Geology, Pyrite Geochemistry and Metallogenic Mechanism of the Wulong Gold Deposit in Liaodong Peninsula, North China Craton
Abstract
:1. Introduction
2. Geological Setting
3. Deposit Geology
4. Sampling and Analytical Methods
5. Results
5.1. Mass Balance Calculation
5.2. Geochemical Trends of Pyrite
6. Discussion
6.1. Migration and Enrichment of Elements
6.2. Trace Element Distribution and Pyrite Genesis
6.3. Ore-Forming Process
7. Conclusions
- (1)
- Alteration is well-developed in the mining area, including silicification, pyritization, sericitization, chloritization, and carbonatization, among which the former two are closely related to mineralization. Mass balance calculation results indicate that during silicification, certain elements (Al, Ca, Fe, K, Si, Ag, As, Cu, and Pb) entered the fluid system, whereas some others (Mg, Na, Fe, Cr, Zn, and Ni) were leached away. During the process of silicification, the content of H+ and HS− reduced in the ore-forming fluids.
- (2)
- LA-ICP-MS pyrite trace element analyses indicate that Py1 is relatively rich in Au and Zn contents and lacking in Pb, Cu, and As contents. Py2 is relatively rich in Au and Cu contents and lacking in Pb and Zn contents. Py3 is relatively rich of Pb, Cu, and As contents and lacking in Au, Zn, Co, Ni, and Bi contents.
- (3)
- The depleted H+ concentration and HS− concentration in the ore-forming fluids lead to instability of the Au(HS)2− complexes during the process of silicification and pyritization. Moreover, the depleted sulfur and the reduced temperature during silicification and pyritization also lead to the precipitation of gold and bismuthinite.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deng, J.; Wang, Q.F. Gold mineralization in China: Metallogenic provinces, deposit types and tectonic framework. Gondwana Res. 2016, 36, 219–274. [Google Scholar] [CrossRef]
- Wang, Y.W.; Xie, H.J.; Li, D.D.; Shi, Y.; Liu, F.X.; Sun, G.Q.; Sun, Q.M.; Zhou, G.C. Prospecting prediction of ore concentration area exemplified by Qingchengzi Pb-Zn-Au-Ag ore concentration area, Eastern Liaoning Province. Miner. Depos. 2017, 36, 1–24, (In Chinese with English Abstract). [Google Scholar]
- Feng, Y.C.; Qiu, K.F.; Wang, D.Z.; Sha, W.J.; Li, S. Forming conditions of tellurides and their constraints on gold enrichment in Linglong gold district, Jiaodong gold province. Acta Petrol. Sin. 2022, 38, 63–77, (In Chinese with English Abstract). [Google Scholar]
- Yu, H.C.; Qiu, K.F.; Chew, D.; Yu, C.; Ding, Z.J.; Zhou, T.; Li, S.; Sun, K.F. Buried Triassic rocks and vertical distribution of ores in the giant Jiaodong gold province (China) revealed by apatite xenocrysts in hydrothermal quartz veins. Ore Geol. Rev. 2022, 140, 104612. [Google Scholar] [CrossRef]
- Deng, J.; Yang, L.Q.; Groves, D.I.; Zhang, L.; Qiu, K.F.; Wang, Q.F. An integrated mineral system model for the gold deposits of the giant Jiaodong province, eastern China. Earth-Sci. Rev. 2020, 208, 103274. [Google Scholar] [CrossRef]
- Wei, Y.J.; Qiu, K.F.; Guo, L.N.; Liu, X.D.; Tang, L.; Shi, Q.F.; Gao, X.K. Characteristics and evolution of ore-fluids of the Dayingezhuang gold deposit, Jiaodong gold province. Acta Petrol. Sin. 2020, 36, 1821–1832, (In Chinese with English Abstract). [Google Scholar]
- Sai, S.X.; Qiu, K.F. Ore-forming processes of the Rushan gold deposit, Jiaodong: Fluid immiscibility under episodic fluid pressure fluctuations. Acta Petrol. Sin. 2020, 36, 1547–1566, (In Chinese with English Abstract). [Google Scholar]
- Deng, J.; Qiu, K.F.; Wang, Q.F.; Goldfarb, R.J.; Yang, L.Q.; Zi, J.W.; Geng, J.Z.; Ma, Y. In-situ dating of hydrothermal monazite and implications on the geodynamic controls of ore formation in the Jiaodong gold province, Eastern China. Econ. Geol. 2020, 115, 671–685. [Google Scholar] [CrossRef]
- Zeng, Q.D.; Chen, R.Y.; Yang, J.H.; Sun, G.T.; Yu, B.; Wang, Y.B.; Chen, P.W. The metallogenic characteristics and exploring ore potential of the gold deposits in eastern Liaoning Province. Acta Petrol. Sin. 2019, 35, 1939–1963, (In Chinese with English Abstract). [Google Scholar]
- Wang, D.L. Genetic Mineralogy and Deep Prospects of Wu Long Gold Deposit in Liaoning Province. Master’s Thesis, China University of Geosciences, Beijing, China, 2017. (In Chinese with English Abstract). [Google Scholar]
- Liu, G.C.; Qian, X.; Li, J.; Zi, J.W.; Zhao, T.Y.; Feng, Q.L.; Chen, G.Y.; Hu, S.B. Geochronological and geochemical constraints on the petrogenesis of early Paleoproterozoic (2.40–2.32 Ga) Nb-enriched mafic rocks in southwestern Yangtze block and its tectonic implications. J. Earth Sci. 2020, 31, 35–52. [Google Scholar] [CrossRef]
- Yu, B.; Zeng, Q.; Frimmel, H.E.; Wang, Y.B.; Guo, W.K.; Sun, G.T.; Zhou, T.C.; Li, G.P. Genesis of the Wulong gold deposit, northeastern North China Craton: Constraints from fluid inclusions, H-O-S-Pb isotopes, and pyrite trace element concentrations. Ore Geol. Rev. 2018, 102, 313–337. [Google Scholar] [CrossRef]
- Gu, Y.C. The Mesozoic Tectonic-Magmatic Constraints on the Gold Mineralization in Wulong Gold Mining Area, Eastern Liaoning. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2019. (In Chinese with English Abstract). [Google Scholar]
- Wei, J.H.; Liu, C.Q.; Li, Z.D.; Zhao, Y.X. Simulation of rock mass balance of two typical altered rocks in Wulong gold deposit of Liaoning, China. J. Cent. South Univ. Technol. 2001, 8, 197–202. [Google Scholar] [CrossRef]
- Tang, L.; Hu, X.K.; Santosh, M.; Zhang, S.T.; Spencer, C.J.; Jeon, H.; Zhao, Y.; Cao, H.W. Multistage processes linked to tectonic transition in the genesis of orogenic gold deposit: A case study from the Shanggong lode deposit, East Qinling, China. Ore Geol. Rev. 2019, 111, 102998. [Google Scholar] [CrossRef]
- Zhang, Z.C.; Li, N.; Ji, X.Z.; Han, Z.; Guo, Y.Y.; Li, Z.C. Hydrothermal alteration of the Anba deposit, Yangshan gold belt, western Qinling. Acta Petrol. Sin. 2015, 31, 3405–3419, (In Chinese with English Abstract). [Google Scholar]
- Parsapoor, A.; Khalili, M.; Mackizadeh, M.A. The behavior of trace and rare earth elements (REE) during hydrothermal alteration in the Rangan area (Central Iran). J. Asian Earth Sci. 2009, 34, 123–134. [Google Scholar] [CrossRef]
- Helba, H.A.; Khalil, K.I.; Abou, N.M.F. Alteration patterns related to hydrothermal gold mineralization meta-andesites at Dungash Area, Eastern Desert, Egypt. Resour. Geol. 2001, 51, 19–30. [Google Scholar] [CrossRef]
- Yu, H.C.; Qiu, K.F.; Pirajno, F.; Zhang, P.C.; Dong, W.Q. Revisiting Phanerozoic evolution of the Qinling Orogen (East Tethys) with perspectives of detrital zircon. Gondwana Res. 2022, 103, 426–444. [Google Scholar] [CrossRef]
- Yu, H.C.; Qiu, K.F.; Deng, J.; Zhu RMathieu, L.; Sai, S.X.; Sha, W.J. Exhuming and preserving epizonal orogenic Au-Sb deposits in rapidly uplifting orogenic settings. Tectonics 2022, 41, e2021TC007165. [Google Scholar] [CrossRef]
- Long, Z.Y.; Qiu, K.F.; Santosh, M.; Yu, H.C.; Jiang, X.Y.; Zou, L.Q.; Tang, D.W. Fingerprinting the metal source and cycling of the world’s largest antimony deposit in Xikuangshan, China. GSA Bull. 2022. [Google Scholar] [CrossRef]
- Hu, X.; Tang, L.; Zhang, S.T.; Tsunogae, T.; Santosh, M.; Sun, L.; Spencer, C.; Jeon, H.; Wang, L. Formation of the Qiyugou porphyry gold system in East Qinling, China: Insights from timing and source characteristics of Late Mesozoic magmatism. J. Geol. Soc. 2022, 179. [Google Scholar] [CrossRef]
- Tang, L.; Wagner, T.; Fusswinkel, T.; Zhang, S.; Hu, X.; Schlegel, T. Fluid inclusion evidence for the magmatic-hydrothermal evolution of closely linked porphyry Au, porphyry Mo, and barren systems, East Qinling, China. GSA Bull. 2022, 134, 1529–1548. [Google Scholar] [CrossRef]
- Tang, L.; Zhao, Y.; Zhang, S.T.; Sun, L.; Hu, X.K.; Sheng, Y.M.; Zeng, T. Origin and evolution of a porphyry-breccia system: Evidence from zircon U-Pb, molybdenite Re-Os geochronology, in situ sulfur isotope and trace elements of the Qiyugou deposit, China. Gondwana Res. 2021, 89, 88–104. [Google Scholar] [CrossRef]
- Wei, Q.; Fan, H.R.; Lan, T.G.; Liu, X. Hydrothermal Alteration and Element Migration in the Sizhuang Gold Deposit, Jiaodong Province, China. Bull. Mineral. Petrol. Geochem. 2018, 37, 283–293, (In Chinese with English Abstract). [Google Scholar]
- Jamtveit, B. Metamorphism: From Patterns to Processes. Elements 2014, 6, 149–152. [Google Scholar] [CrossRef]
- Dugdale, A.L.; Wilson, C.J.L.; Squire, R.J. Hydrothermal alteration at the Magdala gold deposit, Stawell, western Victoria. Aust. J. Earth Sci. 2006, 53, 733–757. [Google Scholar] [CrossRef]
- Chinnasamy, S.S.; Mishra, B. Greenstone metamorphism, hydrothermal alteration, and gold mineralization in the genetic context of the granodiorite-hosted gold deposit at Jonnagiri, Eastern Dharwar Craton, India. Econ. Geol. 2013, 108, 1015–1038. [Google Scholar] [CrossRef]
- Craw, D. Geochemistry of late metamorphic hydrothermal alteration and graphitization of host rock, Macraes gold mine, Otago Schist, New Zealand. Chem. Geol. 2002, 191, 257–275. [Google Scholar] [CrossRef]
- Wu, M.Q.; Samson, I.M.; Qiu, K.F.; Zhang, D.H. Concentration mechanisms of REE-Nb-Zr-Be mineralization in the Baerzhe deposit, NE China: Insights from textural and chemical features of amphibole and rare-metal minerals. Econ. Geol. 2021, 116, 651–679. [Google Scholar] [CrossRef]
- Yang, J.H.; Wu, F.Y.; Wilde, S.A. A review of the geodynamic setting of large-scale late Mesozoic gold mineralization in the North China Craton: An association with lithospheric thinning. Ore Geol. Rev. 2003, 23, 125–152. [Google Scholar] [CrossRef]
- Zhang, Z.C.; Wang, Y.W.; Li, D.D.; Lai, C. Lithospheric Architecture and Metallogenesis in Liaodong Peninsula, North China Craton: Insights from Zircon Hf-Nd Isotope Mapping. Minerals 2019, 9, 179. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.H.; Sun, J.F.; Zhang, J.H.; Wilde, S.A. Petrogenesis of Late Triassic intrusive rocks in the Northern Liaodong Peninsula related to decratonization of the North China Craton: Zircon U-Pb age and Hf-O isotope evidence. Lithos 2012, 153, 108–128. [Google Scholar] [CrossRef]
- Suo, A.; Zhao, D.Z.; Zhang, F.S.; Wang, H.R.; Liu, F.Q. Driving forces and management strategies for estuaries in Northern China. Front. Earth Sci. China 2010, 4, 51–58. [Google Scholar] [CrossRef]
- Yang, J.H.; Wu, F.Y.; Chung, S.L.; Wilde, S.A.; Chu, M.F. A hybrid origin for the Qianshan A-type granite, Northeast China: Geochemical and Sr-Nd-Hf isotopic evidence. Lithos 2006, 89, 89–106. [Google Scholar] [CrossRef]
- Wu, F.Y.; Yang, J.H.; Wilde, S.A.; Zhang, X.O. Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong Peninsula, NE China. Chem. Geol. 2005, 221, 127–156. [Google Scholar] [CrossRef]
- Jing, Y.; Jiang, S.; Zhao, K.; Ni, P.; Ling, H.; Liu, D. Shrimp U-Pb zircon dating for lamprophyre from Liaodong Peninsula: Constraints on the initial time of Mesozoic lithosphere thinning beneath Eastern China. Chin. Sci. Bull. 2005, 50, 2612–2620. [Google Scholar] [CrossRef]
- Wei, J.H.; Liu, C.Q.; Tang, H.F. Rb-Sr and U-Pb isotopic systematics of pyrite and granite in Liaodong gold province, North, China: Implication for the age and genesis of a gold deposit. Geochem. J. 2003, 37, 567–577. [Google Scholar] [CrossRef] [Green Version]
- Duan, X.; Zeng, Q.; Yang, J.; Liu, J.; Wang, Y.; Zhou, L. Geochronology, geochemistry and Hf isotope of Late Triassic magmatic rocks of Qingchengzi district in Liaodong Peninsula, Northeast China. J. Asian Earth Sci. 2014, 91, 107–124. [Google Scholar] [CrossRef]
- Zhang, G.R.; Jiang, S.E.; Han, X.P.; Huan, Z.F.; Qu, H.X.; Guo, W.J.; Wang, F.J. The main characteristics of Yalujiang Fault Zone and its significance. Geol. Resour. 2006, 15, 11–19, (In Chinese with English Abstract). [Google Scholar]
- Xia, H.K.; Xu, D.M. Features of Yalujiang River Fault (south segment) activity and seismicity. J. Seismol. Res. 1993, 16, 391–400, (In Chinese with English Abstract). [Google Scholar]
- Wang, Y.Z.; Wang, F.; Wu, L.; Shi, W.B.; Yang, L.Y. (U-Th)/He thermochronology of metallic ore deposits in the Liaodong Peninsula: Implications for orefield evolution in northeast China. Ore Geol. Rev. 2018, 92, 348–365. [Google Scholar] [CrossRef]
- Wang, M.Z.; Ji, Z.J.; Liang, Q.G.; Jin, P.; Zhang, H.F.; Yang, Y.J. Ore-controlling structure characteristics and ore prospecting in Wulong gold deposit, Liaoning Province. Geol. Miner. Resour. South China 2011, 27, 191–196, (In Chinese with English Abstract). [Google Scholar]
- Zhang, P.; Zhao, Y.; Kou, L.L.; Sha, D.M.; Bi, Z.W.; Yang, F.C. Zircon U-Pb Ages, Hf Isotopes and Geological Significance of Mesozoic Granites in Dandong Area, Liaodong Peninsula. Earth Sci.—J. China Univ. Geosci. 2019, 44, 3297–3313, (In Chinese with English Abstract). [Google Scholar]
- Wei, J.H.; Qiu, X.P.; Guo, D.Z.; Tang, W.J. Geochemistry of ore fluids and Rb-Sr isotopic dating for the Wulong Gold Deposit in Liaoning, China. Acta Geol. Sin. 2004, 78, 1267–1274, (In Chinese with English Abstract). [Google Scholar]
- Xiao, G.H.; Liu, T.X.; Zhang, G.X. Probing into the origin and mineralization model of Wulong Gold Deposit, Liaoning Province. Gold 2003, 24, 17–20, (In Chinese with English Abstract). [Google Scholar]
- Wei, B.; Wang, C.Y.; Wang, Z.C.; Cheng, H.; Xia, X.P.; Tan, W. Mantle-derived gold scavenged by bismuth-(tellurium)-rich melts: Evidence from the mesozoic wulong gold deposit in the north china craton. Ore Geol. Rev. 2021, 131, 104047. [Google Scholar] [CrossRef]
- Hou, K.J.; Li, Y.H.; Ye, T.R. In-situ U-Pb zircon dating laser ablation-multi iron counting-ICP-MS. Miner. Depos. 2009, 28, 481–492, (In Chinese with English Abstract). [Google Scholar]
- Gao, J.F.; Zhou, M.F.; Lightfoot, P.C.; Wang, C.Y.; Qi, L.; Sun, M. Sulfide saturation and magma emplacement in the formation of the Permian Huangshandong Ni-Cu Sulfide Deposit, Xinjiang, Northwestern China. Econ. Geol. 2013, 108, 1833–1848. [Google Scholar] [CrossRef]
- Zhu, Z.X.; Zhao, X.F.; Lin, Z.W.; Zhao, S.R. In Situ Trace Elements and Sulfur Isotope Analysis of Pyrite from Jinchiling Gold Deposit in the Jiaodong Region: Implications for Ore Genesis. Earth Sci.—J. China Univ. Geosci. 2020, 45, 945–959, (In Chinese with English Abstract). [Google Scholar]
- Wang, J.P.; Liu, Z.J.; Liu, J.J.; Zeng, X.T.; Wang, K.X.; Liu, B.Z.; Wang, H.; Liu, C.H.; Zhang, F.F. Trace Element Compositions of Pyrite from the Shuangwang Gold Breccias, Western Qinling Orogen, China: Implications for Deep Ore Prediction. J. Earth Sci. 2018, 29, 564–572. [Google Scholar] [CrossRef]
- Chen, W.T.; Zhou, M.F.; Li, X.; Gao, J.F.; Hou, K. In-situ LA-ICP-MS trace elemental analyses of magnetite: Cu-(Au, Fe) deposits in the Khetri copper belt in Rajasthan Province, NW India. Ore Geol. Rev. 2015, 65, 929–939. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Gao, S.; Gunther, D.; Xu, J.; Gao, C.G.; Chen, H.H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Tang, H.F.; Liu, C.Q.; Xie, G.G. Mass transfer and element mobility of rocks during regional metamorphism: A case study of metamorphosed pelites from the Shuangqiaoshan Group in Lushan. Geol. Rev. 2000, 46, 245–254, (In Chinese with English Abstract). [Google Scholar]
- Klammer, D. Mass change during extreme acid-sulphate hydrothermal alteration of a Tertiary latite, Styria, Austria. Chem. Geol. 1997, 141, 33–48. [Google Scholar] [CrossRef]
- O’Hara, K. Fluid flow and volume loss during mylonitization: An origin for phyllonite in an overthrust setting, North Carolina, U.S.A. Tectonophysics 1988, 156, 21–36. [Google Scholar] [CrossRef]
- Zhang, Z.C.; Wang, Y.W.; Li, D.D.; Wang, W.; Li, S.H.; Qiu, J.Z.; Lai, C.; Li, X. Hydrothermal alteration and mineralization of Baiyun gold deposit in Liaodong Peninsula, North China Craton. Geol. J. 2020, 56, 2167–2191. [Google Scholar] [CrossRef]
- Liu, J.B.; You, Z.D.; Zhong, Z.Q.; Li, L.R. Mass Balance Analysis of Mylonites in Ductile Shear Zone: A Case Study of Shewei Shear Zone in Qinling Group, Western Henan. Earth Sci.-J. China Univ. Geosci. 1993, 18, 757–814, (In Chinese with English Abstract). [Google Scholar]
- Wu, S.Y.; Liu, S.S.; Hou, L. Elements migration during ore-forming process, Yata gold deposit, Southwestern Guizhou, China. Sediment. Geol. Tethyan Geol. 2021, 41, 585–598, (In Chinese with English Abstract). [Google Scholar]
- Wu, D.H.; Xia, F.; Pan, J.Y.; Liu, G.Q.; Huang, G.L.; Liu, W.Q.; Wu, J.Y. Characteristics of hydrothermal alteration and material migration of Mianhuakeng uranium deposit in northern Guangdong Province. Acta Petrol. Sin. 2019, 35, 2745–2764, (In Chinese with English Abstract). [Google Scholar]
- Qiu, K.F.; Yu, H.C.; Wu, M.Q.; Geng, J.Z.; Ge, X.K.; Taylor, R.D. Discrete Zr and REE mineralization of the Baerzhe rare-metal deposit, China. Am. Mineral. 2019, 104, 1487–1502. [Google Scholar] [CrossRef]
- Yu, H.C.; Qiu, K.F.; Hetherington, C.J.; Chew, D.; Huang, Y.Q.; He, D.Y.; Geng, J.Z.; Xian, H.Y. Apatite as an alternative petrochronometer to trace the evolution of magmatic systems containing metamict zircon. Contrib. Mineral. Petrol. 2021, 176, 68. [Google Scholar] [CrossRef]
- Li, H.D.; Pan, J.Y.; Xia, F.; Zhou, J.Y.; Liu, Y.; Zhong, F.J. Hydrothermal alteration and its geochemical characteristics of Lijialing deposit in Xiangshan uranium ore deposit. Geoscience 2016, 30, 555–566, (In Chinese with English Abstract). [Google Scholar]
- Simon, G.; Huang, H.; Penner-Hahn, J.E.; Kesler, S.E.; Kao, L.S. Oxidation State of Gold and Arsenic in Gold-Bearing Arsenian Pyrite. Am. Mineral. 1999, 84, 1071–1079. [Google Scholar] [CrossRef]
- Fleet, M.E.; Mumin, A.H. Gold-bearing arsenian pyrite and marcasite and arsenopyrite from Carlin Trend gold deposits and laboratory synthesis. Am. Mineral. 1997, 82, 182–193. [Google Scholar] [CrossRef]
- Deditius, A.P.; Utsunomiya, S.; Renock, D.; Ewing, R.C.; Ramana, C.V.; Kesler, S.E. A Proposed New Type of Arsenian Pyrite, Composition, Nanostructure and Geological Significance. Geochim. Cosmochim. Acta 2008, 72, 2919–2933. [Google Scholar] [CrossRef]
- Mikhlin, Y.; Romanchenko, A.; Likhatski, M.; Karacharov, A.; Erenburg, S.; Trubina, S. Understanding the Initial Stages of Precious Metals Precipitation: Nanoscale Metallic and Sulfidic Species of Gold and Silver on Pyrite Surfaces. Ore Geol. Rev. 2011, 42, 47–54. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Mao, J.W.; Qiu, K.F.; Goryachev, N. The great Yanshanian metallogenic event of eastern Asia: Consequences from one hundred million years of plate margin geodynamics. Gondwana Res. 2021, 100, 223–250. [Google Scholar] [CrossRef]
- Meng, L.Y. The silicide and metallogenetic in the hydrothermal deposit. Chin. Sci. Bull. 1998, 43, 575–579, (In Chinese with English Abstract). [Google Scholar]
- Yang, L.Q.; Li, R.H.; Gao, X.; Qiu, K.F.; Zhang, L. A preliminary study of extreme enrichment of critical elements in the Jiaodong gold deposits, China. Acta Petrol. Sin. 2020, 36, 1285–1314, (In Chinese with English Abstract). [Google Scholar]
- Wu, M.Q.; Samon, I.M.; Qiu, K.F.; Zhang, D.H. Multi-stage metasomatic Zr mineralization in the world-class Baerzhe Rare earth element-Nb-Zr-Be deposit. Am. Mineral. 2022. [Google Scholar] [CrossRef]
- Reich, M.; Kesler, S.E.; Utsunomiya, S.; Christopher, S.P.; Stephen, L.C.; Rodney, C.E. Solubility of gold in arsenian pyrite. Geochim. Cosmochim. Acta 2005, 69, 2781–2796. [Google Scholar] [CrossRef]
- Li, W.; Cook, N.J.; Xie, G.Q.; Mao, J.W.; Ciobanu, C.L.; Li, J.W.; Zhang, Z.Y. Textures and trace element signatures of pyrite and arsenopyrite from the Gutaishan Au–Sb deposit, South China. Miner. Depos. 2019, 54, 591–610. [Google Scholar] [CrossRef]
- Feng, J.Y.; Tang, L.; Santosh, M.; Zhang, S.T.; Sheng, Y.M.; Hu, X.K.; Wang, L. Genesis of hydrothermal gold mineralization in the Qianhe deposit, central China: Constraints from in situ sulphur isotope and trace elements of pyrite. Geol. J. 2021, 56, 3241–3256. [Google Scholar] [CrossRef]
- Large, R.R.; Maslennikov, V.; Robert, F.; Danyushevsky, L.V.; Chang, Z. Multistage sedimentary and metamorphic origin of pyrite and gold in the giant Sukhoi Log deposit, Lena gold province, Russia. Econ. Geol. 2007, 102, 1232–1267. [Google Scholar] [CrossRef]
- Large, R.R.; Danyushevsky, L.; Hollit, C. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits. Econ. Geol. 2009, 104, 635–668. [Google Scholar] [CrossRef]
- Qiu, K.F.; Yu, H.C.; Hetherington, C.; Huang, Y.Q.; Yang, T.; Deng, J. Tourmaline composition and boron isotope signature as a tracer of magmatic-hydrothermal processes. Am. Mineral. 2021, 106, 1033–1044. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, K.F.; Müller, A.; Hou, Z.L.; Zhu, Z.H.; Yu, H.C. Machine learning prediction of quartz forming-environments. J. Geophys. Res. Solid Earth 2021, 126, e2021JB021925. [Google Scholar] [CrossRef]
- Yu, H.C.; Qiu, K.F.; Simon, A.; Wang, D.; Mathur, R.; Wan, R.Q.; Jiang, X.Y.; Deng, J. Telescoped boiling and cooling mechanisms triggered hydrothermal stibnite precipitation: Insights from the world’s largest antimony deposit in Xikuangshan China. Am. Mineral. 2022. [Google Scholar] [CrossRef]
- Qiu, K.F.; Yu, H.C.; Deng, J.; McIntire, D.; Goldfarb, R.J. The giant Zaozigou orogenic Au-Sb deposit in West Qinling, China: Magmatic or metamorphic origin? Miner. Depos. 2020, 55, 345–362. [Google Scholar] [CrossRef]
- Zhou, Z.K.; Yonezu, K.; Imai, A.; Tindell, T.; Li, H.; Gabo-Ratio, J.A. Trace elements mineral chemistry of sulfides from the Woxi Au-Sb-W deposit, Southern China. Resour. Geol. 2021, 72, e12279. [Google Scholar] [CrossRef]
- Cook, N.J.; Chryssoulis, S.L. Concentrations of invisible gold in the common sulfides. Can. Mineral. 1990, 28, 1–16. [Google Scholar]
- Zhang, P.; Kou, L.L.; Zhao, Y.; Bi, Z.W.; Sha, D.M.; Han, R.P.; Li, Z.M. Genesis of the wulong gold deposit, liaoning province, ne china: Constrains from noble gases, radiogenic and stable isotope studies. Geosci. Front. 2020, 11, 547–563. [Google Scholar] [CrossRef]
- Zheng, B.; An, F.; Zhu, Y.F. Native bismuth found in Baogutu gold deposit and it’s geological significance. Acta Petrol. Sin. 2009, 25, 1426–1436, (In Chinese with English Abstract). [Google Scholar]
- Deditius, A.P.; Reich, M.; Kesler, S.E.; Satoshi, U.; Stephen, L.C.; John, W.; Rodney, C.E. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits. Geochim. Cosmochim. Acta 2014, 140, 644–670. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.X.; Frimmel, H.E.; Jiang, S.Y.; Dai, B.Z. LA-ICP-MS trace element analysis of pyrite from the Xiaoqinling gold district, China: Implications for ore genesis. Ore Geol. Rev. 2011, 43, 142–153. [Google Scholar] [CrossRef]
- Bralia, A.; Sabatini, G.; Troja, F. A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems. Miner. Depos. 1979, 14, 353–374. [Google Scholar] [CrossRef]
- Loftus-Hills, G.; Solomon, M. Cobalt, nickel and selenium in sulfides as indicators of ore genesis. Miner. Depos. 1967, 2, 228–242. [Google Scholar] [CrossRef]
- Wang, K.Y.; Qing, M.; Bian, H.Y.; Wan, D.; Sun, F.Y.; Liu, Z.H.; Ji, Z.J. The Geological Features and Geochemistry of Ore-Forming Fluids of Wulong Gold Deposit in Liaoning Province. J. Jilin Univ. 2010, 40, 557–564, (In Chinese with English Abstract). [Google Scholar]
- Hayashi, K.I.; Ohmoto, H. Solubility of gold in NaCl- and H2S- bearing aqueous solution at 250–350 °C. Geochim. Cosmochim. Acta 1991, 55, 2111–2126. [Google Scholar] [CrossRef]
- Mills, S.E. Gold Deposit Genesis in the Jiaodong Gold District, Northeast China: Mineralogical and Geochemical Insights into Mesozoic Gold in an Archean Craton. Ph.D. Thesis, School of Geosciences, Monash University, Melbourne, Australia, 2013. [Google Scholar]
- Fan, H.R.; Zhai, M.G.; Xie, Y.H.; Yang, J.H. Ore-forming fluids associated with granite-hosted gold mineralization at the Sanshandao deposit, Jiaodong gold province, China. Miner. Depos. 2003, 38, 739–750. [Google Scholar] [CrossRef]
- Cox, S.F.; Sun, S.S.; Etheridge, M.A.; Wall, V.J.; Potter, T.F. Structural and geochemical controls on the development of turbidite-hosted gold quartz vein deposits, Wattle Gully mine, central Victoria, Australia. Econ. Geol. 1995, 90, 1722–1746. [Google Scholar] [CrossRef]
- Zhen, M.H.; Gu, X.X.; Zhou, Y.F. An analysis of metallogenic physicochemical conditions and metakkogenic processes of the Dongbeizhai micro-disseminated gold deposit in Sichuan province. Miner. Depos. 1990, 9, 129–140, (In Chinese with English Abstract). [Google Scholar]
- Naden, J.; Shepherd, T.J. Role of methane and carbon dioxide in gold deposition. Nature 1989, 342, 793–795. [Google Scholar] [CrossRef]
- Guo, L.N.; Liu, S.S.; Hou, L.; Wang, J.T.; Shi, M.F.; Zhang, Q.M.; Nie, F.; Yang, Y.F.; Peng, Z.M. Fluid Inclusion and H-O Isotope Geochemistry of the Phapon Gold Deposit, NW Laos: Implications for Fluid Source and Ore Genesis. J. Earth Sci. 2019, 30, 80–94. [Google Scholar] [CrossRef]
- Bucher, K.; Stober, I. Interaction of Mantle Rocks with Crustal Fluids: Sagvandites of the Scandinavian Caledonides. J. Earth Sci. 2019, 30, 1084–1094. [Google Scholar] [CrossRef]
- Wang, C.Y.; Wang, Q.S.; Sun, S.P.; Zhang, J. Temporal and Spatial Evolution of Ore-Forming Fluid and Metallogenic Mechanism in the Jinwozi Gold Deposit, Beishan Metallogenic Belt. Earth Sci.—J. China Univ. Geosci. 2018, 43, 3126–3140, (In Chinese with English Abstract). [Google Scholar]
- Li, L.; Sun, F.Y.; Li, B.L.; Qian, Y.; Xu, Q.L. Ore-Forming Fluid Features and Genesis of Shabaosi Gold Deposit in Mohe County, Heilongjiang Province. Earth Sci.—J. China Univ. Geosci. 2015, 40, 1163–1176, (In Chinese with English Abstract). [Google Scholar]
- Seward, T.M. Thio complexes of gold and the transport of gold in hydrothermal ore solutions. Geochim. Cosmochim. Acta 1973, 37, 379–399. [Google Scholar] [CrossRef]
- Reich, M.; Deditius, A.; Chryssoulis, S.; Li, J.W.; Ma, C.Q.; Parada, M.A.; Mittermayr, F. Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: A SIMS/EMPA trace element study. Geochim. Cosmochim. Acta 2013, 104, 42–62. [Google Scholar] [CrossRef]
- Groves, D.I.; Foster, R.P. Archaean lode gold deposits. In Gold Metallogeny and Exploration; Springer: Boston, MA, USA, 1991; pp. 63–103. [Google Scholar]
- Xie, Y.L.; Yang, K.J.; Li, Y.X.; Li, G.M.; Qu, Y.W.; Dong, L. Mazhala Gold-Antimony Deposit in Southern Tibet: The Characteristics of Ore-Forming Fluids and The Origin of Gold and Antimony. Earth Sci.—J. China Univ. Geosci. 2019, 44, 1998–2016, (In Chinese with English Abstract). [Google Scholar]
Sample | W81030-3 | W81030-9 | W81030-15 | W81030-16 | W81030-19 | W81031-2 | W81031-4 | W81101-10 | W81030-5 | W81031-6 | W81101-5 | W81101-6 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Rock | Fresh Rock | Fresh Rock | Fresh Rock | Fresh Rock | Fresh Rock | Fresh Rock | Fresh Rock | Fresh Rock | Silicified Rock | Silicified Rock | Silicified Rock | Silicified Rock |
Al2O3 | 16.06 | 16.81 | 11.67 | 12.15 | 15.85 | 15.76 | 10.70 | 16.35 | 5.87 | 0.06 | 13.78 | 0.31 |
BaO | 0.08 | 0.09 | 0.02 | 0.05 | 0.06 | 0.05 | <0.01 | 0.13 | 0.09 | <0.01 | 0.06 | <0.01 |
CaO | 6.61 | 4.60 | 7.47 | 6.02 | 4.08 | 5.32 | 0.36 | 4.26 | 1.00 | 0.06 | 4.07 | 0.20 |
Fe2O3 | 6.91 | 5.56 | 7.96 | 6.35 | 7.22 | 7.82 | 5.74 | 4.87 | 0.28 | 0.43 | 5.99 | 0.05 |
K2O | 2.04 | 3.00 | 3.44 | 4.61 | 2.14 | 3.20 | 2.38 | 4.95 | 4.06 | <0.01 | 4.71 | 0.13 |
MgO | 6.21 | 3.33 | 9.47 | 8.26 | 7.05 | 7.06 | 3.53 | 2.03 | 0.05 | <0.01 | 2.20 | 0.02 |
MnO | 0.11 | 0.05 | 0.14 | 0.12 | 0.06 | 0.08 | 0.03 | 0.07 | 0.02 | <0.01 | 0.06 | <0.01 |
Na2O | 3.35 | 3.29 | 0.09 | 1.28 | 2.76 | 2.58 | 0.15 | 1.89 | 0.49 | 0.01 | 0.63 | 0.01 |
P2O5 | 0.16 | 0.21 | 0.07 | 0.27 | 0.14 | 0.16 | 0.10 | 0.18 | 0.01 | <0.01 | 0.16 | <0.01 |
SiO2 | 56.70 | 59.43 | 44.69 | 49.46 | 54.98 | 54.58 | 72.66 | 57.64 | 86.78 | 98.15 | 59.95 | 98.58 |
LOI | 1.51 | 2.58 | 14.17 | 10.04 | 5.11 | 2.14 | 3.52 | 6.24 | 1.08 | 0.39 | 6.69 | 0.45 |
FeO | 5.51 | 4.24 | 6.01 | 4.79 | 5.59 | 6.27 | 3.51 | 3.39 | 0.20 | 0.35 | 2.81 | 0.05 |
Ag | 0.01 | 0.03 | 0.09 | 0.22 | 0.40 | 0.01 | 1.79 | 0.45 | 0.01 | 2.35 | 10.15 | 0.13 |
As | 2.90 | 4.00 | 19.00 | 48.10 | 14.00 | 2.60 | 35.30 | 9.20 | 3.00 | 4.80 | 122.50 | 3.20 |
Co | 24.70 | 14.70 | 33.10 | 32.70 | 30.60 | 22.80 | 8.00 | 10.10 | 0.20 | 0.80 | 10.90 | 0.10 |
Cr | 297.00 | 27.00 | 642.00 | 541.00 | 492.00 | 399.00 | 214.00 | 23.00 | <1.00 | 1.00 | 21.00 | 1.00 |
Cs | 2.18 | 17.00 | 6.28 | 4.74 | 7.07 | 12.00 | 3.42 | 8.34 | 0.89 | 0.04 | 6.28 | 0.12 |
Cu | 22.50 | 21.20 | 16.30 | 22.50 | 13.70 | 10.70 | 19.80 | 27.60 | 6.70 | 3.10 | 112.50 | 1.80 |
Ni | 54.20 | 10.20 | 131.00 | 254.00 | 105.00 | 60.30 | 31.30 | 6.30 | <0.2 | 1.50 | 5.90 | <0.20 |
Pb | 5.40 | 4.60 | 3.20 | 6.80 | 7.00 | 1.80 | 10.70 | 6.70 | 5.50 | 9.10 | 16.40 | 0.90 |
Zn | 81.00 | 38.00 | 75.00 | 79.00 | 65.00 | 78.00 | 28.00 | 47.00 | 5.00 | <2.00 | 21.00 | 2.00 |
Stage | Sample | Co | Ni | Cu | Zn | As | Ag | Sb | Au | Pb | Bi | References |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 30-5_1 | 168.07 | 65.42 | 0.26 | 1.59 | 0.40 | 951.39 | 104.78 | 0.12 | 177,698.20 | 85,829.09 | This paper |
30-5_2 | 227.86 | 127.37 | 5.78 | 4.64 | 0.59 | 4.66 | 0.68 | 0.10 | 57.85 | 177.93 | This paper | |
30-7_2 | 0.01 | < | 28.04 | 51.69 | 0.76 | 0.05 | 0.37 | 0.10 | 1.17 | 0.15 | This paper | |
30-7_3 | 229.04 | 8.83 | 0.46 | 1.64 | < | 0.21 | < | < | 90.75 | 0.96 | This paper | |
30-7_4 | 233.77 | 28.88 | < | 1.36 | < | 1.32 | < | 0.02 | 112.85 | 7.90 | This paper | |
30-8_1 | 0.10 | 0.35 | < | 0.12 | < | 0.47 | < | 0.05 | 13.44 | 1.01 | This paper | |
30-10_1 | 1190.01 | 3760.94 | 1.09 | 3.20 | 0.36 | < | < | 0.02 | 0.19 | 0.83 | This paper | |
30-10_2 | 1227.76 | 4316.21 | < | 1.49 | < | 0.09 | < | < | 0.59 | 2.73 | This paper | |
30-10_3 | 1287.21 | 4625.49 | 0.36 | < | 0.00 | < | 0.17 | < | 0.48 | 2.17 | This paper | |
31-2_1 | 125.98 | 136.62 | 43.37 | 10.85 | 2.16 | 0.51 | 3.31 | 0.11 | 41.89 | 15.84 | This paper | |
31-2_2 | 353.62 | 910.16 | 2.95 | 6.50 | 12.09 | 0.09 | 1.39 | 0.01 | 8.70 | 3.59 | This paper | |
31-2_3 | 30.01 | 12.53 | 2.33 | 0.90 | 2.18 | 0.03 | 1.33 | < | 8.04 | 1.53 | This paper | |
31-2_4 | 28.79 | 113.82 | 9.65 | 5.92 | 8.83 | 0.35 | 2.07 | 0.06 | 41.32 | 11.10 | This paper | |
31-5_1 | 246.40 | 946.05 | 1.81 | 1.28 | 2.96 | 4.24 | < | 0.01 | 2.40 | 34.35 | This paper | |
31-5_2 | 0.54 | 1.66 | 6.55 | 4.74 | 29.53 | 1.92 | 5.91 | 0.02 | 22.35 | 0.07 | This paper | |
31-5_3 | 345.98 | 528.30 | < | 3.30 | < | < | < | < | 0.83 | 1.30 | This paper | |
31-6_1 | 80.46 | 2552.55 | 185.14 | 1083.31 | < | 19.35 | < | < | 197.17 | 32.36 | This paper | |
01-3_1 | 207.66 | 488.07 | 7.67 | 2.09 | 0.85 | 2.11 | 1.35 | 0.05 | 6.43 | 10.20 | This paper | |
01-3_2 | 205.57 | 283.48 | 2.03 | 3.87 | < | 1.47 | 0.21 | 0.02 | 1.43 | 3.17 | This paper | |
01-8_1 | 0.61 | 15.63 | 2.47 | 4.91 | 1.34 | 9.18 | 0.34 | 0.04 | 1008.80 | 1001.23 | This paper | |
01-8_2 | 0.18 | < | < | 0.25 | < | 0.01 | 0.32 | < | 0.36 | 0.07 | This paper | |
02-5_1 | 15.50 | 24.79 | 1.37 | 3.18 | < | 0.07 | 0.33 | 0.02 | 23.37 | 6.32 | This paper | |
02-7_1 | 0.03 | 3.71 | 1.34 | 3.16 | 6022.85 | < | < | 0.29 | 0.28 | 0.01 | This paper | |
02-7_2 | 9.09 | 1372.98 | 8.00 | 4.86 | 1078.58 | 1.89 | 3.99 | 1.28 | 292.09 | 12.02 | This paper | |
02-7_3 | 110.70 | 1487.17 | 100.60 | 2.60 | 787.30 | 1.18 | 0.07 | 0.06 | 83.01 | 14.92 | This paper | |
02-7_4 | 0.09 | 0.23 | 447.00 | 9.16 | 3170.68 | 2.78 | 1.60 | 1.89 | 143.90 | 7.36 | This paper | |
1-1-1 | 0.13 | < | 0.17 | < | 784.00 | < | < | < | 0.17 | 0.01 | [12] | |
1-1-2 | 45.10 | 6.69 | 0.46 | < | 868.00 | 4.92 | 0.25 | 0.02 | 68.70 | 2.08 | [12] | |
2-1-1 | 2.18 | 1.06 | 0.23 | < | 233.40 | 0.17 | < | < | 1.14 | 0.06 | [12] | |
2-1-2 | 0.09 | < | 0.99 | < | 240.90 | < | < | < | 0.20 | 0.01 | [12] | |
3-1-1 | 6.10 | 6.90 | 0.50 | < | 479.00 | 0.85 | < | < | 11.20 | 1.02 | [12] | |
3-1-2 | 61.40 | 11.70 | 1.57 | < | 164.60 | 1.76 | < | < | 22.30 | 2.54 | [12] | |
3-2-1 | 0.67 | 0.54 | 0.14 | 0.19 | 495.00 | 0.04 | < | < | 0.44 | 0.05 | [12] | |
3-2-2 | 4.93 | 1.11 | 0.12 | < | 20.30 | 3.23 | < | < | 26.80 | 1.40 | [12] | |
2 | 1-1-1 | 64.00 | 0.65 | 0.14 | < | < | < | < | < | 0.34 | 0.00 | [12] |
1-1-2 | 28.70 | 9.08 | 23.10 | 0.16 | < | 0.48 | < | < | 28.70 | 0.02 | [12] | |
2-1-1 | 0.86 | 0.07 | 1.35 | 0.18 | < | 0.12 | 0.08 | < | 17.30 | 0.02 | [12] | |
2-1-2 | 109.10 | 21.60 | 1.33 | 0.24 | < | 0.35 | < | < | 16.70 | 0.06 | [12] | |
2-1-3 | 240.00 | 39.30 | 4.15 | < | 0.10 | 0.60 | 0.20 | < | 30.60 | 0.04 | [12] | |
2-1-4 | 11.80 | 2.41 | 19.60 | 8.40 | 0.20 | 0.70 | 0.63 | 0.03 | 78.50 | 0.15 | [12] | |
3-1-1 | 6.20 | 0.27 | 0.24 | < | 1219.00 | 0.18 | 0.07 | 0.07 | 10.90 | 0.35 | [12] | |
3-2-1 | 129.00 | 0.53 | 0.41 | 0.19 | 4040.00 | 0.04 | 0.09 | 2.22 | 4.60 | 0.15 | [12] | |
3-3-1 | 4.58 | 0.12 | 0.06 | 0.18 | 564.00 | < | < | < | 0.12 | 0.01 | [12] | |
1-1-1 | 1.14 | 6.48 | 0.24 | < | 121.00 | 2.10 | 0.07 | < | 7.40 | 0.50 | [12] | |
1-1-2 | 0.93 | 3.73 | 0.36 | 0.09 | 131.00 | 4.29 | 0.38 | 0.03 | 12.20 | 2.25 | [12] | |
1-2-1 | 92.60 | 23.20 | 10.00 | < | 60.00 | 11.40 | 15.90 | 0.03 | 89.40 | 16.90 | [12] | |
1-3-1 | 23.50 | 8.63 | 0.52 | < | 841.00 | 0.45 | 0.49 | 0.02 | 4.29 | 0.55 | [12] | |
1-4-1 | 0.34 | < | 0.22 | 0.10 | 55.40 | 0.05 | 0.01 | < | 0.38 | 0.04 | [12] | |
2-1-2 | 1.01 | 4.17 | 21.00 | 290.00 | 540.00 | 137.00 | 4.60 | 0.34 | 1550.00 | 32.70 | [12] | |
2-1-3 | 7.35 | 4.30 | 1.22 | < | 5890.00 | 650.00 | 0.10 | 2.69 | 2.66 | 0.28 | [12] | |
2-2-2 | 6.70 | 3.26 | 0.30 | < | 620.00 | 11.30 | 0.07 | 0.07 | 2.80 | 0.24 | [12] | |
2-2-3 | 23.40 | 42.00 | 2.08 | 0.13 | 253.00 | 10.20 | 2.14 | 0.02 | 41.00 | 4.20 | [12] | |
2-3-2 | 26.30 | 1.74 | 5.40 | < | 230.00 | 48.30 | 1.62 | 0.04 | 125.00 | 7.90 | [12] | |
2-3-3 | 568.00 | 31.40 | 0.23 | < | 0.90 | 0.52 | 0.06 | < | 2.68 | 0.13 | [12] | |
2-4-2 | 84.40 | 0.81 | 0.15 | 0.13 | 2.50 | 0.18 | 0.06 | < | 1.10 | 0.08 | [12] | |
2-5-3 | 65.60 | 1.53 | 0.18 | < | 6.30 | 0.92 | 0.23 | < | 5.20 | 0.32 | [12] | |
2-5-4 | 68.40 | 8.05 | 0.12 | < | 19.80 | 4.20 | 0.19 | < | 19.60 | 0.76 | [12] | |
2-6-2 | 20.40 | 1.36 | 50.00 | 0.26 | 600.00 | 42.40 | 1.76 | 0.03 | 147.00 | 7.30 | [12] | |
3 | 2-8-2 | 1.48 | 1.59 | 123.00 | 0.55 | 0.20 | 8.90 | 0.40 | < | 21.50 | 1.66 | [12] |
1-1-1 | 14.49 | 0.37 | 13.20 | 0.34 | 10.60 | 2.58 | 2.39 | < | 46.20 | 0.00 | [12] | |
1-1-2 | 0.63 | 0.07 | 0.35 | 0.14 | 118.50 | 0.06 | 0.41 | < | 8.50 | 0.00 | [12] | |
2-1-1 | 2.77 | 1.75 | 10.70 | 0.84 | 1840.00 | 2.77 | 15.50 | 0.16 | 217.00 | 0.04 | [12] | |
2-1-2 | 0.80 | < | 1.94 | 0.17 | 77.00 | 0.80 | 6.79 | 0.02 | 34.50 | < | [12] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Wang, Y.; He, J.; Li, D.; Qiu, H.; Liu, F.; Lai, C. Geology, Pyrite Geochemistry and Metallogenic Mechanism of the Wulong Gold Deposit in Liaodong Peninsula, North China Craton. Minerals 2022, 12, 1551. https://doi.org/10.3390/min12121551
Zhang Z, Wang Y, He J, Li D, Qiu H, Liu F, Lai C. Geology, Pyrite Geochemistry and Metallogenic Mechanism of the Wulong Gold Deposit in Liaodong Peninsula, North China Craton. Minerals. 2022; 12(12):1551. https://doi.org/10.3390/min12121551
Chicago/Turabian StyleZhang, Zhichao, Yuwang Wang, Jiyu He, Dedong Li, Haicheng Qiu, Fuxing Liu, and Chunkit Lai. 2022. "Geology, Pyrite Geochemistry and Metallogenic Mechanism of the Wulong Gold Deposit in Liaodong Peninsula, North China Craton" Minerals 12, no. 12: 1551. https://doi.org/10.3390/min12121551
APA StyleZhang, Z., Wang, Y., He, J., Li, D., Qiu, H., Liu, F., & Lai, C. (2022). Geology, Pyrite Geochemistry and Metallogenic Mechanism of the Wulong Gold Deposit in Liaodong Peninsula, North China Craton. Minerals, 12(12), 1551. https://doi.org/10.3390/min12121551