, 149, 98–112. [Google Scholar] [CrossRef]
- Ginibre, C.; Wörner, G.; Kronz, A. Crystal zoning as an archive for magma evolution. Elements 2007, 3, 261–266. [Google Scholar] [CrossRef]
- Streck, M.J. Mineral textures and zoning as evidence for open system processes. Rev. Mineral. Geochem. 2008, 69, 595–622. [Google Scholar] [CrossRef]
- Powell, R.; Holland, T. Optimal geothermometry and geobarometry. Am. Mineral. 1994, 79, 120–133. [Google Scholar]
- Putirka, K.D. Thermometers and barometers for volcanic systems. Rev. Mineral. Geochem. 2008, 69, 61–120. [Google Scholar] [CrossRef]
- Putirka, K.D.; Johnson, M.; Kinzler, R.J.; Longhi, J.; Walker, D. Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0–30 kbar. Contrib. Mineral. Petrol. 1996, 123, 92–108. [Google Scholar] [CrossRef]
- Putirka, K.D.; Mikaelian, H.; Ryerson, F.; Shaw, H. New clinopyroxene– liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, Idaho. Am. Min. 2003, 88, 1542–1554. [Google Scholar] [CrossRef]
- Neave, D.A.; Putirka, K.D. A new clinopyroxene-liquid barometer, and implications for magma storage pressures under Icelandic rift zones. Am. Min. 2017, 102, 777–794. [Google Scholar] [CrossRef][Green Version]
- Johnson, M.C.; Rutherford, M.J. Experimental calibration of the aluminium- in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks. Geology 1989, 17, 837–841. [Google Scholar] [CrossRef]
- Henry, D.J.; Guidotti, C.V.; Thomson, J.A. The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms. Am. Min. 2005, 90, 316–328. [Google Scholar] [CrossRef]
- Nimis, P. A clinopyroxene geobarometer for basaltic systems based on crystal-structure modeling. Contrib. Mineral. Petrol. 1995, 121, 115–125. [Google Scholar] [CrossRef]
- Nimis, P. Clinopyroxene geobarometry of magmatic rocks. Part 2. Structural geobarometers for basic to acid, tholeiitic and mildly alkaline magmatic systems. Contrib. Mineral. Petrol. 1999, 135, 62–74. [Google Scholar] [CrossRef]
- Nimis, P.; Ulmer, P. Clinopyroxene geobarometry of magmatic rocks. Part 1. An expanded structural geobarometer for anhydrous and hydrous basic and ultrabasic systems. Contrib. Mineral. Petrol. 1998, 133, 122–135. [Google Scholar] [CrossRef]
- Yang, H.J.; Kinzler, R.J.; Grove, T. Experiments and models of anhydrous, basaltic olivine plagioclase-augite saturated melts from 0.001 to 10 kbar. Contrib. Mineral. Petrol. 1996, 124, 1–18. [Google Scholar] [CrossRef]
- Benisek, A.; Kroll, H.; Cemic, L. New developments in two-feldspar thermometry. Am. Min. 2004, 89, 1496–1504. [Google Scholar] [CrossRef]
- Bali, E.; Hartley, M.; Halldórsson, S.; Gudfinnsson, G.; Jakobsson, S. Melt inclusion constraints on volatile systematics and degassing history of the 2014–2015 Holuhraun eruption, Iceland. Contrib. Mineral. Petrol. 2018, 173, 9. [Google Scholar] [CrossRef][Green Version]
- Kroll, H.; Evangelakakis, C.; Voll, G. Two-feldspar geothermometry: A review and revision for slowly cooled rocks. Contrib. Mineral. Petrol. 1993, 114, 510–518. [Google Scholar] [CrossRef]
- Lindsley, D.H.; Andersen, D.J. A two-pyroxene thermometer. J. Geophys. Res. 1983, 88, 887–890. [Google Scholar] [CrossRef]
- Putirka, K.D. Geothermometry and Geobarometry. In Encyclopedia of Geochemistry: A Comprehensive Reference Source on the Chemistry of the Earth; White, W.M., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 597–614. [Google Scholar]
- Putirka, K.D. Igneous thermometers and barometers based on plagioclase + liquid equilibria: Tests of some existing models and new calibrations. Am. Min. 2005, 90, 336–346. [Google Scholar] [CrossRef]
- Giacomoni, P.P.; Coltorti, M.; Bryce, J.G.; Fahnestock, M.F.; Guitreau, M. Mt. Etna plumbing system revealed by combined textural, compositional, and thermobarometric studies in clinopyroxenes. Contrib. Mineral. Petrol. 2016, 171, 34. [Google Scholar] [CrossRef]
- Masotta, M.; Mollo, S.; Freda, C.; Gaeta, M.; Moore, G. Clinopyroxene–liquid thermometers and barometers specificto alkaline differentiated magmas. Contrib. Mineral. Petrol. 2013, 166, 1545–1561. [Google Scholar] [CrossRef]
- Zollo, A.; Gasparini, P.; Virieux, J.; le Meur, H.; de Natale, G.; Biella, G.; Boschi, E.; Capuano, P.; de Franco, R.; dell’Aversana, P.; et al. Seismic evidence for a low-velocity zone in the upper crust beneath Mount Vesuvius. Science 1996, 274, 592–594. [Google Scholar] [CrossRef]
- Zollo, A.; Maercklin, N.; Vassallo, M.; Dello Iacono, D.; Virieux, J.; Gasparini, P. Seismic reflections reveal a massive melt layer feeding Campi Flegrei caldera. Geophys. Res. Lett. 2008, 35, L12306. [Google Scholar] [CrossRef][Green Version]
- De Natale, G.; Troise, C.; Pingue, F. A mechanical fluid-dynamical model for ground movements at Campi Flegrei caldera. J. Geodyn. 2001, 32, 487–517. [Google Scholar] [CrossRef]
- De Natale, G.; Troise, C.; Pingue, F.; Mastrolorenzo, G.; Pappalardo, L.; Battaglia, M.; Boschi, E. The Campi Flegrei caldera: Unrest mechanisms and hazard. Geol. Soc. Spec. Publ. 2006, 269, 25–45. [Google Scholar] [CrossRef][Green Version]
- Fabbrizio, A.; Carroll, M.R. Experimental constraints on the differentiation process and pre-eruptive conditions in the magmatic system of Phlegrean fields (Naples, Italy). J. Volcanol. Geotherm. Res. 2008, 171, 88–102. [Google Scholar] [CrossRef]
- Guidarelli, M.; Zille, A.; Saraò, A.; Natale, M.; Nunziata, C.; Panza, G.F. Shear-wave velocity models and seismic sources in campanian volcanic areas: Vesuvius and Phlegraean fields. In Vesuvius: Education, Security and Prosperity; Dobran, F., Ed.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 8, pp. 287–309. [Google Scholar]
- Nunziata, C.; Natale, M.; Luongo, G.; Panza, G.F. Magma reservoir at Mt. Vesuvius: Size of the hot, partially molten, crust material detected deeper than 8 km. Earth Planet. Sci. Lett. 2006, 242, 51–57. [Google Scholar] [CrossRef]
- Nunziata, C. Low shear-velocity zone in the Neapolitan-area crust between the Campi Flegrei and Vesuvio volcanic areas. Terra Nova 2010, 22, 208–217. [Google Scholar] [CrossRef]
- De Siena, L.; Del Pezzo, E.; Bianco, F. Seismic attenuation imaging of Campi Flegrei: Evidence of gas reservoirs, hydrothermal basins, and feeding systems. J. Geophys. Res. 2010, 115, B09312. [Google Scholar] [CrossRef]
- Woo, J.Y.; Kilburn, C.R. Intrusion and deformation at Campi Flegrei, southern Italy: Sills, dikes, and regional extension. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef][Green Version]
- Costanzo, M.R.; Nunziata, C. Lithospheric Vs models in the Campanian Plain (Italy) by integrating Rayleigh wave dispersion data from noise cross correlation functions and earthquake recordings. Phys. Earth Planet. Inter. 2014, 234, 46–59. [Google Scholar] [CrossRef]
- Costanzo, M.R.; Nunziata, C. Inferences on the lithospheric structure of Campi Flegrei District (Southern Italy) from seismic noise cross-correlation. Phys. Earth Planet. Inter. 2017, 265, 92–105. [Google Scholar] [CrossRef]
- Amoruso, A.; Crescentini, L.; Sabbetta, I.; De Martino, P.; Obrizzo, F.; Tammaro, U. Clues to the cause of the 2011–2013 Campi Flegrei caldera unrest, Italy, from continuous GPS data. Geophys. Res. Lett. 2014, 42, 3847–3854. [Google Scholar] [CrossRef]
- D’Auria, L.; Pepe, S.; Castaldo, R.; Giudicepietro, F.; Macedonio, G.; Ricciolino, P.; Tizzani, P.; Casu, F.; Lanari, R.; Manzo, M.; et al. Magma injection beneath the urban area of Naples: A new mechanism for the 2012–2013 volcanic unrest at Campi Flegrei caldera. Sci. Rep. 2015, 5, 13100. [Google Scholar] [CrossRef][Green Version]
- Di Maio, R.; Piegari, E.; Mancini, C.; Scandone, R. Numerical study of conductive heat losses from a magmatic source at Phlegraean Fields. J. Volcanol. Geotherm. Res. 2015, 290, 75–81. [Google Scholar] [CrossRef]
- Fanara, S.; Botcharnikov, R.E.; Palladino, D.M.; Adams, F.; Buddensieck, J.; Mulch, A.; Behrens, H. Volatiles in magmas related to the Campanian ignimbrite eruption: Experiments vs. natural findings. Am. Mineral. 2015, 100, 2284–2297. [Google Scholar] [CrossRef]
- Arzilli, F.; Piochi, M.; Mormone, A.; Agostini, C.; Carroll, M.R. Constraining pre-eruptive magma conditions and unrest timescales during the Monte Nuovo eruption (1538 AD.; Campi Flegrei, Southern Italy): Integrating textural and CSD results from experimental and natural trachy-phonolites. Bull. Volcanol. 2016, 78, 72. [Google Scholar] [CrossRef][Green Version]
- Di Vito, M.A.; Acocella, V.; Aiello, G.; Barra, D.; Battaglia, M.; Carandente, A.; Del Gaudio, C.; de Vita, S.; Ricciardi, G.P.; Ricco, C.; et al. Magma transfer at Campi Flegrei caldera (Italy) before the 1538 AD eruption. Sci. Rep. 2016, 6, 32245. [Google Scholar] [CrossRef]
- Fedi, M.; Cella, F.; D’Antonio, M.; Florio, G.; Paoletti, V.; Morra, V. Gravity modeling finds a large magma body in the deep crust below the Gulf of Naples, Italy. Sci. Rep. 2018, 8, 8229. [Google Scholar] [CrossRef]
- Pappalardo, L.; Buono, G. Insights into Processes and Timescales of Magma Storage and Ascent from Textural and Geochemical Investigations: Case Studies from High-Risk Neapolitan Volcanoes (Italy). In Crustal Magmatic System Evolution: Anatomy, Architecture, and Physico-Chemical Processes; Masotta, M., Beier, C., Mollo, S., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2021; pp. 213–235. [Google Scholar]
- Melluso, L.; Morra, V.; Perrotta, A.; Scarpati, C.; Adabbo, M. The eruption of the Breccia Museo (Campi Flegrei, Italy): Fractional crystallization processes in a shallow, zoned magma chamber and implications for the eruptive dynamics. J. Volcanol. Geotherm. Res. 1995, 68, 325–339. [Google Scholar] [CrossRef]
- Civetta, L.; Orsi, G.; Pappalardo, L.; Fisher, R.V.; Heiken, G.; Ort, M. Geochemical zoning, mingling, eruptive dynamics and depositional processes—The Campanian Ignimbrite, Campi Flegrei caldera, Italy. J. Volcanol. Geotherm. Res. 1997, 75, 183–219. [Google Scholar] [CrossRef]
- Fulignati, P.; Marianelli, M.; Proto, M.; Sbrana, A. Evidences for disruption of a crystallizing front in a magma chamber during caldera collapse: An example from the Breccia Museo unit (Campanian Ignimbrite eruption, Italy). J. Volcanol. Geotherm. Res. 2004, 133, 141–155. [Google Scholar] [CrossRef]
- Roach, A.L. The Evolution of Silicic Magmatism in the Post-Caldera Volcanism of the Phlegrean Fields, Italy. Ph.D. Thesis, Brown University, Providence, RI, USA, 2005. [Google Scholar]
- Forni, F.; Bachmann, O.; Mollo, S.; De Astis, G.; Gelman, S.E.; Ellis, B.S. The origin of a zoned ignimbrite: Insights into the Campanian Ignimbrite magma chamber (Campi Flegrei, Italy). Earth Planet. Sci. Lett. 2016, 449, 259–271. [Google Scholar] [CrossRef][Green Version]
- Forni, F.; Petricca, E.; Bachmann, O.; Mollo, S.; De Astis, G.; Piochi, M. The role of magma mixing/mingling and cumulate melting in the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei, Southern Italy). Contrib. Mineral. Petrol. 2018, 173, 45. [Google Scholar] [CrossRef]
- Iovine, R.S.; Fedele, L.; Mazzeo, F.C.; Arienzo, I.; Cavallo, A.; Wörner, G.; Orsi, G.; Civetta, L.; D’Antonio, M. Timescales of magmatic processes occurred prior to the ca 47 ka Agnano-Monte Spina eruption (Campi Flegrei caldera Southern Italy) based on diffusion chronometry on sanidine phenocrysts. Bull. Volcanol. 2017, 79, 18. [Google Scholar] [CrossRef][Green Version]
- Astbury, R.L.; Petrelli, M.; Ubide, T.; Stock, M.J.; Arienzo, I.; D’Antonio, M.; Perugini, D. Tracking plumbing system dynamics at the Campi Flegrei caldera Italy: High-resolution trace element mapping of the Astroni crystal cargo. Lithos 2018, 318–319, 464–477. [Google Scholar] [CrossRef][Green Version]
- Gebauer, S.K.; Schmitt, A.K.; Pappalardo, L.; Stockli, D.F.; Lovera, O.M. Crystallization and eruption ages of Breccia Museo (Campi Flegrei caldera, Italy) plutonic clasts and their relation to the Campanian ignimbrite. Contrib. Mineral. Petrol. 2014, 167, 1–18. [Google Scholar] [CrossRef]
- Giaccio, B.; Hajdas, I.; Isaia, R.; Deino, A.; Nomade, S. High-precision 14C and 40Ar/39Ar dating of the Campanian Ignimbrite (Y-5) reconciles the time-scales of climatic-cultural processes at 40 ka. Sci. Rep. 2017, 7, 45940. [Google Scholar] [CrossRef][Green Version]
- Deino, A.; Orsi, G.; de Vita, S.; Piochi, M. The age of the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei caldera Italy) assessed by 40Ar/39Ar dating method. J. Volcanol. Geotherm. Res. 2004, 133, 157–170. [Google Scholar] [CrossRef]
- Fedele, L.; Esposito, C.; Francios, L.; Morra, V.; Perrotta, A.; Santangelo, N.; Scarpati, C. Campi Flegrei e Procida. In Guide Geologiche Reginonali_13 itinerari—Campania e Molise; Calcaterra, D., D’Argenio, B., Ferranti, L., Pappone, G., Petrosino, P., Eds.; Società Geologica Italiana: Roma, Italy, 2016; pp. 69–84. [Google Scholar]
- De Vivo, B.; Rolandi, G.; Gans, P.B.; Calvert, A.; Bohrson, W.A.; Spera, F.J.; Belkin, H.E. New constraints on the pyroclastic eruptive history of the Campanian volcanic plain (Italy). Mineral. Petrol. 2001, 73, 47–65. [Google Scholar] [CrossRef]
- Rolandi, G.; Bellucci, F.; Heizler, M.; Belkin, H.E.; De Vivo, B. Tectonic controls on the genesis of ignimbrites from the Campanian Volcanic Zone, Southern Italy. Mineral. Petrol. 2003, 79, 3–31. [Google Scholar] [CrossRef]
- Belkin, H.E.; Rolandi, G.; Jackson, J.C.; Cannatelli, C.; Doherty, A.L.; Petrosino, P.; De Vivo, B. Mineralogy and geochemistry of the older (> 40 ka) ignimbrites on the Campanian Plain, southern Italy. J. Volcanol. Geotherm. Res. 2016, 323, 1–18. [Google Scholar] [CrossRef]
- Orsi, G.; de Vita, S.; Di Vito, M.A. The restless, resurgent Campi Flegrei nested caldera (Italy): Constraints on its evolution and configuration. J. Volcanol. Geotherm. Res. 1996, 74, 179–214. [Google Scholar] [CrossRef]
- Pappalardo, L.; Civetta, L.; D’Antonio, M.; Deino, A.; Di Vito, M.; Orsi, G.; Carandente, A.; de Vita, S.; Isaia, R.; Piochi, M. Chemical and Sr- isotopical evolution of the Phlegrean magmatic system before the Campanian Ignimbrite and the Neapolitan Yellow Tuff eruptions. J. Volcanol. Geotherm. Res. 1999, 91, 141–166. [Google Scholar] [CrossRef]
- Scarpati, C.; Sparice, D.; Perrotta, A. A crystal concentration method for calculating ignimbrite volume from distal ash-fall deposits and a reappraisal of the magnitude of the Campanian Ignimbrite. J. Volcanol. Geotherm. 2014, 280, 67–75. [Google Scholar] [CrossRef]
- Fedele, L.; Scarpati, C.; Lanphere, M.; Melluso, L.; Morra, V.; Perrotta, A.; Ricci, G. The Breccia Museo formation, Campi Flegrei, southern Italy: Geochronology, chemostratigraphy and relationship with the Campanian Ignimbrite eruption. Bull. Volcanol. 2008, 70, 1189–1219. [Google Scholar] [CrossRef]
- Fedele, L.; Scarpati, C.; Sparice, D.; Perrotta, A.; Laiena, F. A chemostratigraphic study of the Campanian Ignimbrite eruption (Campi Flegrei, Italy): Insights on magma chamber withdrawal and deposit accumulation as revealed by compositionally zoned stratigraphic and facies framework. J. Volcanol. Geotherm. Res. 2016, 324, 105–117. [Google Scholar] [CrossRef]
- Silleni, A.; Giordano, G.; Isaia, R.; Ort, M.H. The Magnitude of the 39.8 ka Campanian Ignimbrite Eruption, Italy: Method, Uncertainties and Errors. Front. Earth Sci. 2020, 8, 543399. [Google Scholar] [CrossRef]
- Pappalardo, L.; Ottolini, L.; Mastrolorenzo, G. The Campanian Ignimbrite (Southern Italy) geochemical zoning, insight on the generation of a super-eruption from catastrophic differentiation and fast withdrawal. Contrib. Mineral. Petrol. 2008, 156, 1–26. [Google Scholar] [CrossRef]
- Scarpati, C.; Perrotta, A. Erosional characteristics and behaviour of large pyroclastic density currents. Geology 2012, 40, 1035–1038. [Google Scholar] [CrossRef][Green Version]
- Scarpati, C.; Perrotta, A. Stratigraphy and physical parameters of the Plinian phase of the Campanian Ignimbrite eruption. Geol. Soc. Am. Bull. 2016, 128, 1147–1159. [Google Scholar] [CrossRef][Green Version]
- Engwell, S.; Sparks, R.S.J.; Carey, S. Physical characteristics of tephra layers in the deep sea realm: The Campanian Ignimbrite eruption. Geol. Soc. Spec. Publ. 2014, 398, 47–64. [Google Scholar] [CrossRef]
- Scarpati, C.; Sparice, D.; Perrotta, A. Facies variation in the Campanian Ignimbrite. Rendiconti Online Soc. Geol. Ital. 2015, 33, 83–87. [Google Scholar] [CrossRef]
- Scarpati, C.; Sparice, D.; Perrotta, A. The ground layer of the Campanian Ignimbrite: An example of deposition from a dilute pyroclastic density current. Bull. Volcanol. 2015, 77, 97. [Google Scholar] [CrossRef]
- Scarpati, C.; Sparice, D.; Perrotta, A. Comparative proximal features of the main Plinian deposits (Campanian Ignimbrite and Pomici di Base) of Campi Flegrei and Vesuvius. J. Volcanol. Geotherm. Res. 2016, 321, 149–157. [Google Scholar] [CrossRef]
- Perrotta, A.; Scarpati, C. Volume partition between the plinian and co-ignimbrite air fall deposits of the Campanian Ignimbrite eruption. Mineral. Petrol. 2003, 79, 67–78. [Google Scholar] [CrossRef]
- Pyle, D.M.; Ricketts, G.D.; Margari, V.; van Andel, T.H.; Sinitsyn, A.A.; Praslov, N.D.; Lisitsyn, S. Wide dispersal and deposition of distal tephra during the Pleistocene “Campanian Ignimbrite/Y5” eruption, Italy. Quat. Sci. Rev. 2006, 25, 2713–2728. [Google Scholar] [CrossRef]
- Albert, P.G.; Giaccio, B.; Isaia, R.; Costa, A.; Niespolo, E.M.; Nomade, S.; Pereira, A.; Renne, P.R.; Hinchliffe, A.; Mark, D.F.; et al. Evidence for a large-magnitude eruption from Campi Flegrei caldera (Italy) at 29 ka. Geology 2019, 47, 595–599. [Google Scholar] [CrossRef][Green Version]
- Orsi, G.; D’Antonio, M.; de Vita, S.; Gallo, G. The Neapolitan Yellow Tuff, a large-magnitude trachytic phrcatoplinian eruption: Eruptive dynamics, magma withdrawtd and caldera collapse. J. Volcanol. Geotherm. Res. 1992, 53, 275–287. [Google Scholar] [CrossRef]
- Orsi, G.; Civetta, L.; D’Antonio, M.; Di Girolamo, P.; Piochi, M. Step-filling and development of a three-layers magma chamber: The Neapolitan Yellow Tuff case history. J. Volcanol. Geotherm. Res. 1995, 67, 291–312. [Google Scholar] [CrossRef]
- Scarpati, C.; Cole, P.; Perrotta, A. The Neapolitan Yellow Tuff—A large multiphase eruption from Campi Flegrei, Southem Italy. Bull. Volcanol. 1993, 55, 343–356. [Google Scholar] [CrossRef]
- Smith, V.C.; Isaia, R.; Pearce, N.J.G. Tephrostratigraphy and glass compositions of post-15 ka Campi Flegrei eruptions: Implications for eruption history and chronostratigraphic markers. Quat. Sci. Rev. 2011, 30, 3638–3660. [Google Scholar] [CrossRef]
- Di Vito, M.A.; Isaia, R.; Orsi, G.; Southon, J.; de Vita, S.; D’antonio, M.; Pappalardo, L.; Piochi, M. Volcanism and deformation in the past 12 ka at the Campi Flegrei caldera (Italy). J. Volcanol. Geotherm. Res. 1999, 91, 221–246. [Google Scholar] [CrossRef]
- Cannatelli, C.; Lima, A.; Bodnar, R.J.; De Vivo, B.; Webster, J.D.; Fedele, L. Geochemistry of melt inclusions from the Fondo Riccio and Minopoli 1 eruptions at Campi Flegrei (Italy). Chem. Geol. 2007, 237, 418–432. [Google Scholar] [CrossRef][Green Version]
- Mangiacapra, A.; Moretti, R.; Rutherford, M.; Civetta, L.; Orsi, G.; Papale, P. The deep magmatic system of the Campi Flegrei caldera (Italy). Geophys. Res. Lett. 2008, 35, L21304. [Google Scholar] [CrossRef]
- Forni, F.; Degruyter, W.; Bachmann, O.; De Astis, G.; Mollo, S. Long-term magmatic evolution reveals the beginning of a new caldera cycle at Campi Flegrei. Sci. Adv. 2018, 4, eaat940. [Google Scholar] [CrossRef][Green Version]
- Orsi, G.; Di Vito, M.A.; Isaia, R. Volcanic hazard assessment at the restless Campi Flegrei caldera. Bull. Volcanol. 2004, 66, 514–530. [Google Scholar] [CrossRef]
- Tonarini, S.; D’Antonio, M.; DiVito, M.A.; Orsi, G.; Carandente, A. Geochemical and B-Sr-Nd isotopic evidence for mingling and mixing processes in the magmatic system that fed the Astroni volcano (4.1–3.8 ka) within the Campi Flegrei caldera (Southern Italy). Lithos 2009, 107, 135–151. [Google Scholar] [CrossRef]
- Di Vito, M.A.; Arienzo, I.; Braia, G.; Civetta, L.; D’Antonio, M.; Di Renzo, V.; Orsi, G. The Averno 2 fissure eruption: A recent small-size explosive event at the Campi Flegrei Caldera (Italy). Bull. Volcanol. 2011, 73, 295–320. [Google Scholar] [CrossRef]
- Mastrolorenzo, G. Averno Tuff ring in Campi Flegrei (South Italy). Bull. Volcanol. 1994, 56, 561–572. [Google Scholar] [CrossRef]
- Arienzo, I.; Mazzeo, F.C.; Moretti, R.; Cavallo, A.; D’Antonio, M. Open-system magma evolution and fluid transfer at Campi Flegrei caldera (Southern Italy) during the past 5 ka as revealed by geochemical and isotopic data The example of the Nisida eruption. Chem. Geol. 2016, 427, 109–124. [Google Scholar] [CrossRef]
- Piochi, M.; Mastrolorenzo, G.; Pappalardo, L. Magma ascent and eruptive processes fromtextural and compositional features of Monte Nuovo pyroclastic products, Campi Flegrei, Italy. Bull. Volcanol. 2005, 67, 663–678. [Google Scholar] [CrossRef]
- Guidoboni, E.; Ciuccarelli, C. The Campi Flegrei caldera: Historical revision and new data on seismic crises, bradyseisms, the Monte Nuovo eruption and ensuing earthquakes (twelfth century 1582 ad). Bull. Volcanol. 2005, 73, 655–677. [Google Scholar] [CrossRef]
- Liedl, A.; Buono, G.; Lanzafame, G.; Dabagov, S.B.; Della Ventura, G.; Hampai, D.; Mancini, L.; Marcelli, A.; Pappalardo, L. 3D imaging textural characterization of pyroclastic products from the 1538 AD Monte Nuovo eruption (Campi Flegrei, Italy). Lithos 2019, 340, 316–331. [Google Scholar] [CrossRef]
- De Vita, S.; Orsi, G.; Civetta, L.; Carandente, A.; D’Antonio, M.; Deino, A.; di Cesare, T.; di Vito, M.A.; Fisher, R.V.; Isaia, R.; et al. The Agnano—Monte Spina eruption (4100 years BP) in the restless Campi Flegrei caldera (Italy). J. Volcanol. Geotherm. Res. 1999, 91, 269–301. [Google Scholar] [CrossRef]
- Dellino, P.; Isaia, R.; La Volpe, L.; Orsi, G. Statistical analysis of textural data from complex pyroclastic sequences: Implications for fragmentation processes of the Agnano-Monte Spina Tephra (4.1 ka), Phlegraean Fields, Southern Italy. Bull. Volcanol. 2001, 63, 443–461. [Google Scholar]
- Dellino, P.; Isaia, R.; La Volpe, L.; Orsi, G. Interaction between particles transported by fallout and surge in the deposits of the Agnano–Monte Spina eruption (Campi Flegrei Southern Italy). J. Volcanol. Geotherm. Res. 2004, 133, 193–210. [Google Scholar] [CrossRef]
- Arienzo, I.; Moretti, R.; Civetta, L.; Orsi, G.; Papale, P. The feeding system of Agnano-Monte Spina eruption (Campi Flegrei, Italy): Dragging the past into the present activity and future scenarios. Chem. Geol. 2010, 270, 135–147. [Google Scholar] [CrossRef]
- Romano, C.; Vona, A.; Campagnola, S.; Giordano, G.; Arienzo, I.; Isaia, R. Modelling and physico-chemical constraints to the 4.5 ka Agnano-Monte Spina Plinian eruption (Campi Flegrei, Italy). Chem. Geol. 2020, 532, 119301. [Google Scholar] [CrossRef]
- Wu, W.N.; Schmitt, A.K.; Pappalardo, L. U-Th baddeleyite geochronology and its significance to date the emplacement of silica undersaturated magmas. Am. Mineral. 2015, 10, 2082–2090. [Google Scholar] [CrossRef]
- Del Gaudio, C.; Aquino, I.; Ricciardi, G.P.; Ricco, C.; Scandone, R. Unrest episodes at Campi Flegrei: A reconstruction of vertical ground movements during 1905–2009. J. Volcanol. Geotherm. Res. 2010, 195, 48–56. [Google Scholar] [CrossRef]
- Chiodini, G.; Caliro, S.; De Martino, P.; Avino, R.; Gherardi, F. Early signals of new volcanic unrest at Campi Flegrei caldera? Insights from geochemical data and physical simulations. Geology 2012, 40, 943–946. [Google Scholar] [CrossRef]
- Chiodini, G.; Vandemeulebrouck, J.; Caliro, S.; D’Auria, L.; De Martino, P.; Mangiacapra, A.; Petrillo, Z. Evidence of thermal-driven processes triggering the 2005–2014 unrest at Campi Flegrei caldera. Earth Planet. Sci. Lett. 2015, 414, 58–67. [Google Scholar] [CrossRef]
- Chiodini, G.; Paonita, A.; Aiuppa, A.; Costa, A.; Caliro, S.; De Martino, P.; Acocella, V.; Vandemeulebrouck, J. Magmas near the critical degassing pressure drive volcanic unrest towards a critical state. Nat. Commun. 2016, 7, 13712. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Neri, A.; Bevilacqua, A.; Esposti Ongaro, T.; Isaia, R.; Aspinall, W.P.; Bisson, M.; Flandoli, F.; Baxter, P.J.; Bertagnini, A.; Iannuzzi, E.; et al. Quantifying volcanic hazard at Campi Flegrei caldera (Italy) with uncertainty assessment: II. Pyroclastic density current invasion maps. J. Geophys. Res. Solid Earth 2015, 120, 2309–2329. [Google Scholar] [CrossRef][Green Version]
- Charlton, D.; Kilburn, C.; Edwards, S. Volcanic unrest scenarios and impact assessment at Campi Flegrei caldera, Southern Italy. J. Appl. Volcanol. 2020, 9, 1–26. [Google Scholar] [CrossRef]
- D’Antonio, M.; Civetta, L.; Di Girolamo, P. Mantle source heterogeneity in the Campanian region (South Italy) as inferred from geochemical and isotopic features of mafic volcanic rocks with shoshonitic affinity. Mineral. Petrol. 1999, 67, 163–192. [Google Scholar] [CrossRef]
- Melluso, L.; de’Gennaro, R.; Fedele, L.; Franciosi, L.; Morra, V. Evidence of crystallization in residual, Cl–F-rich, agpaitic, trachyphonolitic magmas and primitive Mg-rich basalt–trachyphonolite interaction, in the lava domes of the Phlegrean Fields (Italy). Geol. Mag. 2012, 149, 532–550. [Google Scholar] [CrossRef][Green Version]
- Signorelli, S.; Vaggelli, G.; Francalanci, L.; Rosi, M. Origin of magmas feeding the Plinian phase of the Campanian Ignimbrite eruption, Phlegrean Fields (Italy): Constraints based on matrix-glass and glass-inclusion compositions. J. Volcanol. Geotherm. Res. 1999, 91, 199–220. [Google Scholar] [CrossRef]
- Pappalardo, L.; Civetta, L.; de Vita, S.; Di Vito, M.; Orsi, G.; Carandente, A.; Fisher, R.V. Timing of magma extraction during the Campanian ignimbrite eruption (Campi Flegrei Caldera). J. Volcanol. Geotherm. Res. 2002, 114, 479–497. [Google Scholar] [CrossRef]
- Webster, J.D.; Raia, F.; Tappen, C.; De Vivo, B. Pre-eruptive geochemistry of the ignimbrite-forming magmas of the Campanian Volcanic Zone, Southern Italy, determined from silicate melt inclusions. Mineral. Petrol. 2003, 79, 99–125. [Google Scholar] [CrossRef]
- Munno, R.; Petrosino, P. New constraints on the occurrence of Y-3 upper Pleistocene tephra marker layer in the tyrrhenian sea. Il Quaternario 2004, 17, 11–20. [Google Scholar]
- D’Oriano, C.; Poggianti, E.; Bertagnini, A.; Cioni, R.; Landi, P.; Polacci, M.; Rosi, M. Changes in eruptive style during the A.D. 1538 Monte Nuovo eruption (Phlegrean Fields, Italy): The role of syn-eruptive crystallization. Bull. Volcanol. 2005, 67, 601–621. [Google Scholar] [CrossRef]
- Marianelli, P.; Sbrana, A.; Proto, M. Magma chamber of the Campi Flegrei supervolcano at the time of eruption of the Campanian Ignimbrite. Geology 2006, 34, 937–940. [Google Scholar] [CrossRef]
- Fowler, S.J.; Spera, F.J.; Bohrson, W.A.; Belkin, H.E.; De Vivo, B. Phase Equilibria Constraints on the Chemical and Physical Evolution of the Campanian Ignimbrite. J. Petrol. 2007, 48, 459–493. [Google Scholar] [CrossRef][Green Version]
- Fedele, L.; Zanetti, A.; Morra, V.; Lustrino, M.; Melluso, L.; Vannucci, R. Clinopyroxene/liquid trace element partitioning in natural trachyte–trachyphonolite systems: Insights from Campi Flegrei (Southern Italy). Contrib. Mineral. Petrol. 2009, 158, 337–356. [Google Scholar] [CrossRef]
- Arienzo, I.; Neumann, A.; Wörner, G.; Civetta, L.; Orsi, G. Processes and timescales of magma evolution prior to the Campanian ignimbrite eruption (Campi Flegrei, Italy). Earth Planet. Sci. Lett. 2011, 306, 217–228. [Google Scholar] [CrossRef]
- Fourmentraux, C.; Métrich, N.; Bertagnini, A.; Rosi, M. Crystal fractionation, magma step ascent, and syn-eruptive mingling: The Averno 2 eruption (Phlegraean Fields, Italy). Contrib. Mineral. Petrol. 2012, 163, 1121–1137. [Google Scholar] [CrossRef]
- Tomlinson, E.L.; Arienzo, I.; Civetta, L.; Wulf, S.; Smith, V.C.; Hardiman, M.; Lane, C.S.; Carandente, A.; Orsi, G.; Rosi, M.; et al. Geochemistry of the Phlegraean Fields (Italy) proximal sources for major Mediterranean tephras: Implications for the dispersal of Plinian and coignimbritic components of explosive eruptions. Geochim. Cosmochim. Acta 2012, 93, 102–128. [Google Scholar] [CrossRef][Green Version]
- Roeder, P.L.; Emslie, R. Olivine-liquid equilibrium. Contrib. Mineral. Petrol. 1970, 29, 275–289. [Google Scholar] [CrossRef]
- Matzen, A.K.; Baker, M.B.; Beckett, J.R.; Stolper, E.M. Fe–Mg partitioning between olivine and high-magnesian melts and the nature of Hawaiian parental liquids. J. Petrol. 2011, 52, 1243–1263. [Google Scholar] [CrossRef]
- Grove, T.L.; Bryan, W.B. Fractionation of pyroxene-phyric MORB at low pressure: And experimental study. Contrib. Mineral. Petrol. 1983, 84, 293–309. [Google Scholar] [CrossRef]
- Mollo, S.; Putirka, K.; Misiti, V.; Soligo, M.; Scarlato, P. A new test for equilibrium based on clinopyroxene-melt pairs: Clues on the solidification temperatures of Etnean alkaline melts on clinopyroxene- melt pairs: Clues on the solidification temperatures of Etnean alkaline melts at post-eruptive conditions. Chem. Geol. 2013, 352, 92–100. [Google Scholar] [CrossRef][Green Version]
- Putirka, K.D. Clinopyroxene + liquid equilibria to 100 kbar and 2450 K. Contrib. Mineral. Petrol. 1999, 135, 151–163. [Google Scholar] [CrossRef]
- Mollo, S.; Masotta, M.; Forni, F.; Bachmann, O.; De Astis, G.; Moore, G.; Scarlato, P. A K-feldspar-liquid hygrometer specific to alkaline differentiated magmas. Chem. Geol. 2015, 392, 1–8. [Google Scholar] [CrossRef]
- Putirka, K.; Perfit, M.; Ryerson, F.J.; Jackson, M.G. Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling. Chem. Geol. 2007, 241, 177–206. [Google Scholar] [CrossRef][Green Version]
- De Hoog, J.C.; Gall Cornell, L.D.H. Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry. Chem. Geol. 2010, 270, 196–215. [Google Scholar] [CrossRef][Green Version]
- Kahl, M.; Chakraborty, S.; Pompilio, M.; Costa, F. Constraints on the nature and evolution of the magma plumbing system of Mt Etna volcano (1991–2008) from a combined thermodynamic and kinetic modelling of the compositional record of minerals. J. Petrol. 2015, 56, 2025–2068. [Google Scholar] [CrossRef][Green Version]
- Moretti, R.; Arienzo, I.; Orsi, G.; Civetta, L.; D’Antonio, M. The deep plumbing system of Ischia: A physico-chemical window on the fluid-saturated and CO2-sustained Neapolitan volcanism (Southern Italy). J. Petrol. 2013, 54, 951–984. [Google Scholar] [CrossRef]
- Di Salvo, S.; Avanzinelli, R.; Isaia, R.; Zanetti, A.; Druitt, T.; Francalanci, L. Crystal-mush reactivation by magma recharge: Evidence from the Campanian Ignimbrite activity, Campi Flegrei volcanic field, Italy. Lithos 2020, 376–377, 105780. [Google Scholar] [CrossRef]
- D’Antonio, M.; Tonarini, S.; Arienzo, I.; Civetta, L.; Di Renzo, V. Components and processes in the magma genesis of the Phlegrean Volcanic District, Southern Italy. Geol. Soc. Am. 2007, 418, 203–220. [Google Scholar]
- Pappalardo, L.; Mastrolorenzo, G. Rapid differentiation in a sill-like magma reservoir: A case study from the campi flegrei caldera. Sci. Rep. 2012, 2, 712. [Google Scholar] [CrossRef][Green Version]
- Rhodes, J.M.; Lofgren, G.E.; Smith, D.P. One atmosphere melting experiments on ilmenite basalt 12008. Proc. Lunar Planet. Sci. Conf. 1979, 5, 407–422. [Google Scholar]
- Mollo, S.; Del Gaudio, P.; Ventura, G.; Iezzi, G.; Scarlato, P. Dependence of clinopyroxene composition on cooling rate in basaltic magmas: Implications for thermobarometry. Lithos 2010, 118, 302–312. [Google Scholar] [CrossRef]
- Gee, L.L.; Sack, R.O. Experimental petrology of melilite nephelinites. J. Petrol. 1988, 29, 1235–1255. [Google Scholar] [CrossRef]
- Costa, F.; Chakraborty, S. Decadal time gaps between mafic intrusion and silicic eruption obtained from chemical zoning patterns in olivine. Earth Planet. Sci. Lett. 2004, 227, 517–530. [Google Scholar] [CrossRef]
- Costa, F.; Dohmen, R.; Chakraborty, S. Time scales of magmatic processes from modeling zoning patterns of crystals. Rev. Mineral. Geochem. 2008, 69, 545–594. [Google Scholar] [CrossRef]
- Costa, F.; Morgan, D. Time constraints from chemical equilibration in magmatic crystals. In Timescales of Magmatic Processes: From Core to Atmosphere; Dosseto, A., Turner, S., Van-Orman, J., Eds.; Wiley: Chichester, UK, 2011; pp. 125–159. [Google Scholar]
- Petrone, C.; Bugatti, G.; Braschi, E.; Tommasini, S. Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics. Nat. Comm. 2016, 7, 12946. [Google Scholar] [CrossRef][Green Version]
- Dohmen, R.; Faak, K.; Blundy, J.D. Chronometry and speedometry of magmatic processes using chemical diffusion in olivine, plagioclase and pyroxenes. Rev. Mineral. Geochem. 2017, 83, 535–575. [Google Scholar] [CrossRef]
- Chakraborty, S. Diffusion in silicates: A tool to track timescales of processes comes of age. Annu. Rev. Earth Planet. Sci. 2008, 36, 153–190. [Google Scholar] [CrossRef][Green Version]
- Armienti, P.; Barberi, F.; Bizouard, H.; Clocchiatti, R.; Innocenti, F.; Metrich, N.; Rosi, M.; Sbrana, A. The Phlegraean Fields: Magma evolution within a shallow chamber. J. Volcanol. Geotherm. Res. 1983, 17, 289–311. [Google Scholar] [CrossRef]
- Fuhrman, M.L.; Lindsley, D.H. Ternary-feldspar modeling and thermometry. Am. Min. 1988, 73, 201–215. [Google Scholar]
- Edmonds, M. New geochemical insights into volcanic degassing. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2008, 366, 4559–4579. [Google Scholar] [CrossRef]
- Sigmundsson, F.; Hreinsdottir, S.; Hooper, A.; Arnadottir, T.; Pedersen, R.; Roberts, J.M.; Oskarsson, N.; Auriac, A.; Decriem, J.; Einarsson, P.; et al. Intrusion triggering of the 2010 Eyjafjallajokull explosive eruption. Nature 2010, 468, 426–430. [Google Scholar] [CrossRef]
- Tarasewicz, J.; White, R.S.; Brandsdottir, B.; Schoonman, C.M. Seismogenic magma intrusion before the 2010 eruption of Eyjafjallajokull volcano, Iceland. Geophys. J. Int. 2014, 198, 906–921. [Google Scholar] [CrossRef]
- Henstock, T.J.; Woods, A.W.; White, R.S. The accretion of oceanic crust by episodic sill intrusion. J. Geophys. Res. 1993, 98, 4143–4161. [Google Scholar] [CrossRef]
- Kelemen, P.B.; Koga, K.T.; Shimizu, N. Geochemistry of gabbro sills in the crust-mantle transition zone of the Oman ophiolite: Implications for the origin of the oceanic lower crust. Earth Planet. Sci. Lett. 1997, 146, 475–488. [Google Scholar] [CrossRef]
- Annen, C.; Blundy, J.D.; Sparks, R.S.J. The genesis of intermediate and silicic magmas in deep crustal hot zones. J. Petrol. 2006, 47, 505–539. [Google Scholar] [CrossRef][Green Version]
- Bianchi, R.; Coradini, A.; Federico, C.; Giberti, G.; Luciano, P.; Pozzi, J.P.; Sartoris, G.; Scandone, R. Modelling of surface ground deformation in volcanic areas: The 1970–1972 and 1982–1984 crises of Campi Flegrei, Italy. J. Geophys. Res. 1987, 92, 139–150. [Google Scholar]
- Ferrucci, F.; Him, A.; De Natale, G.; Virieux, J.; Mirabile, L. P-SV convertions at a shallow boundary beneath Campi Flegrei caldera (Italy): Evidence for the magma chamber. J. Geophys. Res. 1992, 97, 351–359. [Google Scholar]
- De Gori, P.; Cimini, G.B.; Chiarabba, C.; De Natale, G.; Troise, C.; Deschamps, A. Teleseismic tomography of the Campanian volcanic area and surrounding Apenninic belt. J. Volcanol. Geotherm. Res. 2001, 109, 52–75. [Google Scholar] [CrossRef]
- Chiarabba, C.; Moretti, M. An insight into the unrest phenomena at the Campi Flegrei caldera from Vp and Vp/Vs tomography. Terra Nova 2006, 18, 373–379. [Google Scholar] [CrossRef]
- Guidarelli, M.; Saraò, A.; Panza, G.F. Surface wave tomography and seismic source studies at Campi Flegrei (Italy). Phys. Earth Planet. Inter. 2002, 134, 157–173. [Google Scholar] [CrossRef]
- De Vivo, B.; Petrosino, P.; Lima, A.; Rolandi, G.; Belkin, H.E. Research progress in volcanology in the Neapolitan area, southern Italy: A review and some alternative views. Miner. Petrol. 2010, 99, 1–28. [Google Scholar] [CrossRef]
- Vetere, F.; Holtz, F.; Behrens, H.; Botcharnikov, R.E.; Fanara, S. The effect of alkalis and polymerization on the solubility of H2O and CO2 in alkali-rich silicate melts. Contrib. Mineral. Petrol. 2014, 202, 251–261. [Google Scholar] [CrossRef]
- Capuano, P.; Russo, G.; Civetta, L.; Orsi, G.; D’Antonio, M.; Moretti, R. The active portion of the Campi Flegrei caldera structure imaged by 3-D inversion of gravity data. Geochem. Geophys. 2013, 14, 4681–4697. [Google Scholar] [CrossRef][Green Version]
- Carlino, S.; Kilburn, C.R.J.; Tramelli, A.; Troise, C.; Somma, R.; De Natale, G. Tectonic stress and renewed uplift at Campi Flegrei caldera, Southern Italy: New insights from caldera drilling. Earth Planet. Sci. Lett. 2015, 420, 23–29. [Google Scholar] [CrossRef][Green Version]
- Voloschina, M.; Pistolesi, M.; Bertagnini, A.; Métrich, N.; Pompilio, M.; Di Roberto, A.; Di Salvo, S.; Francalanci, L.; Isaia, R.; Cioni, R.; et al. Magmatic reactivation of the Campi Flegrei volcanic system: Insights from the Baia–Fondi di Baia eruption. Bull. Volcanol. 2018, 80, 75. [Google Scholar] [CrossRef]
- Stock, M.J.; Humphreys, M.C.S.; Smith, V.C.; Isaia, R.; Brooker, R.A.; Pyle, D.M. Tracking volatile behaviour in sub-volcanic plumbing systems using apatite and glass: Insights into pre-eruptive processes at Campi Flegrei, Italy. J. Petrol. 2018, 59, 2463–2492. [Google Scholar] [CrossRef][Green Version]
- Bohrson, W.A.; Spera, F.J.; Fowler, S.J.; Belkin, H.E.; DeVivo, B. Petrogenesis of the Campanian Ignimbrite: Implications for crystal–melt separation and open-system processes from major and trace elements and Th isotope data. In Volcanism in the Campania Plain, Vesuvius, Campi Flegrei and Ignimbrites. Dev. Volcanol. 2006, 9, 249–288. [Google Scholar]
- Moretti, R.; Arienzo, I.; Di Renzo, V.; Orsi, G.; Arzilli, F.; Brune, F.; D’Antonio, M.; Mancini, L.; Deloule, E. Volatile segregation and generation of highly vesiculated explosive magmas by volatile-melt fining processes: The case of the Campanian Ignimbrite eruption. Chem. Geol. 2019, 503, 1–14. [Google Scholar] [CrossRef]
- Berrino, G.; Corrado, G.; Riccardi, U. Sea gravity data in the Gulf of Naples. A contribution to delineating the structural pattern of the Phlegraean Volcanic District. J. Volcanol. Geotherm. Res. 2008, 175, 241–252. [Google Scholar] [CrossRef]
- Ruth, D.C.S.; Costa, F.; Bouvet de Maisonneuve, C.; Franco, L.; Cortés, J.A.; Calder, E.S. Crystal and melt inclusion timescales reveal the evolution of magma migration before eruption. Nat. Commun. 2018, 9, 2657. [Google Scholar] [CrossRef][Green Version]
Eruptive Period | Clinopyroxene Mg# |
---|---|
Old ignimbrites | 89–67 |
Pre–CI | 91–61 |
CI | 92–62 |
Pre–NYT | 91–55 |
NYT | 92–61 |
Last 12 ka | 92–41 |
Eruptive Period | Plagioclase Composition | K-Feldspar Composition |
---|---|---|
Old ignimbrites | An88–49Ab44–10Or6–1 | Or74–50 |
Pre-CI | An82–24Ab64–16Or11–2 | Or67–54 |
CI | An90–25Ab62–8Or14–1 | Or88–42 |
Pre-NYT | An89–76Ab20–9Or3–1; | Or87–51 |
NYT | An86–47Ab43–12Or8–2 | Or86–72 |
Last 12 ka | An94–40Ab51–5Or18–1 | Or87–39 |
Eruptive Period | Melt Composition | T (°C) | Average, s.d. | P (kbar) | Average, s.d. |
---|---|---|---|---|---|
Pre-CI | trachyte-phono-trachyte | 994–874 | 946 ± 34 | 10.6–3.4 | 6.2 ± 2 |
CI | trachyte-phono-trachyte | 1015–894 | 953 ± 28 | 10–1.8 | 6.9 ± 1.6 |
Pre-NYT | latite-trachyte | 1043–891 | 964 ± 42 | 12.5–3.8 | 8 ± 2.2 |
NYT | trachyte-phono-trachyte | 1018–914 | 983 ± 23 | 9.2–3.3 | 6.9 ± 1.5 |
Last 12 ka | shoshonite-latite- | 1110–884 | 976 ± 46 | 14.6–2.9 | 7.6 ± 2.1 |
trachyte-phono-trachyte |
Eruptive Period | Eruption | Melt Composition | T (°C) | Average, s.d. | P (kbar) | Average, s.d. |
---|---|---|---|---|---|---|
Pre-CI | Torre di Franco | trachyte | 994–958 | 978 ± 8 | 2.6–0.4 | 1.7 ± 0.6 |
CI | CI | trachyte-phono-trachyte | 1055–921 | 992 ± 22 | 4.0–0.1 | 1.3 ± 0.8 |
Pre-NYT | Trentaremi | trachyte | 1081–968 | 1025 ± 24 | 5.3–0.3 | 1.8 ± 1.14 |
NYT | NYT | trachyte-phono-trachyte | 1058–973 | 1023 ± 22 | 1.9–0.1 | 1.0 ± 0.4 |
Last 12 ka | Averno | trachyte-phono-trachyte | 1014–933 | 960 ± 16 | 2.8–0.5 | 1.6 ± 0.5 |
Nisida | trachyte-phono-trachyte | 1027–961 | 994 ± 15 | 3.2–0.1 | 1.3 ± 0.8 |
Eruptive Period | Rock Composition | T (°C) | Average, s.d. | P (kbar) | Average, s.d. |
---|---|---|---|---|---|
Pre-CI | trachyte-phono-trachyte | 918–823 | 946 ± 34 | 7.5–0.1 | 2.4 ± 2 |
CI | trachyte-phono-trachyte | 886–811 | 848 ± 19 | 5.3–0.1 | 2.0 ± 1.4 |
Pre-NYT | latite-trachyte | 996–830 | 892 ± 38 | 5.4–0.2 | 2.8 ± 2.3 |
NYT | trachyte-phono-trachyte | 961–819 | 892 ± 42 | 4.8–0.1 | 2.2 ± 1.2 |
Last 12 ka | shoshonite-latite- | 1179–817 | 946 ± 92 | 8.5–0.1 | 1.9 ± 1.5 |
trachyte-phono-trachyte |
Eruptive Period | Rock Composition | T (°C) | Average-s.d. | P (kbar) |
---|---|---|---|---|
Pre-CI | trachyte-phono-trachyte | 1055–889 | 945 ± 43 | 1.9–(−1.6) |
CI | trachyte-phono-trachyte | 963–900 | 934 ± 16 | 1.6–(−0.8) |
Pre-NYT | trachyte | 1022–875 | 937 ± 47 | 1.6–(−0.9) |
NYT | trachyte-phono-trachyte | 1105–961 | 1031 ± 31 | 1.5–(−1.3) |
Last 12 ka | trachyte-phono-trachyte | 1125–875 | 953 ± 70 | 4.9–(−1.3) |
Eruptive Period | Eruption | Melt Composition | T (°C) | Average, s.d. |
---|---|---|---|---|
Old ignimbrites | Taurano | - | 1193–1022 | 1071 ± 79 |
Pre-CI | S.Severino 1 | trachyte | 879–833 | 855 ± 8 |
S.Severino 2 | trachyte | 880–828 | 853 ± 20 | |
CI | CI | trachyte-phono-trachyte | 1066–713 | 829 ± 70 |
Pre-NYT | Torregaveta | latite | 1064–881 | 944 ± 45 |
NYT | NYT | trachyte-phono-trachyte | 992–790 | 883 ± 30 |
Last 12 ka | Minopoli 1 | shoshonite-latite | 1093–959 | 1035 ± 43 |
Pomici Principali | shoshonite-latite-trachyte | 959–826 | 870 ± 33 | |
Soccavo 4 | trachyte | 928–842 | 871 ± 37 | |
Minopoli 2 | shoshonite-trachyte | 1047–952 | 1007 ± 27 | |
Montagna Spaccata | latite-trachyte | 1068–807 | 871 ± 67 | |
S.Martino | trachyte | 920–839 | 864 ± 14 | |
A-MS | trachyte-phono-trachyte | 928–812 | 857 ± 23 | |
Paleoastroni 3 | trachyte | 964–905 | 930 ± 16 | |
Averno | trachyte-phono-trachyte | 923–772 | 858 ± 30 | |
Astroni | latite-trachyte | 1032–817 | 879 ± 29 | |
Nisida | trachyte-phono-trachyte | 923–738 | 862 ± 21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pelullo, C.; Iovine, R.S.; Arienzo, I.; Di Renzo, V.; Pappalardo, L.; Petrosino, P.; D’Antonio, M. Mineral-Melt Equilibria and Geothermobarometry of Campi Flegrei Magmas: Inferences for Magma Storage Conditions. Minerals 2022, 12, 308. https://doi.org/10.3390/min12030308
Pelullo C, Iovine RS, Arienzo I, Di Renzo V, Pappalardo L, Petrosino P, D’Antonio M. Mineral-Melt Equilibria and Geothermobarometry of Campi Flegrei Magmas: Inferences for Magma Storage Conditions. Minerals. 2022; 12(3):308. https://doi.org/10.3390/min12030308
Chicago/Turabian StylePelullo, Carlo, Raffaella Silvia Iovine, Ilenia Arienzo, Valeria Di Renzo, Lucia Pappalardo, Paola Petrosino, and Massimo D’Antonio. 2022. "Mineral-Melt Equilibria and Geothermobarometry of Campi Flegrei Magmas: Inferences for Magma Storage Conditions" Minerals 12, no. 3: 308. https://doi.org/10.3390/min12030308