Geochronology and Petrogenesis of Ahetala Granodiorite in South Tianshan Orogenic Belt, Xinjiang: New Constraints on the Tectonic Evolution of the South Tianshan Ocean
Abstract
:1. Introduction
2. Geological Setting
3. Local Geology and Petrography
4. Analytical Techniques
4.1. Zircon U–Pb Dating
4.2. Mineral Geochemistry
4.3. Whole-Rock Analyses
5. Results
5.1. Zircon U–Pb Geochronology
5.2. Mineral Geochemistry
5.2.1. Plagioclase
5.2.2. Potassium Feldspar
5.2.3. Biotite
5.2.4. Hornblende
5.3. Whole-Rock Geochemistry
5.3.1. Major Elements
5.3.2. Trace Elements
6. Discussion
6.1. Petrogenesis
6.1.1. Geochemical Affinities
6.1.2. Magma Source
6.2. Emplacement Age and Tectonic Setting
6.3. Implication for the Tectonic Evolution of the STO
7. Conclusions
- The LA–ICP-MS U–Pb dating of zircons from Ahetala granodiorite yielded a precise crystallization age of 282.1 ± 1.3 Ma (MSWD = 1.11).
- Ahetala granodiorite belongs to the high-K calc-alkaline series I-type granitoid.
- Ahetala granodiorite was triggered by the crustal contamination of the mantle-derived magmas, which involved the mixing of crust- and mantle-derived materials.
- Ahetala granodiorite was emplaced in the transitional stage of the volcanic arc (syn-collision) and the post-collision setting, indicating the STO was closed in the Early Permian.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dobretsov, N.L.; Berzin, N.A.; Buslov, M.M. Opening and Tectonic Evolution of the Paleo-Asian Ocean. Int. Geol. Rev. 1995, 37, 335–360. [Google Scholar] [CrossRef]
- Windley, B.F.; Alexeiev, D.; Xiao, W.; Kröner, A.; Badarch, G. Tectonic Models for Accretion of the Central Asian Orogenic Belt. J. Geol. Soc. 2007, 164, 31–47. [Google Scholar] [CrossRef] [Green Version]
- Jahn, B.; Wu, F.; Chen, B. Granitoids of the Central Asian Orogenic Belt and Continental Growth in the Phanerozoic. Earth Environ. Sci. Trans. R. Soc. Edinb. 2000, 91, 181–193. [Google Scholar] [CrossRef]
- Kovalenko, V.I.; Yarmolyuk, V.V.; Kovach, V.P.; Kotov, A.B.; Kozakov, I.K.; Salnikova, E.B.; Larin, A.M. Isotope Provinces, Mechanisms of Generation and Sources of the Continental Crust in the Central Asian Mobile Belt: Geological and Isotopic Evidence. J. Asian Earth Sci. 2004, 23, 605–627. [Google Scholar] [CrossRef]
- Sengör, A.M.C.; Natal’In, B.A.; Burtman, V.S. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature 1993, 364, 299–307. [Google Scholar] [CrossRef]
- Dobretsov, N.L.; Buslov, M.M.; Vernikovsky, V.A. Neoproterozoic to Early Ordovician Evolution of the Paleo-Asian Ocean: Implications to the Break-up of Rodinia. Gondwana Res. 2003, 6, 143–159. [Google Scholar] [CrossRef]
- Charvet, J.; Shu, L.S.; Laurent-Charvet, S. Paleozoic Structural and Geodynamic Evolution of Eastern Tianshan (NW China): Welding of the Tarim and Junggar Plates. Epis. J. Int. Geosci. 2007, 13, 162–186. [Google Scholar]
- Charvet, J.; Shu, L.; Laurent-Charvet, S.; Wang, B.; Faure, M.; Cluzel, D.; Chen, Y.; De Jong, K. Palaeozoic Tectonic Evolution of the Tianshan Belt, NW China. Sci. China Earth Sci. 2011, 54, 166–184. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Faure, M.; Shu, L.; de Jong, K.; Charvet, J.; Cluzel, D.; Jahn, B.; Chen, Y.; Ruffet, G. Structural and Geochronological Study of High-Pressure Metamorphic Rocks in the Kekesu Section (Northwestern China): Implications for the Late Paleozoic Tectonics of the Southern Tianshan. J. Geol. 2010, 118, 59–77. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Klemd, R.; Qian, Q.; Zhang, X.; Li, J.; Jiang, T.; Yang, Y. The Collision between the Yili and Tarim Blocks of the Southwestern Altaids: Geochemical and Age Constraints of a Leucogranite Dike Crosscutting the HP–LT Metamorphic Belt in the Chinese Tianshan Orogen. Tectonophysics 2011, 499, 118–131. [Google Scholar] [CrossRef]
- Wang, B.; Shu, L.; Faure, M.; Jahn, B.; Cluzel, D.; Charvet, J.; Chung, S.; Meffre, S. Paleozoic Tectonics of the Southern Chinese Tianshan: Insights from Structural, Chronological and Geochemical Studies of the Heiyingshan Ophiolitic Mélange (NW China). Tectonophysics 2011, 497, 85–104. [Google Scholar] [CrossRef]
- Gao, J.; Klemd, R.; Zhang, L.; Wang, Z.; Xiao, X. P-T Path of High-Pressure/Low-Temperature Rocks and Tectonic Implications in the Western Tianshan Mountains, NW China. J Metamorph Geol. 1999, 17, 621–636. [Google Scholar] [CrossRef]
- Han, B.; Guo, Z.; Zhang, Z.; Zhang, L.; Chen, J.; Song, B. Age, Geochemistry, and Tectonic Implications of a Late Paleozoic Stitching Pluton in the North Tian Shan Suture Zone, Western China. Geol. Soc. Am. Bull. 2010, 122, 627–640. [Google Scholar] [CrossRef]
- Allen, M.B.; Windley, B.F.; Zhang, C. Palaeozoic Collisional Tectonics and Magmatism of the Chinese Tien Shan, Central Asia. Tectonophysics 1993, 220, 89–115. [Google Scholar] [CrossRef]
- Xiao, W.; Windley, B.F.; Allen, M.B.; Han, C. Paleozoic Multiple Accretionary and Collisional Tectonics of the Chinese Tianshan Orogenic Collage. Gondwana Res. 2013, 23, 1316–1341. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, Z.; Santosh, M.; Huang, H.; Cheng, Z.; Ye, J. Early Paleozoic Magmatic Record from the Northern Margin of the Tarim Craton: Further Insights on the Evolution of the Central Asian Orogenic Belt. Gondwana Res. 2015, 28, 328–347. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, H.; Zhang, D.; Zhang, Z.; Encarnacion, J.; Zhao, L. SHRIMP Dating of the Qiqijianake Ophiolitic Mélange in the Kokshal Region, southwestern Tianshan and Its Tectonic Implications. Acta Petrol. Sin. 2012, 28, 328–347. [Google Scholar]
- Wang, C.; Liu, L.; Che, Z.; Luo, J.; Zhang, J. Geochronology, Petrogenesis and Significance of Baleigong Mafic Rocks in Kokshal Segment, Southwestern Tianshan Mountains. Geol. Rev. 2007, 53, 743–754. [Google Scholar] [CrossRef]
- Long, L.; Gao, J.; Xiong, X.; Qian, Q. The Geochemical Characteristics and the Age of the Kulelake Ophiolite in the Southern Tianshan. Acta Petrol. Sin. 2006, 22, 65–73. [Google Scholar] [CrossRef]
- Xu, X.; Ma, Z.; Li, X.; He, S.; Yang, J. The Discovery of P-MORB in Jigen Area of Southwest Tianshan Mountains and Its Tectonic Implications. Acta Petrol. Et Mineral. 2003, 22, 245–253. [Google Scholar] [CrossRef]
- Zhao, T.; Zhu, Z. Spatiotemporal Distribution of Ophiolite in Xinjiang and Constraints on Accretionary Orogenic Processes. XinJiang Geol. 2021, 39, 21–29. [Google Scholar] [CrossRef]
- Zhang, L.; Ai, Y.; Li, Q.; Li, X.; Song, S.; Wei, C. The Formation and Tectonic Evolution of UHP Metamorphic Belt in Southwestern Tianshan, Xinjiang. Acta Petrol. Sin. 2005, 21, 1029–1038. [Google Scholar] [CrossRef]
- Li, Y.; Sun, L.; Wu, H.; Wang, G.; Yang, C.; Peng, G. Permo-Carboniferous Radiolaria from the Wupatarkan Group, West Terminal of Chinese South Tianshan. Chin. J. Geol. 2005, 40, 220–226. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Mai, G.; Wu, H.; Huang, Z.; Tan, Z. New Discovery of Radiolarian Fossils from Aiktik Group at in Tarim Basin and Its Significance. Xinjiang Pet. Geol. 2002, 23, 496–500. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, Z.; Kusky, T.; Zhang, D.; Hou, T.; Liu, J.; Zhao, Z. Geochronology and Geochemistry of the Chuanwulu Complex in the South Tianshan, Western Xinjiang, NW China: Implications for Petrogenesis and Phanerozoic Continental Growth. Lithos 2012, 140–141, 66–85. [Google Scholar] [CrossRef]
- Wang, C.; Liu, L.; Luo, J.; Che, Z.; Teng, Z.; Cao, X.; Zhang, J. Late Paleozoic Post-Coilisional Magmatism in the Southwestern Tianshan Orogenic Belt, Take the Baleigong Pluton in the Kokshal Region as an Example. Acta Geol. Sin. 2007, 23, 1830–1840. [Google Scholar] [CrossRef]
- Huang, H.; Wang, T.; Qin, Q.; Tong, Y.; Guo, L.; Zhang, L.; Huo, J.; Song, P. Geochronology and Zircon Hf Isotope of Baleigong Granitic Pluton in the Western Part of the South Tianshan Mountains: Petrogenesis and Implications for Tectonic Evolution. Acta Petrol. Mineral. 2015, 34, 971–990. [Google Scholar] [CrossRef]
- Yang, F.; Wang, L.; Ye, J.; Fu, X.; Li, H. Zircon U-Pb Ages of Granites in the HoushiBulak Area, Xinjiang. Reg. Geol. China. 2001, 20, 267–274. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, Y.; Li, Z.; Wang, H.; Ye, H. Diverse Permian Magmatism in the Tarim Block NW China: Genetically Linked to the Permian Tarim Mantle Plume? Lithos 2010, 119, 537–552. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Long, L.; Qian, Q.; Huang, D.; Su, W.; Reiner, K. South Tianshan: A Late Paleozoic or a Triassic Orogen? Acta Petrol. Sin. 2006, 22, 1049–1061. [Google Scholar] [CrossRef]
- Han, Y.; Zhao, G.; Sun, M.; Eizenhöfer, P.R.; Hou, W.; Zhang, X.; Liu, D.; Wang, B.; Zhang, G. Paleozoic Accretionary Orogenesis in the Paleo-Asian Ocean: Insights from Detrital Zircons from Silurian to Carboniferous Strata at the Northwestern Margin of the Tarim Craton. Tectonics 2015, 34, 334–351. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, J.; Dong, L.; Zhang, X.; Hu, J.; Wang, K. The Age Determination of Late Carboniferous Intrusions in Mangqisu Region and Its Constraints to the Closure of Oceanic Basin in South Tianshan, Xinjiang. Acta Petrol. Sin. 2008, 24, 2761–2766, (In Chinese with English abstract). [Google Scholar]
- Li, J.; Wang, K.; Li, Y.; Sun, G.; Chu, C.; Li, L.; Zhu, Z. Geomorphological Features, Crustal Composition and Geological Evolution of the Tianshan Mountains. Geol. Bull. China. 2006, 25, 895–909. [Google Scholar] [CrossRef]
- Han, B.; He, G.; Wang, X.; Guo, Z. Late Carboniferous Collision between the Tarim and Kazakhstan–Yili Terranes in the Western Segment of the South Tian Shan Orogen, Central Asia, and Implications for the Northern Xinjiang, Western China. Earth-Sci. Rev. 2011, 109, 74–93. [Google Scholar] [CrossRef]
- Gao, J.; Long, L.; Klemd, R.; Qian, Q.; Liu, D.; Xiong, X.; Su, W.; Liu, W.; Wang, Y.; Yang, F. Tectonic Evolution of the South Tianshan Orogen and Adjacent Regions, NW China: Geochemical and Age Constraints of Granitoid Rocks. Int. J. Earth Sci. 2009, 98, 1221–1238. [Google Scholar] [CrossRef]
- Li, Y.; Yang, H.; Zhao, Y.; Luo, J.; Zheng, D.; Liu, Y. Tectonic Framework and Evolution of South Tianshan, NW China. Geoteceonica Metallog. 2009, 31, 94–104. [Google Scholar] [CrossRef]
- Brookfield, M.E. Geological Development and Phanerozoic Crustal Accretion in the Western Segment of the Southern Tien Shan (Kyrgyzstan, Uzbekistan and Tajikistan). Tectonophysics 2000, 328, 1–14. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, Z.; Dong, S.; Zhang, S.; Zhang, D.; Huang, H.; Xue, C. Yingmailai Granitic Intrusion in the Southern Tianshan: Magnetite-Series or Ilmenite-Series? Geoscience 2009, 23, 1039–1048. [Google Scholar] [CrossRef]
- Zhang, L.; Ai, Y.; Li, X.; Rubatto, D.; Song, B.; Williams, S.; Song, S.; Ellis, D.; Liou, J.G. Triassic Collision of Western Tianshan Orogenic Belt, China: Evidence from SHRIMP U–Pb Dating of Zircon from HP/UHP Eclogitic Rocks. Lithos 2007, 96, 266–280. [Google Scholar] [CrossRef]
- Xiao, W.; Windley, B.F.; Sun, S.; Li, J.; Huang, B.; Han, C.; Yuan, C.; Sun, M.; Chen, H. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annu. Rev. Earth Planet. Sci. 2015, 43, 477–507. [Google Scholar] [CrossRef] [Green Version]
- Xiao, W.; Huang, B.; Han, C.; Sun, S.; Li, J. A Review of the Western Part of the Altaids: A Key to Understanding the Architecture of Accretionary Orogens. Gondwana Res. 2010, 18, 253–273. [Google Scholar] [CrossRef]
- Zhang, C.; Zou, H. Permian A-Type Granites in Tarim and Western Part of Central Asian Orogenic Belt (CAOB): Genetically Related to a Common Permian Mantle Plume? Lithos 2013, 172–173, 47–60. [Google Scholar] [CrossRef]
- Sun, L.; Wang, Y.; Fan, W.; Zi, J. A Further Discussion of the Petrogenesis and Tectonic Implication of the Mazhashan Syenites in the Bachu Area. J. Jilin Univ. 2008, 38, 8–20. [Google Scholar] [CrossRef]
- Wei, X.; Xu, Y. Petrogenesis of Xiaohaizi Syenite Complex from Bachu Area, Tarim. Acta Petrol. Sin. 2011, 27, 2984–3004, (In Chinese with English abstract). [Google Scholar]
- Huang, H.; Zhang, Z.; Zhang, D.; Du, H.; Ma, L.; Kang, J.; Xue, C. Petrogenesis of Late Carboniferous to Early Permian Granitoid Plutons in the Chinese South Tianshan: Implications for Crustal Accretion. Acta Geol. Sin. 2011, 85, 1305–1333, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Huang, H.; Zhang, Z.; Santosh, M.; Zhang, D. Geochronology, Geochemistry and Metallogenic Implications of the Boziguo’er Rare Metal-Bearing Peralkaline Granitic Intrusion in South Tianshan, NW China. Ore Geol. Rev. 2014, 61, 157–174. [Google Scholar] [CrossRef]
- Wang, C.; Luo, J.; Che, Z.; Liu, L.; Zhang, J. Geochemical Characteristics and U-Pb LA-ICP-MS Zircon Dating of the Oxidaban Pluton from Xinjiang, China:Implications for a Paleozoic Oceanic Subduction Process in Southwestern Tianshan. Acta Geol. Sin. 2009, 83, 272–283. [Google Scholar]
- Konopelko, D.; Biske, G.; Seltmann, R.; Eklund, O.; Belyatsky, B. Hercynian Post-Collisional A-Type Granites of the Kokshaal Range, Southern Tien Shan, Kyrgyzstan. Lithos 2007, 97, 140–160. [Google Scholar] [CrossRef]
- Solomovich, L.I. Postcollisional Magmatism in the South Tien Shan Variscan Orogenic Belt, Kyrgyzstan: Evidence for High-Temperature and High-Pressure Collision. J. Asian Earth Sci. 2007, 30, 142–153. [Google Scholar] [CrossRef]
- Solomovich, L.I.; Trifonov, B.A. Postcollisional Granites in the South Tien Shan Variscan Collisional Belt, Kyrgyzstan. J. Asian Earth Sci. 2002, 21, 7–21. [Google Scholar] [CrossRef]
- Konopelko, D.; Seltmann, R.; Biske, G.; Lepekhina, E.; Sergeev, S. Possible Source Dichotomy of Contemporaneous Post-Collisional Barren I-Type versus Tin-Bearing A-Type Granites, Lying on Opposite Sides of the South Tien Shan Suture. Ore Geol. Rev. 2009, 35, 206–216. [Google Scholar] [CrossRef]
- Sengör, A.M.C.; Natal’in, B.A. Turkic-Type Orogeny and Its Role in the Making of the Continental Crust. Annu. Rev. Earth Planet. Sci. 1996, 24, 263–337. [Google Scholar] [CrossRef] [Green Version]
- Kröner, A.; Alexeiev, D.V.; Rojas-Agramonte, Y.; Hegner, E.; Wong, J.; Xia, X.; Belousova, E.; Mikolaichuk, A.V.; Seltmann, R.; Liu, D.; et al. Mesoproterozoic (Grenville-Age) Terranes in the Kyrgyz North Tianshan: Zircon Ages and Nd–Hf Isotopic Constraints on the Origin and Evolution of Basement Blocks in the Southern Central Asian Orogen. Gondwana Res. 2013, 23, 272–295. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, G.; Neubauer, F.; Liu, X.; Hauzenberger, C.; Zhou, D.; Li, W. Syn- and Post-Collisional Granitoids in the Central Tianshan Orogen: Geochemistry, Geochronology and Implications for Tectonic Evolution. Gondwana Res. 2011, 20, 568–581. [Google Scholar] [CrossRef]
- Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region. Regional Geology of Xinjiang Uygur Autonmous Region; Geological Publishing House: Beijing, China, 1993; ISBN 7-116-01225-5. [Google Scholar]
- Xu, Y.; Yin, J.; Xiao, K.; Xu, H.; Fang, J.; Fan, M. Skarn Mineral Characteristics of the Ahetala Copper Deposit and Its Geological Significance. Rock Miner. Anal. 2022, 41, 575–585. [Google Scholar] [CrossRef]
- Xu, Y.; Yin, J.; An, B.; Li, S.; Zhao, C.; Xu, H.; Fang, J. Study on the Characteristics of Garnets in Ahetala Copper Deposit. J. Chin. Electron Microsc. Soc. 2018, 37, 339–347. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Z.; Zong, K.; Gao, C.; Gao, S.; Xu, J.; Chen, H. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chin. Sci. Bull. 2010, 55, 1535–1546. [Google Scholar] [CrossRef]
- Smith, J.V. Feldspar Mineral; Springer: Berlin/Heidelberg, Germany, 1974. [Google Scholar]
- Foster, M.D. Interpretation of the Composition of Trioctahedral Micas; United States Government Printing Office: Washington, DC, USA, 1960; pp. 11–49. [Google Scholar]
- Leake, B.E.; Woolley, A.R.; Arps, C.E.S.; Birch, W.D.; Gilbert, M.C.; Grice, J.D.; Hawthorne, F.C.; Kato, A.; Kisch, H.J.; Krivovichev, V.G.; et al. Nomenclature Of Amphiboles: Report Of The Subcommittee On Amphiboles Of The International Mineralogical Association, Commission On New Minerals And Mineral Names. Mineral. Mag. 1997, 61, 295–310. [Google Scholar] [CrossRef]
- Wilson, M. Igneous Petrogenesis A Global Tectonic Approach; Springer: Berlin/Heidelberg, Germany, 1989; ISBN 978-0-412-53310-5. [Google Scholar]
- Maniar, P.D.; Piccoli, P.M. Tectonic Discrimination of Granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Peccerillo, A.; Taylor, S.R. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contr. Mineral. Petrol. 1976, 58, 63–81. [Google Scholar] [CrossRef]
- Sun, S.-S.; McDonough, W.F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Bonin, B. A-Type Granites and Related Rocks: Evolution of a Concept, Problems and Prospects. Lithos 2007, 97, 1–29. [Google Scholar] [CrossRef]
- Collins, W.J.; Beams, S.D.; White, A.J.R.; Chappell, B.W. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia. Contr. Mineral. Petrol. 1982, 80, 189–200. [Google Scholar] [CrossRef]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contrib. Miner. Pet. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- King, P.L.; White, A.J.R.; Chappell, B.W.; Allen, C.M. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. J. Petrol. 1997, 38, 21. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A.J.R. Two Contrasting Granite Types: 25 Years Later. Aust. J. Earth Sci. 2001, 48, 489–499. [Google Scholar] [CrossRef]
- Yang, Z.; Lu, Y.; Hou, Z.; Chang, Z. High-Mg Diorite from Qulong in Southern Tibet: Implications for the Genesis of Adakite-like Intrusions and Associated Porphyry Cu Deposits in Collisional Orogens. J. Petrol. 2015, 56, 227–254. [Google Scholar] [CrossRef] [Green Version]
- Chappell, B.W. Aluminium Saturation in I- and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos 1999, 46, 535–551. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A.J.R. I- and S-Type Granites in the Lachlan Fold Belt. Trans. R. Soc. Edinb. Earth Sci. 1992, 83, 1–26. [Google Scholar] [CrossRef]
- Zhang, R.; He, W.; Gao, X.; Li, M. Magma Mixing of the Daocheng Batholith of Western Sichuan:Mineralogical Evidences. Earth Sci. Front. 2018, 25, 226–239. [Google Scholar] [CrossRef]
- Ding, X. Study of Typomorphic Characteristics of Micas From Granitoids in Centeral-Southern Xizang and Their Geological Significance. Bull. Inst. Miner. Depos. Chin. Acad. Geol. Sci. 1988, 1, 33–49. [Google Scholar]
- Fu, J. Chemical Composition of Biotite in Porphyry Copper Deposit. Geol. Explor. 1981, 18–21. [Google Scholar]
- Xie, Y.; Zhang, Y. Peculiarities and Genetic Significance of Hornblende from Granite in the Hengduansan Region. 1990, 10, 35–45. Acta Mineral. Sin. 1990, 10, 35–45. (In Chinese) [Google Scholar] [CrossRef]
- Zhou, Z. The Origin of Intrusive Mass in Fengshandong, Hubei Province. Acta Petrol. Sin. 1986, 2, 59–70. [Google Scholar]
- Green, T.H. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System. Chem. Geol. 1995, 120, 347–359. [Google Scholar] [CrossRef]
- Sami, M.; El Monsef, M.A.; Abart, R.; Toksoy-Köksal, F.; Abdelfadil, K.M. Unraveling the Genesis of Highly Fractionated Rare-Metal Granites in the Nubian Shield via the Rare-Earth Elements Tetrad Effect, Sr–Nd Isotope Systematics, and Mineral Chemistry. ACS Earth Space Chem. 2022, 6, 2368–2384. [Google Scholar] [CrossRef]
- Li, L.; Zheng, Y.; Zhou, J. Dynamic Model for Pb Isotope Evolution in the Continental Crust of China. Acta Petrol. Sin. 2001, 17, 61–68. [Google Scholar]
- Rapp, R.P.; Watson, E.B. Dehydration Melting of Metabasalt at 8-32 Kbar: Implications for Continental Growth and Crust-Mantle Recycling. J. Petrol. 1995, 36, 891–931. [Google Scholar] [CrossRef]
- Fitton, J.G.; James, D.; Leeman, W.P. Basic Magmatism Associated with Late Cenozoic Extension in the Western United States: Compositional Variations in Space and Time. J. Geophys. Res. 1991, 96, 13693–13711. [Google Scholar] [CrossRef]
- Laurent, O.; Martin, H.; Moyen, J.F.; Doucelance, R. The Diversity and Evolution of Late-Archean Granitoids: Evidence for the Onset of “Modern-Style” Plate Tectonics between 3.0 and 2.5Ga. Lithos 2014, 205, 208–235. [Google Scholar] [CrossRef]
- Jiang, C.; An, S. On Chemical Characteristics of Calcicamphiboles From Igneous Rocsk and Their Petrogenesis Significance. J. Mineral. Petrol. 1984, 3, 1–9. [Google Scholar] [CrossRef]
- Allègre, C.J.; Minster, J.F. Quantitative Models of Trace Element Behavior in Magmatic Processes. Earth Planet. Sci. Lett. 1978, 38, 1–25. [Google Scholar] [CrossRef]
- Schiano, P.; Monzier, M.; Eissen, J.-P.; Martin, H.; Koga, K.T. Simple Mixing as the Major Control of the Evolution of Volcanic Suites in the Ecuadorian Andes. Contrib Miner. Pet. 2010, 160, 297–312. [Google Scholar] [CrossRef]
- Liu, B.; Qian, Y. The Geologic Characteristics and Fluid Evolution in the Three High-Pressure Metamorphic Belts of Eastern Tianshan. Acta Petrol. Sin. 2003, 19, 283–296. [Google Scholar] [CrossRef]
- Gao, J.; Klemd, R. Formation of HP–LT Rocks and Their Tectonic Implications in the Western Tianshan Orogen, NW China: Geochemical and Age Constraints. Lithos 2003, 66, 1–22. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, L. The P-T Path and Geological Significance of Low-Pressure Granulite-Facies Metamorphism in Muzhaerte, Southwest Tianshan. Acta Petrol. Sin. 2004, 20, 583–594. [Google Scholar]
- Liu, B.; Chen, Z.; Ren, R.; Han, B.; Su, L. Timing of the South Tianshan Suture Zone: New Evidence of Zircon Ages from the Granitic Plutons in Kokshal Area. Geol. Bull. China. 2013, 32, 1371–1384. [Google Scholar]
- Abdel-Rahman, A.-F.M. Nature of Biotites from Alkaline, Calc-Alkaline, and Peraluminous Magmas. J. Petrol. 1994, 35, 525–541. [Google Scholar] [CrossRef]
- Abdelfadil, K.M.; Saleh, G.M.; Putiš, M.; Sami, M. Mantle Source Characteristics of the Late Neoproterozoic Post-Collisional Gabbroic Intrusion of Wadi Abu Hadieda, North Arabian-Nubian Shield, Egypt. J. Afr. Earth Sci. 2022, 194, 104607. [Google Scholar] [CrossRef]
- Sylvester, P.J. Post-Collisional Strongly Peraluminous Granites. Lithos 1998, 45, 29–44. [Google Scholar] [CrossRef]
- Hou, Z.; Gao, Y.; Meng, X.; Qu, X.; Huang, W. Genesis of Adakitic Porphyry and Tectonic Controls on the Gangdese Miocene Porphyry Copper Belt in the Tibetan Orogen. Acta Petrol. Sin. 2004, 20, 239–248. [Google Scholar] [CrossRef]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef] [Green Version]
- Batchelor, R.A.; Bowden, P. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chem. Geol. 1985, 48, 43–55. [Google Scholar] [CrossRef]
- Harris, N.B.W.; Pearce, J.A.; Tindle, A.G. Geochemical Characteristics of Collision-Zone Magmatism. SP 1986, 19, 67–81. [Google Scholar] [CrossRef]
- Chen, C.; Lu, H.; Jia, D.; Cai, D.; Wu, S. Closing History of the Southern Tianshan Oceanic Basin, Western China: An Oblique Collisional Orogeny. Tectonophysics 1999, 302, 23–40. [Google Scholar] [CrossRef]
- Kong, W.; Zhang, Z.; Huang, H.; Cheng, Z.; Santosh, M. Geochemistry and Zircon U–Pb Geochronology of the Oxidaban Intrusive Complex: Implication for Paleozoic Tectonic Evolution of the South Tianshan Orogenic Belt, China. Lithos 2019, 324–325, 265–279. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, Z.; Santosh, M.; Zhang, D.; Wang, T. Petrogenesis of the Early Permian Volcanic Rocks in the Chinese South Tianshan: Implications for Crustal Growth in the Central Asian Orogenic Belt. Lithos 2015, 228–229, 23–42. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, G.; Eizenhöfer, P.R.; Sun, M.; Han, Y.; Hou, W.; Liu, D.; Wang, B.; Liu, Q.; Xu, B. Paleozoic Magmatism and Metamorphism in the Central Tianshan Block Revealed by U–Pb and Lu–Hf Isotope Studies of Detrital Zircons from the South Tianshan Belt, NW China. Lithos 2015, 233, 193–208. [Google Scholar] [CrossRef]
- Han, Y.; Zhao, G.; Sun, M.; Eizenhöfer, P.R.; Hou, W.; Zhang, X.; Liu, Q.; Wang, B.; Liu, D.; Xu, B. Late Paleozoic Subduction and Collision Processes during the Amalgamation of the Central Asian Orogenic Belt along the South Tianshan Suture Zone. Lithos 2016, 246–247, 1–12. [Google Scholar] [CrossRef]
- Yu, X.; Qin, Q.; Huang, H.; Wang, T.; Zhang, Z.; Tong, Y.; Guo, L.; Song, P. Genesis and Tectonic Significance of the Mangqisu Pluton in the South Tianshan:Evidence from Geochronology, Geochemistry, and Nd-Hf Isotopes. Acta Geol. Sin. 2020, 94, 2893–2918. [Google Scholar]
Sample | w(Th)/10−6 | w(U)/10−6 | Th/U | 207Pb/235U | 206Pb/238U | 206Pb/238U | |||
---|---|---|---|---|---|---|---|---|---|
Ratio | 1σ | Ratio | 1σ | Age/Ma | Ma | ||||
AHTL-1 | 595.94 | 831.93 | 0.72 | 0.3259 | 0.0201 | 0.0458 | 0.0008 | 288.5 | 4.9 |
* AHTL-2 | 814.47 | 1018.88 | 0.80 | 0.3254 | 0.0190 | 0.0417 | 0.0008 | 263.4 | 4.8 |
AHTL-3 | 522.77 | 703.06 | 0.74 | 0.3177 | 0.0185 | 0.0437 | 0.0007 | 275.5 | 4.3 |
* AHTL-4 | 637.86 | 903.94 | 0.71 | 0.3399 | 0.0221 | 0.0434 | 0.0008 | 274.0 | 4.9 |
AHTL-5 | 670.53 | 898.12 | 0.75 | 0.3224 | 0.0211 | 0.0447 | 0.0009 | 281.7 | 5.5 |
AHTL-6 | 402.10 | 590.27 | 0.68 | 0.3306 | 0.0232 | 0.0439 | 0.0011 | 277.0 | 6.6 |
* AHTL-7 | 476.90 | 721.77 | 0.66 | 0.3396 | 0.0206 | 0.0421 | 0.0009 | 265.6 | 5.6 |
AHTL-8 | 597.23 | 860.11 | 0.69 | 0.3267 | 0.0169 | 0.0455 | 0.0007 | 286.6 | 4.1 |
AHTL-9 | 420.98 | 653.86 | 0.64 | 0.3183 | 0.0222 | 0.0444 | 0.0007 | 280.1 | 4.2 |
AHTL-10 | 382.11 | 639.10 | 0.60 | 0.3248 | 0.0207 | 0.0449 | 0.0008 | 282.8 | 5.0 |
AHTL-11 | 702.22 | 982.57 | 0.71 | 0.3240 | 0.0189 | 0.0452 | 0.0009 | 284.7 | 5.3 |
AHTL-12 | 280.30 | 481.91 | 0.58 | 0.3226 | 0.0195 | 0.0460 | 0.0009 | 289.6 | 5.6 |
* AHTL-13 | 525.82 | 754.34 | 0.70 | 0.3386 | 0.0214 | 0.0428 | 0.0009 | 269.9 | 5.4 |
AHTL-14 | 444.02 | 699.12 | 0.64 | 0.3268 | 0.0188 | 0.0452 | 0.0008 | 284.7 | 5.0 |
AHTL-15 | 389.34 | 581.77 | 0.67 | 0.3245 | 0.0228 | 0.0454 | 0.0009 | 286.1 | 5.4 |
AHTL-16 | 857.76 | 1270.99 | 0.67 | 0.3408 | 0.0190 | 0.0454 | 0.0011 | 286.2 | 6.6 |
AHTL-17 | 380.83 | 613.47 | 0.62 | 0.3202 | 0.0275 | 0.0432 | 0.0009 | 272.5 | 5.3 |
AHTL-18 | 387.28 | 651.93 | 0.59 | 0.3379 | 0.0236 | 0.0460 | 0.0010 | 289.8 | 6.1 |
* AHTL-19 | 679.26 | 980.13 | 0.69 | 0.3876 | 0.0204 | 0.0490 | 0.0012 | 308.3 | 7.1 |
AHTL-20 | 480.76 | 740.62 | 0.65 | 0.3274 | 0.0188 | 0.0434 | 0.0008 | 273.8 | 4.7 |
Sample No. | AHTL-Pl1 | AHTL-Pl2 | AHTL-Pl3 | AHTL-Pl4 | AHTL-Pl5 | AHTL-Pl6 | AHTL-Pl7 | AHTL-Pl8 |
---|---|---|---|---|---|---|---|---|
Oxides (wt.%) | ||||||||
Core | ||||||||
SiO2 | 56.91 | 56.47 | 57.42 | 58.68 | 58.04 | 58.42 | 58.78 | 58.67 |
TiO2 | 0.08 | - | 0.01 | 0.10 | 0.16 | - | - | 0.20 |
Al2O3 | 25.92 | 26.14 | 25.72 | 25.19 | 25.19 | 24.78 | 25.03 | 24.69 |
TFeO | 0.28 | 0.24 | 0.15 | 0.20 | 0.13 | 0.24 | 0.26 | 0.25 |
MnO | - | 0.05 | 0.12 | - | 0.05 | 0.22 | - | - |
MgO | - | - | - | - | - | 0.01 | - | 0.06 |
CaO | 8.43 | 8.40 | 8.07 | 7.19 | 7.39 | 7.01 | 6.99 | 6.88 |
Na2O | 7.00 | 7.06 | 7.23 | 7.81 | 7.56 | 7.64 | 7.65 | 7.82 |
K2O | 0.51 | 0.42 | 0.47 | 0.55 | 0.55 | 0.73 | 0.70 | 0.59 |
BaO | 0.26 | 0.32 | 0.41 | - | - | 0.12 | 0.17 | - |
Σ | 99.39 | 99.10 | 99.60 | 99.72 | 99.07 | 99.17 | 99.58 | 99.16 |
Structural formulae (a.p.f.u.) based on 8 oxygen atoms | ||||||||
Si | 2.59 | 2.58 | 2.60 | 2.64 | 2.64 | 2.65 | 2.65 | 2.66 |
Al | 1.39 | 1.41 | 1.37 | 1.34 | 1.35 | 1.33 | 1.33 | 1.32 |
Ca | 0.41 | 0.41 | 0.39 | 0.35 | 0.36 | 0.34 | 0.34 | 0.33 |
Na | 0.62 | 0.62 | 0.64 | 0.68 | 0.67 | 0.67 | 0.67 | 0.69 |
K | 0.03 | 0.02 | 0.03 | 0.03 | 0.03 | 0.04 | 0.04 | 0.03 |
Ba | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 |
End-members (%) | ||||||||
An | 38.84 | 38.75 | 37.17 | 32.72 | 34.02 | 32.30 | 32.26 | 31.66 |
Ab | 58.36 | 58.94 | 60.26 | 64.31 | 62.97 | 63.70 | 63.89 | 65.11 |
Or | 2.80 | 2.31 | 2.58 | 2.98 | 3.01 | 4.00 | 3.85 | 3.23 |
Sample No. | AHTL-Kfs1 | AHTL-Kfs2 | AHTL-Kfs3 | AHTL-Kfs4 | AHTL-Kfs5 |
---|---|---|---|---|---|
Oxides (wt.%) | |||||
SiO2 | 62.34 | 63.08 | 62.76 | 63.24 | 62.32 |
TiO2 | 1.19 | 1.07 | 0.64 | 0.83 | 1.02 |
Al2O3 | 19.29 | 19.29 | 19.05 | 19.25 | 19.57 |
TFeO | 0.10 | 0.19 | 0.22 | 0.16 | 0.05 |
MnO | 0.10 | 0.07 | 0.01 | 0.05 | 0.17 |
MgO | - | 0.03 | 0.04 | - | 0.04 |
CaO | 0.13 | 0.09 | 0.11 | 0.17 | 0.27 |
Na2O | 2.49 | 2.39 | 2.55 | 2.49 | 2.43 |
K2O | 13.51 | 13.48 | 13.82 | 13.53 | 13.58 |
Σ | 99.14 | 99.69 | 99.20 | 99.72 | 99.45 |
Structural formulae (a.p.f.u.) based on 8 oxygen atoms | |||||
Si | 2.93 | 2.95 | 2.94 | 2.95 | 2.92 |
Al | 1.07 | 1.06 | 1.05 | 1.06 | 1.08 |
Ca | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Na | 0.23 | 0.22 | 0.23 | 0.23 | 0.22 |
K | 0.81 | 0.80 | 0.83 | 0.80 | 0.81 |
End-members (%) | |||||
An | 0.63 | 0.44 | 0.52 | 0.82 | 1.30 |
Ab | 21.74 | 21.13 | 21.79 | 21.68 | 21.10 |
Or | 77.63 | 78.43 | 77.69 | 77.50 | 77.60 |
Sample No. | AHTL-Bi1 | AHTL-Bi2 | AHTL-Bi3 | AHTL-Bi4 | AHTL-Bi5 |
---|---|---|---|---|---|
Oxides (wt.%) | |||||
SiO2 | 36.08 | 36.25 | 35.80 | 35.52 | 36.03 |
TiO2 | 4.10 | 4.42 | 4.43 | 4.30 | 4.50 |
Al2O3 | 14.79 | 14.81 | 14.81 | 14.91 | 14.77 |
TFeO | 15.77 | 15.62 | 15.69 | 16.22 | 15.52 |
MnO | 0.23 | 0.33 | 0.31 | 0.04 | 0.21 |
MgO | 14.16 | 14.12 | 13.97 | 13.71 | 13.42 |
CaO | 0.13 | 0.04 | 0.02 | - | 0.05 |
Na2O | 0.37 | 0.38 | 0.37 | 0.53 | 0.40 |
K2O | 9.25 | 9.17 | 9.27 | 9.33 | 9.18 |
Σ | 94.88 | 95.14 | 94.67 | 94.56 | 94.08 |
Structural formulae (a.p.f.u.) based on 11 oxygen atoms | |||||
Si | 2.73 | 2.73 | 2.72 | 2.71 | 2.74 |
AlIV | 1.27 | 1.27 | 1.28 | 1.29 | 1.26 |
AlVI | 0.05 | 0.05 | 0.04 | 0.05 | 0.07 |
Ti | 0.23 | 0.25 | 0.25 | 0.25 | 0.26 |
Fe3+ | 0.15 | 0.17 | 0.16 | 0.13 | 0.19 |
Fe2+ | 0.85 | 0.81 | 0.84 | 0.90 | 0.80 |
Mn | 0.01 | 0.02 | 0.02 | 0.00 | 0.01 |
Mg | 1.60 | 1.59 | 1.58 | 1.56 | 1.52 |
Ca | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 |
Na | 0.05 | 0.06 | 0.05 | 0.08 | 0.06 |
K | 0.89 | 0.88 | 0.90 | 0.91 | 0.89 |
MF | 0.61 | 0.61 | 0.61 | 0.60 | 0.60 |
AlVI + Fe3+ + Ti | 0.43 | 0.47 | 0.45 | 0.42 | 0.52 |
Fe2+ + Mn | 0.86 | 0.83 | 0.86 | 0.91 | 0.81 |
Sample No. | AHTL-Hbl1 | AHTL-Hbl2 | AHTL-Hbl3 | AHTL-Hbl4 | AHTL-Hbl5 |
---|---|---|---|---|---|
Oxides (wt.%) | |||||
SiO2 | 48.63 | 48.15 | 46.99 | 46.18 | 46.05 |
TiO2 | 1.07 | 1.07 | 1.09 | 1.29 | 1.31 |
Al2O3 | 5.69 | 6.15 | 6.94 | 7.80 | 7.56 |
TFeO | 13.08 | 13.22 | 13.41 | 14.23 | 13.84 |
MnO | 0.30 | 0.28 | 0.49 | 0.44 | 0.37 |
MgO | 15.49 | 14.91 | 14.75 | 13.89 | 14.25 |
CaO | 11.56 | 11.52 | 11.33 | 11.43 | 11.27 |
Na2O | 1.40 | 1.56 | 1.73 | 1.73 | 1.74 |
K2O | 0.51 | 0.58 | 0.64 | 0.79 | 0.68 |
Σ | 97.73 | 97.44 | 97.37 | 97.78 | 97.07 |
Structural formulae (a.p.f.u.) based on 23 oxygen atoms | |||||
Si | 7.11 | 7.08 | 6.94 | 6.83 | 6.84 |
AlIV | 0.89 | 0.92 | 1.06 | 1.17 | 1.16 |
AlVI | 0.09 | 0.14 | 0.15 | 0.19 | 0.17 |
Ti | 0.12 | 0.12 | 0.12 | 0.14 | 0.15 |
Fe3+ | 0.47 | 0.45 | 0.36 | 0.33 | 0.34 |
Fe2+ | 1.13 | 1.18 | 1.30 | 1.43 | 1.38 |
Mn | 0.04 | 0.03 | 0.06 | 0.06 | 0.05 |
Mg | 3.38 | 3.27 | 3.25 | 3.06 | 3.16 |
Ca | 1.81 | 1.81 | 1.79 | 1.81 | 1.79 |
Na | 0.40 | 0.44 | 0.50 | 0.50 | 0.50 |
K | 0.10 | 0.11 | 0.12 | 0.15 | 0.13 |
Σ | 15.53 | 15.55 | 15.64 | 15.67 | 15.66 |
SiT | 7.11 | 7.08 | 6.94 | 6.83 | 6.84 |
AlT | 0.89 | 0.92 | 1.06 | 1.17 | 1.16 |
AlC | 0.09 | 0.14 | 0.15 | 0.19 | 0.17 |
Fe3+C | 0.47 | 0.45 | 0.36 | 0.33 | 0.34 |
TiC | 0.12 | 0.12 | 0.12 | 0.14 | 0.15 |
MgC | 3.38 | 3.27 | 3.25 | 3.06 | 3.16 |
Fe2+C | 0.94 | 1.03 | 1.13 | 1.27 | 1.19 |
MnC | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Fe2+B | 0.19 | 0.15 | 0.17 | 0.16 | 0.19 |
MnB | 0.04 | 0.03 | 0.06 | 0.06 | 0.05 |
CaB | 1.78 | 1.81 | 1.77 | 1.79 | 1.76 |
NaB | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
CaA | 0.03 | 0.00 | 0.03 | 0.02 | 0.03 |
NaA | 0.40 | 0.44 | 0.50 | 0.50 | 0.50 |
KA | 0.10 | 0.11 | 0.12 | 0.15 | 0.13 |
M | 0.75 | 0.73 | 0.71 | 0.68 | 0.70 |
Sample No. | AHTL-1 | AHTL-2 | AHTL-6 | AHTL-7 | AHTL-8 |
---|---|---|---|---|---|
SiO2 | 62.35 | 63.66 | 61.69 | 62.74 | 62.63 |
TiO2 | 0.56 | 0.54 | 0.58 | 0.53 | 0.55 |
Al2O3 | 15.95 | 15.67 | 16.29 | 15.45 | 15.78 |
TFe2O3 | 4.78 | 4.75 | 4.84 | 4.59 | 4.89 |
MnO | 0.05 | 0.07 | 0.06 | 0.06 | 0.07 |
MgO | 3.26 | 3.30 | 3.39 | 3.28 | 3.42 |
CaO | 4.64 | 4.65 | 4.88 | 4.70 | 4.79 |
Na2O | 4.11 | 3.72 | 4.08 | 3.65 | 3.73 |
K2O | 2.82 | 3.32 | 3.05 | 3.15 | 3.31 |
P2O5 | 0.24 | 0.22 | 0.28 | 0.16 | 0.22 |
LOI | 0.92 | 0.52 | 0.69 | 0.70 | 0.42 |
total | 99.68 | 100.42 | 99.83 | 99.01 | 99.81 |
Na2O + K2O | 6.93 | 7.04 | 7.13 | 6.80 | 7.04 |
A/NK | 1.62 | 1.61 | 1.63 | 1.64 | 1.62 |
A/CNK | 0.87 | 0.86 | 0.86 | 0.86 | 0.86 |
Mg# | 54.87 | 55.33 | 55.53 | 56.02 | 55.49 |
DI | 65.83 | 66.41 | 64.85 | 65.85 | 65.29 |
Ti | 3482 | 3532 | 3866 | 3472 | 3506 |
Ga | 17.044 | 17.584 | 18.902 | 17.490 | 14.570 |
Rb | 80 | 123 | 96 | 105 | 32 |
Sr | 767 | 723 | 829 | 708 | 481 |
Zr | 221 | 222 | 214 | 216 | 209 |
Nb | 14 | 16 | 17 | 15 | 15 |
Cs | 3.182 | 4.984 | 3.444 | 3.096 | 3.586 |
Ba | 1130 | 1077 | 1362 | 1089 | 567 |
La | 30 | 38 | 40 | 42 | 13 |
Ce | 62 | 68 | 80 | 74 | 36 |
Pr | 7.376 | 7.424 | 9.074 | 7.764 | 3.766 |
Nd | 27 | 25 | 32 | 26 | 14 |
Sm | 4.636 | 4.202 | 5.220 | 4.242 | 2.626 |
Eu | 1.345 | 1.243 | 1.539 | 1.245 | 0.790 |
Gd | 3.876 | 3.560 | 4.364 | 3.586 | 2.240 |
Tb | 0.540 | 0.490 | 0.597 | 0.490 | 0.343 |
Dy | 3.016 | 2.770 | 3.290 | 2.756 | 1.971 |
Ho | 0.629 | 0.580 | 0.687 | 0.576 | 0.427 |
Er | 1.752 | 1.616 | 1.917 | 1.603 | 1.218 |
Tm | 0.256 | 0.244 | 0.286 | 0.241 | 0.184 |
Yb | 1.721 | 1.622 | 1.843 | 1.613 | 1.242 |
Lu | 0.267 | 0.263 | 0.285 | 0.261 | 0.198 |
Hf | 5.612 | 5.611 | 5.362 | 5.369 | 5.274 |
Ta | 0.798 | 1.260 | 1.277 | 1.397 | 1.006 |
Pb | 25.200 | 22.860 | 25.060 | 19.826 | 19.358 |
Th | 10.932 | 18.064 | 13.408 | 20.460 | 5.142 |
U | 1.914 | 3.530 | 2.168 | 3.404 | 1.829 |
ΣREE | 144.35 | 155.47 | 180.28 | 165.64 | 78.42 |
LREE | 132.30 | 144.33 | 167.01 | 154.51 | 70.60 |
HREE | 12.06 | 11.14 | 13.27 | 11.13 | 7.82 |
LREE/HREE | 10.97 | 12.95 | 12.59 | 13.89 | 9.02 |
(La/Yb)N | 12.68 | 16.82 | 15.54 | 18.60 | 7.53 |
δEu | 0.94 | 0.96 | 0.96 | 0.95 | 0.97 |
δCe | 0.98 | 0.94 | 0.98 | 0.93 | 1.26 |
Yb + Nb | 16.16 | 17.52 | 18.36 | 16.94 | 16.49 |
Nb/Ta | 18.10 | 12.62 | 12.93 | 10.97 | 15.16 |
Zr/Hf | 39.41 | 39.64 | 39.95 | 40.19 | 39.59 |
La/Yb | 17.68 | 23.45 | 21.67 | 25.93 | 10.50 |
Th/Nd | 0.41 | 0.72 | 0.42 | 0.79 | 0.37 |
La/Sm | 6.56 | 9.05 | 7.65 | 9.86 | 4.97 |
Th/U | 5.71 | 5.12 | 6.18 | 6.01 | 2.81 |
Rb/Sr | 0.10 | 0.17 | 0.12 | 0.15 | 0.07 |
Pluton | Description | Method | Age | Type | Environment |
---|---|---|---|---|---|
Chuanwulu [25,45] | Biotite diorite | LA-ICP-MS | 287.8 ± 4.3 Ma | I | Post-collision |
Biotite monzonite | 286.4 ± 2.5 Ma | ||||
Baileigong [26,27] | Biotite moyite | LA-ICP-MS | 273 ± 2 Ma | A2 | Post-collision |
291 ± 3 Ma | |||||
283 ± 3 Ma | |||||
Huoshibulake [28,29,45] | Alkali-feldspar granite | ID-TIMS | 261.5 ± 2.7 Ma | A1 | Post-collision |
SHRIMP | 276 ± 4 Ma | ||||
Kezile [42] | Biotite granite | LA-ICP-MS | 272.4 ± 1.1 Ma | A1 | Post-collision |
Halajun [29,42] | Granite | SHRIMP | 278 ± 3 Ma | A1 | Post-collision |
Quartz syenite | LA-ICP-MS | 268.6 ± 1.5 Ma | |||
268.8 ± 1.7 Ma | |||||
271.0 ± 2.2 Ma | |||||
Mazhashan [43] | Syenite | SHRIMP | 285.9 ± 2.6 Ma | A1 | Post-collision |
Xiaohaizi [44] | Syenite | SIMS | 279.7 ± 2 Ma | A | Post-collision |
Yingmailai [38,45] | Biotite monzonite granite | LA-ICP-MS | 285.0 ± 3.7 Ma | S | Syn-collision- Post-collision |
291.0 ± 2.6 Ma | |||||
Boziguoer [46] | Granite | LA-ICP-MS | 290.1 ± 1.4 Ma | A | Post-collision |
Oxidaban [47] | Monzonitic granite | LA-ICP-MS | 273 ± 2 Ma | I | Pre-collision |
Djangart [48,49,50,51] | Granite | SIMS | 296.7 ± 4.2 Ma | A2 | Post-collision |
Uchkoshkon [48,49,50,51] | Granite | SIMS | 279 ± 8.1 Ma | A2 | Post-collision |
Mudryum [48,49,50,51] | Granite | SIMS | 281.4 ± 2.2 Ma | A2 | Post-collision |
Kok-kiya [48,49,50,51] | Granite | SIMS | 278.9 ± 2.7 Ma | A2 | Post-collision |
Ak-Shiyrak [48,49,50,51] | Granite | SHRIMP | 292 ± 3 Ma | A2 | Post-collision |
Tashkoro [48,49,50,51] | Granite | SHRIMP | 299 ± 4 Ma | A | Post-collision |
Inylchek [48,49,50,51] | Granite | SHRIMP | 295.3 ± 4.4 Ma | A | Post-collision |
Maida’adir [48,49,50,51] | Granite | SHRIMP | 288.6 ± 6.3 Ma | A | Post-collision |
Mangqisu [32,45,104] | Granodiorite | SHRIMP | 296.9 ± 5.4 Ma | I | Syn-collision-Post-collision |
304.2 ± 11.6 Ma | |||||
LA-ICP-MS | 292 ± 2 Ma | ||||
297 ± 4 Ma | |||||
294 ± 3 Ma |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Yin, J.; Xiao, K.; Wang, C.; Xu, H.; Fang, J.; Fan, M. Geochronology and Petrogenesis of Ahetala Granodiorite in South Tianshan Orogenic Belt, Xinjiang: New Constraints on the Tectonic Evolution of the South Tianshan Ocean. Minerals 2022, 12, 1588. https://doi.org/10.3390/min12121588
Xu Y, Yin J, Xiao K, Wang C, Xu H, Fang J, Fan M. Geochronology and Petrogenesis of Ahetala Granodiorite in South Tianshan Orogenic Belt, Xinjiang: New Constraints on the Tectonic Evolution of the South Tianshan Ocean. Minerals. 2022; 12(12):1588. https://doi.org/10.3390/min12121588
Chicago/Turabian StyleXu, Yang, Jingwu Yin, Keyan Xiao, Chunlian Wang, Haiming Xu, Jingling Fang, and Mingjing Fan. 2022. "Geochronology and Petrogenesis of Ahetala Granodiorite in South Tianshan Orogenic Belt, Xinjiang: New Constraints on the Tectonic Evolution of the South Tianshan Ocean" Minerals 12, no. 12: 1588. https://doi.org/10.3390/min12121588
APA StyleXu, Y., Yin, J., Xiao, K., Wang, C., Xu, H., Fang, J., & Fan, M. (2022). Geochronology and Petrogenesis of Ahetala Granodiorite in South Tianshan Orogenic Belt, Xinjiang: New Constraints on the Tectonic Evolution of the South Tianshan Ocean. Minerals, 12(12), 1588. https://doi.org/10.3390/min12121588