Study of Reagent Scheme, Entrainment and Their Relationship in Chalcopyrite Flotation in the Presence of Bentonite and Kaolinite
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Grinding and Flotation
2.3. Reagent Adsorption
2.4. Clay Mineral Characterization
3. Results and discussion
3.1. Effect of Reagent Dosage on the Flotation of Clayey Ores
3.2. Effect of Reagent Dosage on Mass and Water Recovery
3.3. Effect of Reagent Dosage on Entrainment
3.4. Effect of Reagent Consumption
3.5. Mechanism of Reagent Adsorption on Different Clay Minerals
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Theng, B.K.G. (Ed.) Chapter 1—The Clay Minerals. In Developments in Clay Science; Elsevier: Amsterdam, The Netherlands, 2012; pp. 3–45. [Google Scholar]
- Schoonheydt, R.A.; Johnston, C.T. Surface and Interface Chemistry of Clay Minerals. In Handbook of Clay Science; Bergaya, F., Theng, B.K.G., Lagaly, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; pp. 87–113. [Google Scholar]
- Lagaly, G.; Dékány, I. Chapter 8—Colloid Clay Science. In Developments in Clay Science; Faïza, B., Gerhard, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 243–345. [Google Scholar]
- Luckham, P.F.; Rossi, S. The colloidal and rheological properties of bentonite suspensions. Adv. Colloid Interface Sci. 1999, 82, 43–92. [Google Scholar] [CrossRef] [Green Version]
- Merve Genc, A.; Kilickaplan, I.; Laskowski, J. Effect of pulp rheology on flotation of nickel sulphide ore with fibrous gangue particles. Can. Metall. Q. 2012, 51, 368–375. [Google Scholar] [CrossRef]
- Patra, P.; Bhambhani, T.; Nagaraj, D.R.; Somasundaran, P. Impact of pulp rheological behavior on selective separation of Ni minerals from fibrous serpentine ores. Colloids Surf. A—Physicochem. Eng. Asp. 2012, 411, 24–26. [Google Scholar] [CrossRef]
- Zhang, M.; Peng, Y. Effect of clay minerals on pulp rheology and the flotation of copper and gold minerals. Miner. Eng. 2015, 70, 8–13. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, Y.; Nicholson, T.; Lauten, R.A. The different effects of bentonite and kaolin on copper flotation. Appl. Clay Sci. 2015, 114, 48–52. [Google Scholar] [CrossRef]
- Farrokhpay, S.; Ndlovu, B.; Bradshaw, D. Behaviour of swelling clays versus non-swelling clays in flotation. Miner. Eng. 2016, 96, 59–66. [Google Scholar] [CrossRef]
- Wang, L.; Peng, Y.; Runge, K.; Bradshaw, D. A review of entrainment: Mechanisms, contributing factors and modelling in flotation. Miner. Eng. 2015, 70, 77–91. [Google Scholar] [CrossRef]
- Smith, P.; Warren, L. Entrainment of particles into flotation froths. Min. Proc. Ext. Met. Rev. 1989, 5, 123–145. [Google Scholar] [CrossRef]
- Barbian, N.; Hadler, K.; Ventura-Medina, E.; Cilliers, J.J. The froth stability column: Linking froth stability and flotation performance. Miner. Eng. 2005, 18, 317–324. [Google Scholar] [CrossRef]
- Subrahmanyam, T.V.; Forssberg, E. Froth stability, particle entrainment and drainage in flotation—A review. Int. J. Miner. Processing 1988, 23, 33–53. [Google Scholar] [CrossRef]
- Liu, D.; Peng, Y. Reducing the entrainment of clay minerals in flotation using tap and saline water. Powder Technol. 2014, 253, 216–222. [Google Scholar] [CrossRef]
- Bulatovic, S.M. Handbook of Flotation Reagents: Chemistry, Theory and Practice: Volume 1: Flotation of Sulfide Ores; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Liu, C.; Zhu, Y.; Huang, K.; Yang, S.; Liang, Z. Studies of benzyl hydroxamic acid/calcium lignosulphonate addition order in the flotation separation of smithsonite from calcite. Int. J. Min. Sci. Technol. 2021, 31, 1153–1158. [Google Scholar] [CrossRef]
- Yanhong, W. Mitigating the Deleterious Effect of Clay Minerals on Copper Flotation. Ph.D. Thesis, University of Queensland, Brisbane, Australia, 2017. [Google Scholar]
- Song, S.; Gu, G.; Huang, W.; Wang, Y. Decoupling the mechanisms in chalcopyrite flotation with high sodium bentonite content when using saline water containing divalent cations. Miner. Eng. 2021, 167, 106902. [Google Scholar] [CrossRef]
- Ndlovu, B.; Becker, M.; Forbes, E.; Deglon, D.; Franzidis, J.-P. The influence of phyllosilicate mineralogy on the rheology of mineral slurries. Miner. Eng. 2011, 24, 1314–1322. [Google Scholar] [CrossRef]
- Ndlovu, B.; Forbes, E.; Farrokhpay, S.; Becker, M.; Bradshaw, D.; Deglon, D. A preliminary rheological classification of phyllosilicate group minerals. Miner. Eng. 2014, 55, 190–200. [Google Scholar] [CrossRef]
- Cruz, N.; Peng, Y.; Farrokhpay, S.; Bradshaw, D. Interactions of clay minerals in copper-gold flotation: Part 1—Rheological properties of clay mineral suspensions in the presence of flotation reagents. Miner. Eng. 2013, 50, 30–37. [Google Scholar] [CrossRef]
- Corin, K.C.; Wiese, J.G. Investigating froth stability: A comparative study of ionic strength and frother dosage. Miner. Eng. 2014, 66, 130–134. [Google Scholar] [CrossRef]
- Zheng, X.; Johnson, N.W.; Franzidis, J.P. Modelling of entrainment in industrial flotation cells: Water recovery and degree of entrainment. Miner. Eng. 2006, 19, 1191–1203. [Google Scholar] [CrossRef]
- Lagaly, G. Colloid Clay Science. In Handbook of Clay Science; Bergaya, F., Theng, B.K.G., Lagaly, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; pp. 141–245. [Google Scholar]
- Müller-Vonmoos, M.; Løken, T. The shearing behaviour of clays. Appl. Clay Sci. 1989, 4, 125–141. [Google Scholar] [CrossRef]
- Miller, J.D.; Lin, C.L.; Chang, S.S. MIBC adsorption at the coal/water interface. Colloids Surf. 1983, 7, 351–355. [Google Scholar] [CrossRef]
- Sis, H.; Chander, S. Improving froth characteristics and flotation recovery of phosphate ores with nonionic surfactants. Miner. Eng. 2003, 16, 587–595. [Google Scholar] [CrossRef]
Ore Sample | Reagent Scheme | Al2O3 | SiO2 |
---|---|---|---|
Bentonite-ore | Low reagent dosage | 7.28 | 38.96 |
High reagent dosage | 9.62 | 50.33 | |
Kaolinite-ore | Low reagent dosage | 16.37 | 41.34 |
High reagent dosage | 14.48 | 38.04 |
Bentonite | Kaolinite | |
---|---|---|
Surface Area, m2/g | 11.958 | 21.935 |
Pore volume, cc/g | 0.054 | 0.097 |
Pore diameter, nm | 2.716 | 4.303 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, G.; Zhou, J.; Du, S.; Liao, S.; Wang, Y. Study of Reagent Scheme, Entrainment and Their Relationship in Chalcopyrite Flotation in the Presence of Bentonite and Kaolinite. Minerals 2022, 12, 263. https://doi.org/10.3390/min12020263
Gu G, Zhou J, Du S, Liao S, Wang Y. Study of Reagent Scheme, Entrainment and Their Relationship in Chalcopyrite Flotation in the Presence of Bentonite and Kaolinite. Minerals. 2022; 12(2):263. https://doi.org/10.3390/min12020263
Chicago/Turabian StyleGu, Guohua, Jianghui Zhou, Shiya Du, Su Liao, and Yanhong Wang. 2022. "Study of Reagent Scheme, Entrainment and Their Relationship in Chalcopyrite Flotation in the Presence of Bentonite and Kaolinite" Minerals 12, no. 2: 263. https://doi.org/10.3390/min12020263
APA StyleGu, G., Zhou, J., Du, S., Liao, S., & Wang, Y. (2022). Study of Reagent Scheme, Entrainment and Their Relationship in Chalcopyrite Flotation in the Presence of Bentonite and Kaolinite. Minerals, 12(2), 263. https://doi.org/10.3390/min12020263