Evolution of Black Talc upon Thermal Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experiments
2.2.1. Thermal Treatment
2.2.2. Quantitative Analysis of Amorphous SiO2 and MgO Contents
2.2.3. Characterizations
3. Results and Discussion
3.1. Thermal Stability of Raw Black Talc
3.2. In Situ XRD Analysis
3.3. FTIR Spectrum
3.4. Physical Property Measurements
3.5. Surface Zeta Potential
3.6. Morphological Variation of Black Talc upon Thermal Treatment
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Belviso, C.; Cavalcante, F.; Niceforo, G.; Lettino, A. Sodalite, faujasite and A-type zeolite from 2:1 dioctahedral and 2:1:1 trioctahedral clay minerals. A singular review of synthesis methods through laboratory trials at a low incubation temperature. Powder Technol. 2017, 320, 483–497. [Google Scholar] [CrossRef]
- Lin, J.; Zhong, B.; Luo, Y.; Jia, Z.; Hu, D.; Xu, T.; Jia, D. Enhancing interfacial and mechanical strength of styrene-butadiene rubber composites via in situ fabricated halloysite nanotubes/silica nano hybrid. Polym. Compos. 2019, 40, 677–684. [Google Scholar] [CrossRef]
- Ren, J.; Dai, L.; Tao, L. Stabilization of heavy metals in sewage sludge by attapulgite. J. Air Waste Manag. Assoc. 2021, 71, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Yang, H. Insight into the physicochemical aspects of kaolins with different morphologies. Appl. Clay Sci. 2013, 74, 58–65. [Google Scholar] [CrossRef]
- Liu, D.; Peng, Y. Reducing the entrainment of clay minerals in flotation using tap and saline water. Powder Technol. 2014, 253, 216–222. [Google Scholar] [CrossRef]
- Lvov, Y.; Wang, W.; Zhang, L.; Fakhrullin, R. Halloysite Clay Nanotubes for Loading and Sustained Release of Functional Compounds. Adv. Mater. 2016, 28, 1227–1250. [Google Scholar] [CrossRef]
- Tully, J.; Yendluri, R.; Lvov, Y. Halloysite Clay Nanotubes for Enzyme Immobilization. Biomacromolecules 2016, 17, 615–621. [Google Scholar] [CrossRef]
- Li, X.; Yang, Q.; Ouyang, J.; Yang, H.; Chang, S. Chitosan modified halloysite nanotubes as emerging porous microspheres for drug carrier. Appl. Clay Sci. 2016, 126, 306–312. [Google Scholar] [CrossRef]
- Corrales, T.; Larraza, I.; Catalina, F.; Portolés, T.; Ramírez-Santillán, C.; Matesanz, M.; Abrusci, C. In Vitro Biocompatibility and Antimicrobial Activity of Poly(ε-caprolactone)/Montmorillonite Nanocomposites. Biomacromolecules 2012, 13, 4247–4256. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, W.; Qiu, Y.; Yi, X.; von dem Bussche, A.; Kane, A.; Gao, H.; Koski, K.; Hurt, R. Biological and environmental interactions of emerging two-dimensional nanomaterials. Chem. Soc. Rev. 2016, 45, 1750–1780. [Google Scholar] [CrossRef] [Green Version]
- Durak, G.M.; Taylor, A.R.; Walker, C.E.; Probert, I.; De Vargas, C.; Audic, S.; Schroeder, D.; Brownlee, C.; Wheeler, G.L. A role for diatom-like silicon transporters in calcifying coccolithophores. Nat. Commun. 2016, 7, 10543. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Yang, H. Composite of Coal-Series Kaolinite and Capric-Lauric Acid as Form-Stable Phase-Change Material. Energy Technol. 2015, 3, 77–83. [Google Scholar] [CrossRef]
- Ding, W.; Ouyang, J.; Yang, H. Synthesis and characterization of nesquehonite (MgCO3·3H2O) powders from natural talc. Powder Technol. 2016, 292, 169–175. [Google Scholar] [CrossRef]
- He, X.; Yang, H. Fluorescence and room temperature activity of Y2O3:(Eu3+, Au3+)/palygorskite nanocomposite. Dalton Trans. 2015, 44, 1673–1679. [Google Scholar] [CrossRef]
- Bonati, B.; Merusi, F.; Bochicchio, G.; Tessadri, B.; Polacco, G.; Filippi, S.; Giuliani, F. Effect of nanoclay and conventional flame retardants on asphalt mixtures fire reaction. Constr. Build. Mater. 2013, 47, 990–1000. [Google Scholar] [CrossRef]
- Pack, S.; Kashiwagi, T.; Cao, C.; Korach, C.S.; Lewin, M.; Rafailovich, M.H. Role of Surface Interactions in the Synergizing Polymer/Clay Flame Retardant Properties. Macromolecules 2010, 43, 5338–5351. [Google Scholar] [CrossRef]
- Adpakpang, K.; Patil, S.B.; Oh, S.M.; Kang, J.-H.; Lacroix, M.; Hwang, S.-J. Effective Chemical Route to 2D Nanostructured Silicon Electrode Material: Phase Transition from Exfoliated Clay Nanosheet to Porous Si Nanoplate. Electrochim. Acta 2016, 204, 60–68. [Google Scholar] [CrossRef]
- Zhang, Y.; Long, M.; Huang, P.; Yang, H.; Chang, S.; Hu, Y.; Tang, A.; Mao, L. Intercalated 2D nanoclay for emerging drug delivery in cancer therapy. Nano Res. 2017, 10, 2633–2643. [Google Scholar] [CrossRef]
- Long, M.; Zhang, Y.; Shu, Z.; Tang, A.; Ouyang, J.; Yang, H. Fe2O3 nanoparticles anchored on 2D kaolinite with enhanced antibacterial activity. Chem. Commun. 2017, 53, 6255–6258. [Google Scholar] [CrossRef]
- Liao, J.; Wang, D.; Tang, A.; Fu, L.; Ouyang, J.; Yang, H. Surface modified halloysite nanotubes with different lumen diameters as drug carriers for cancer therapy. Chem. Commun. 2021, 57, 9470–9473. [Google Scholar] [CrossRef]
- Rayner, J.H.; Brown, G. The Crystal Structure of Talc. Clays Clay Miner. 1973, 21, 103–114. [Google Scholar] [CrossRef]
- Brigatti, M.; Galan, E.; Theng, B. Structures and mineralogy of clay minerals. Dev. Clay Sci. 2006, 1, 19–86. [Google Scholar] [CrossRef]
- Claverie, M.; Dumas, A.; Careme, C.; Poirier, M.; Le Roux, C.; Micoud, P.; Martin, F.; Aymonier, C. Synthetic Talc and Talc-Like Structures: Preparation, Features and Applications. Chem. Eur. J. 2017, 24, 519–542. [Google Scholar] [CrossRef] [Green Version]
- Dietemann, M.; Baillon, F.; Espitalier, F.; Calvet, R.; Greenhill-Hooper, M. Amorphous magnesium silicate ultrasound-assisted precipitation in a mixing system: Population balance modelling and crystallization rates identification. Powder Technol. 2019, 356, 83–96. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Wang, R.; Lu, X.; Zhang, M. Mineralogical characteristics of unusual black talc ores in Guangfeng County, Jiangxi Province, China. Appl. Clay Sci. 2013, 74, 37–46. [Google Scholar] [CrossRef]
- Andrić, L.; Terzić, A.; Aćimović-Pavlović, Z.; Pavlović, L.; Petrov, M. Comparative kinetic study of mechanical activation process of mica and talc for industrial application. Compos. Part B Eng. 2014, 59, 181–190. [Google Scholar] [CrossRef]
- Fonseca, A.; Viana, M.; Querol, X.; Moreno, N.; de Francisco, I.; Estepa, C.; de la Fuente, G.F. Ultrafine and nanoparticle formation and emission mechanisms during laser processing of ceramic materials. J. Aerosol. Sci. 2015, 88, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Barcelos, I.D.; Cadore, A.R.; Alencar, A.B.; Maia, F.; Mania, E.; Oliveira, R.F.; Bufon, C.C.B.; Malachias, A.; Freitas, R.O.; Moreira, R.L.; et al. Infrared Fingerprints of Natural 2D Talc and Plasmon–Phonon Coupling in Graphene–Talc Heterostructures. ACS Photon. 2018, 5, 1912–1918. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Zhao, Y.; Yi, H.; Chen, T.; Kang, S.; Yunliang, Z.; Song, S. Preparation and characterization of self-assembly hydrogels with exfoliated montmorillonite nanosheets and chitosan. Nanotechnology 2018, 29, 025605. [Google Scholar] [CrossRef]
- Yi, H.; Zhan, W.; Zhao, Y.; Qu, S.; Wang, W.; Chen, P.; Song, S. A novel core-shell structural montmorillonite nanosheets/stearic acid composite PCM for great promotion of thermal energy storage properties. Sol. Energy Mater. Sol. Cells 2019, 192, 57–64. [Google Scholar] [CrossRef]
- Fan, M. Geological characteristics of Xitan black talc deposit in Guangfeng, Jiangxi province. Non-Met. Mines 1990, 4, 1–3. [Google Scholar]
- Song, H. Study on ultrafine processing and application of calcined talc powder. China Non-Met. Min. Ind. 2001, 4, 19–22. [Google Scholar] [CrossRef]
- Di, S.; Chen, Z. Guangfeng Pingtang Auriferous sedimentary black talc Mineralogical characteristics. Nonmet. Geol. 1993, 6, 11–14. [Google Scholar]
- Tang, Q.; Gao, J.; Chen, X.; Zou, G.; Huang, B. Thermal decomposition behavior and influencing factors of Wansheng dolomite. Light Met. 2011, 3, 47–51. [Google Scholar]
- Wu, X.; Zhao, H.; Zhang, Z.; Huang, C.; Min, X.; Fang, M.; Liu, Y. Study on phase behavior of talc at high temperature and properties of its composites. J. Ceram. 2017, 38, 476–480. [Google Scholar] [CrossRef]
- Liu, X.; Liu, X.; Hu, Y. Investigation of the thermal decomposition of talc. Clays Clay Miner. 2014, 62, 137–144. [Google Scholar] [CrossRef]
- Ohlberg, S.M.; Strickler, D.W. Determination of Percent Crystallinity of Partly Devitrified Glass by X-ray Diffraction. J. Am. Ceram. Soc. 1962, 45, 170–171. [Google Scholar] [CrossRef]
- Aglietti, E.F.; Lopez, J.P. Physicochemical and thermal properties of mechanochemically activated talc. Mater. Res. Bull. 1992, 27, 1205–1216. [Google Scholar] [CrossRef]
- Li, J.; Zuo, X.; Zhao, X.; Ouyang, J.; Yang, H. Insight into the effect of crystallographic structure on thermal conductivity of kaolinite nanoclay. Appl. Clay Sci. 2019, 173, 12–18. [Google Scholar] [CrossRef]
- Zhang, M.; Hui, Q.; Lou, X.; Redfern, S.A.; Salje, E.K.; Tarantino, S.C. Dehydroxylation, proton migration, and structural changes in heated talc: An infrared spectroscopic study. Am. Miner. 2006, 91, 816–825. [Google Scholar] [CrossRef]
- Yang, H.; Qiu, G.; Wang, D. Structural changes of talc powder during superfine comminution. J. Chin. Ceram. Soc. 1999, 27, 5–13. [Google Scholar] [CrossRef]
- Wang, C.; Liang, J.; Luo, J.; Liu, J.; Li, X.; Zhao, F.; Li, R.; Huang, H.; Zhao, S.; Zhang, L.; et al. A universal wet-chemistry synthesis of solid-state halide electrolytes for all-solid-state lithium-metal batteries. Sci. Adv. 2021, 7, eabh1896. [Google Scholar] [CrossRef]
- Mote, V.; Purushotham, Y.; Dole, B. Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 2012, 6, 6. [Google Scholar] [CrossRef] [Green Version]
- Petit, S.; Decarreau, A.; Martin, F.; Wiewiora, A.; De Parseval, P. Crystal-chemistry of talc: A near infrared (NIR) spectroscopy study. Am. Miner. 2004, 89, 319–326. [Google Scholar] [CrossRef]
- Russell, J.D.; Farmer, V.C.; Velde, B. Replacement of OH by OD in layer silicates, and identification of the vibrations of these groups in infra-red spectra. Miner. Mag. 1970, 37, 869–879. [Google Scholar] [CrossRef]
- Xie, W.; Wang, J.; Fu, L.; Tan, Q.; Tan, X.; Yang, H. Evolution of the crystallographic structure and physicochemical aspects of rectorite upon calcination. Appl. Clay Sci. 2020, 185, 105374. [Google Scholar] [CrossRef]
- Lee, C.-K.; Tsay, C.-S. Surface Fractal Dimensions of Alumina and Aluminum Borate from Nitrogen Isotherms. J. Phys. Chem. B 1998, 102, 4123–4130. [Google Scholar] [CrossRef]
- Liu, C.; Ma, T.; Li, Z.; Dai, S.; Guo, X.; Wang, Q.; Zhao, T. Progress in mechanochemical activation modification of natural minerals. Met. Mine 2021, 10, 75–81. [Google Scholar] [CrossRef]
- Zhong, S.; Zhang, M.; Su, Q. Study on the mechanism of calcination of kaolin by microwave thermal method. J. Sun Yat-Sen Univ. 2005, 44, 71–74. [Google Scholar] [CrossRef]
- Prajitno, M.Y.; Harbottle, D.; Hondow, N.; Zhang, H.; Hunter, T.N. The effect of pre-activation and milling on improving natural clinoptilolite for ion exchange of cesium and strontium. J. Environ. Chem. Eng. 2020, 8, 102991. [Google Scholar] [CrossRef]
- Wang, C.; Hu, H.; Yan, S.; Zhang, Q. Activating Bi2O3 by ball milling to induce efficiently oxygen vacancy for incorporating iodide anions to form BiOI. Chem. Phys. 2020, 533, 110739. [Google Scholar] [CrossRef]
Component | SiO2 | MgO | CaO | F | P2O5 | Al2O3 | Na2O |
wt% | 65.03 | 30.669 | 2.716 | 0.697 | 0.235 | 0.175 | 0.156 |
Component | Fe2O3 | SO3 | ZnO | K2O | MnO | TiO2 | |
wt% | 0.150 | 0.068 | 0.038 | 0.025 | 0.022 | 0.020 |
Samples | Surface Area (m2/g) | Slope | D from Equation (8) | D from Equation (9) |
---|---|---|---|---|
Talc | 18.8 | −0.325 | 2.03 | 2.68 |
T300 | 17.7 | −0.333 | 2.00 | 2.67 |
T400 | 17.6 | −0.360 | 1.92 | 2.64 |
T500 | 18.5 | −0.368 | 1.90 | 2.63 |
T600 | 17.9 | −0.397 | 1.81 | 2.60 |
T700 | 17.9 | −0.430 | 1.71 | 2.57 |
T800 | 15.0 | −0.455 | 1.63 | 2.54 |
T900 | 11.2 | −0.474 | 1.58 | 2.53 |
T1000 | 5.3 | −0.550 | 1.35 | 2.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Y.; Xie, W.; Wu, H.; Tariq, S.M.; Yang, H. Evolution of Black Talc upon Thermal Treatment. Minerals 2022, 12, 155. https://doi.org/10.3390/min12020155
Meng Y, Xie W, Wu H, Tariq SM, Yang H. Evolution of Black Talc upon Thermal Treatment. Minerals. 2022; 12(2):155. https://doi.org/10.3390/min12020155
Chicago/Turabian StyleMeng, Yuhang, Weimin Xie, Haiyan Wu, Sarwar Muhammad Tariq, and Huaming Yang. 2022. "Evolution of Black Talc upon Thermal Treatment" Minerals 12, no. 2: 155. https://doi.org/10.3390/min12020155
APA StyleMeng, Y., Xie, W., Wu, H., Tariq, S. M., & Yang, H. (2022). Evolution of Black Talc upon Thermal Treatment. Minerals, 12(2), 155. https://doi.org/10.3390/min12020155