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Abstract: The Wulong deposit is a large gold deposit in the Liaodong peninsula (North China Craton).
Silicic and pyrite alterations are well-developed in the deposit and closely related to mineralization.
The least altered and silicified microdiorite samples were selected for major and trace element
analyses to reveal the elemental migration/enrichment. Pyrites of stage 1 (Py1) were selected for
backscattered electron (BSE) imaging and LA-ICP-MS trace element analyses to reveal their possible
metallogenic link. Mass balance calculation showed that Al2O3, CaO, Fe2O3, K2O, SiO2, Ag, As,
Cu, and Pb were brought in, whereas MgO, Na2O, FeO, Cr, Zn, and Ni were leached out during
silicification. LA-ICP-MS trace element analyses show that Py1 has higher Au and Zn contents than
Py2 and Py3, Py2 has higher Au and Cu contents than Py1 and Py3, and Py3 has higher Pb, Cu, and
As contents than Py1 and Py2. During the process of silicification and pyritization, the depleted H+

concentration and HS− concentration in the ore-forming fluids led to instability of the Au(HS)2−

complexes and led to gold precipitation. The depleted sulfur and the reduced temperature during the
precipitated of bismuthinite also led to instability of the Au(HS)2− complexes and gold precipitation.

Keywords: mass balance; trace elements; mineralization mechanism; Wulong gold deposit; North
China Craton

1. Introduction

The Liaodong region (North China Craton) is a major gold province in NE Asia [1–8].
Gold deposits are mainly distributed in Qingchengzi, Wulong, and Maoling ore concentra-
tion areas, which formed during the Early Cretaceous. The Wulong ore concentration area
has a long history of mining and is an important Au metallogenic area [9]. The Wulong
deposit is a large gold deposit in the Wulong ore concentration area [10]. The Wulong
gold deposit is related to high-angle strike-slip faults [11]. More than 80 tons of gold
have been identified at an average grade of 5.35 g/t since the deposit was discovered in
1939 [12]. Alteration is well-developed in the mining area, including silicification, pyritiza-
tion, sericitization, chloritization, and carbonatization, among which the former two are
closely mineralization-related [10,12–14]. Pyrite is the main gold-bearing mineral in the
Wulong deposit. Bismuthinite is often associated with gold. Native gold is often found in
or around bismuthinite. The other gold deposits in the Liaodong region do not contain
bismuthinite [10,12–14].

During hydrothermal fluid–rock reactions, elemental migration/enrichment can change
the physicochemical conditions of hydrothermal fluids, which could destabilize gold-
bisulfide complexes and cause gold precipitation [9–21]. Thus, the study of elemental mi-
gration/enrichment can reveal ionic substitution reactions, ore-fluid compositions, as well as
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the mechanism of alteration and gold precipitation [22–30]. Silicification and pyritization are
important prospecting indicators at Wulong. Reference [14] suggested that the major elements
(SiO2, K2O, P2O5, and Fe2O3) are brought into the alteration system, and that contents of
certain trace elements (V, Y, Zr, Ni, Co, and Sr) increase and decrease in the altered granite and
diorite dike, respectively. Nonetheless, the elemental migration/enrichment and metallogenic
implications of the silicification at Wulong are yet to be clear. The genetic relationship between
silicification and gold precipitation is unclear as well.

Pyrite is a common component of ore-bearing mineral assemblages and can provide
valuable information regarding ore-forming processes. Thus, LA-ICP-MS trace element
analysis of pyrite can provide some information on the processes of gold deposition and
evolution [18,22]. Ref. [12] studied the pyrite generation and trace element distribution of
pyrite from different mineralization stages of the Wulong deposit, which suggested that
gold concentrations in Py2 are higher than those in Py1 and Py3, and gold mineralization
occurred primarily during the middle stage. High Co/Ni ratios of pyrite are consistent
with a hydrothermal origin. However, the gold precipitation mechanism and ore-forming
processes of the Wulong deposit are yet to be clear.

Based on detailed field macroscopic and thin-section microscopic observations, this
study explores the spatial–temporal relationship between alteration and mineralization. To
reveal the elemental migration/enrichment, alteration–mineralization relationships, and
gold precipitation mechanism, we conducted backscattered electron (BSE) imaging and
LA-ICP-MS trace element analysis on pyrite from stage 1 and mass balance calculation of
the silicification process.

2. Geological Setting

The Liaodong Peninsula is located in the eastern margin of the North China Craton
(Figure 1a), bounded by the Yalujiang fault in the east and the Tanlu fault in the west [2,31].
The Liaodong Peninsula has experienced multistage Paleoproterozoic tectonism and meta-
morphism [32–34]. The current tectonic framework of the Liaodong Peninsula was mainly
formed in the Mesozoic post-collision extensional setting [35,36]. The Liaodong Peninsula
was in a post-collisional extension tectonic setting during the Triassic period. The North
China Craton in the north was subducted by the Paleo-Pacific plate in the south. The
subduction between the Paleo-Pacific plate and North China Cratons led to the thicken-
ing of lithosphere during the Jurassic period. Large-scale delamination took place in the
Cretaceous period. In addition, the Wulong gold deposit was formed at this time [32].

The geology of the Wulong orefield is composed mainly of the Paleoproterozoic Liaohe
Group, which includes the Yujiapuzi, Langzishan, Dashiqiao, and Gaixian Formations, the
Sinan Diaoyutai Formation, and the Jurassic Xiaotonggou Formation (Figure 1b) [37,38].
The Yujiapuzi and Langzishan Formations are composed of marble, hornblende schist, and
biotite schist [12]. The Dashiqiao Formation contains marble, and minor mica schist, and
carbonaceous slate. The Gaixian Formation is composed of mica schist, leptynite, slate, and
phyllite [10,39]. The Diaoyutai Formation is composed of sandstone, quartzite, and breccia.
The Xiaotonggou Formation is composed of volcanic–volcaniclastic rocks [10].

The NE-trending Yalujiang fault, a first-order structure in the region, is characterized
by multistage activities [40,41]. In the orefield, a series of approximately NNE-trending
second-order faults (e.g., Zhengjiapu, Heigou, Jixingou, Yangjia, and Hongshi) are de-
veloped on the western side of the Yalujiang fault (Figure 1b) [12,42]. These faults are
kilometers long and several meters to 40 m wide, and dip to the NW with dip angles of
40◦~60◦ [43]. Massive fault gouges as well as lenses of microdiorite and auriferous quartz
veins are developed within the faults, recording various stages of deformation [42]. The
Jixinling fault is the closest to the Wulong deposit and is a major ore-bearing structure [12].

Intrusive rocks in the region are dominantly Yanshanian gneissic two-mica granite,
granodiorite, and porphyritic granite (Figure 1b). The gneissic two-mica granite was zircon
U–Pb dated to be 163 ± 7 Ma [36]. The granodiorite (at Sanguliu) and porphyritic granite
(at Dingqishan and Wulongbei) were zircon U–Pb dated to be 129.0 ± 2.9 Ma [38] and
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127 ± 5 Ma [12,44], respectively. The gneissic two-mica granite and diorite are important
ore-bearing wallrocks, and thus the Yanshanian magmatism is commonly regarded to be
genetically linked to the Wulong gold mineralization [45,46].
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3. Deposit Geology

The Wulong deposit is located in the northwestern Wulong orefield (Figure 1b) and
contains more than 80 metric tons of Au with an average grade of 5.35 g/t [47]. Exposed se-
quences at Wulong comprise the Paleoproterozoic Dashiqiao Formation marble, the Gaixian
Formation mica schist, leptynite, slate, and phyllite, as well as Quaternary sediments [10].

Faults (EW-, NE-/NNE-, NS-, and NW-trending) are common at the Wulong deposit
and can be divided into pre-ore, syn-ore, and post-ore faults [10,13]. Pre-ore faults include
EW-trending compressional and NS-trending extensional ones. EW-trending faults dip
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to the SE with dip angles of 50◦~70◦and are intruded by microdiorite and quartz veins.
NS-trending faults are largely vertical and intruded by granitic porphyry [10,12]. Syn-ore
faults include NNE-trending transpressional and NW-trending transtensional faults. NNE-
trending faults dip to the west with dip angles of 75◦~85◦, whilst NW-trending faults dip
to the SW with dip angles of 50◦~70◦. Both NNE- and NW-trending faults are secondary
structures of the Jixinling fault and are intruded by microdiorite and auriferous quartz
veins (thus ore-bearing) (Figure 2). Post-ore faults are NE-trending compressional dips to
NW with dip angles of 30◦~50◦ [10,12,32].
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Late Jurassic pre-ore gneissic two-mica granite and Early Cretaceous microdiorite,
granitic porphyry, and post-ore lamprophyre and dolerite dikes are widely developed
at the Wulong deposit [32]. The microdiorite dikes are important ore-host rocks and
their emplacement is controlled by NNE- and NW-trending faults, in which auriferous
quartz veins are developed. The NS-trending granitic porphyry and granodiorite dikes
crosscut the microdiorite and were thus formed after the latter. The post-ore NS-trending
lamprophyre and EW-trending dolerite dikes are also younger than the microdiorite and
are tens of meters long and 1 to 2 m wide [10,12,32]. Gneissic two-mica granite contains
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quartz, feldspar, muscovite, and biotite. The quartz and feldspar are lineated in the gneissic
two-mica granite. Microdiorite contains plagioclase, amphibole, biotite, and quartz. Gold-
bearing quartz veins often distribute along and in the edges of microdiorite dikes. Granitic
porphyry contains quartz, plagioclase, potassium feldspar, biotite, and amphibole. The
number of granite porphyry dikes is less than microdiorite dikes. Lamprophyre dikes and
dolerite dikes cut off orebodies.

There are over 380 auriferous quartz veins at the Wulong deposit. The orebodies strike
NNE, NW and are controlled by faults. Major orebodies include V1, V8-3, V11, V32, V75,
V80, V111, V120, and V163 [10]. The orebodies appear veined and have the characteristic of
balk reappear, compound of branch along the trend of the orebody extension. The orebody
V163 and the orebody V32 are the largest orebodies in the mining area. The orebody V163 is
auriferous quartz vein type, which strikes NW and dips SW at 70◦~80◦ and is about 430 m
long and 0.3 to 2.5 m wide. The Au grade ranges from 0.60 to 53.90 g/t (average 8.09 g/t).
The orebody V32 is auriferous quartz vein type, which strikes NNE and dips toward E
at 60◦~80◦ and is about 352 m long and 0.6 to 5.36 m wide. The Au grade ranges from
1.51 to 7.87 g/t (average 3.71 g/t). For both orebodies V163 and V32, the hanging wall and
footwall of the orebody comprise gneissic two-mica granite and microdiorite, respectively
(Figure 3) [12,32].
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Mineralization at Wulong can be divided into three stages [38,42,45]: (1) quartz-
pyrite, (2) quartz-polymetallic sulfide, and (3) quartz-calcite. Stage 1 and stage 2 are the
main ore stage. Stage 1 metallic mineral assemblage comprises native gold (Figure 4a),
pyrite (Figure 4a,b), bismuthinite (Figure 4c), galena, and sphalerite, whilst that of stage 2



Minerals 2022, 12, 1551 6 of 23

comprises pyrite, bismuthinite, galena, sphalerite, chalcopyrite, and pyrrhotite. Abundant
native gold is observed in this stage (Figure 4b). Pyrite, quartz, calcite, sericite, and chlorite
are formed at stage 3 [10,12,13]. Pyrite is the main gold-bearing mineral. Pyrite of stage 1
(Py1) occurs as subhedral grains and ranges from tens to thousands of µm (Figure 4d,e). The
content of pyrite in ore ranges from 1% to 10%. Pyrite in ore often shows stellate distributed,
disseminated, veined, and occurrs with bismuthinite, galena, and sphalerite. Micron-size
native gold inclusions are present in Py1. Pyrite of stage 2 (Py2) occurs as subhedral
grains and ranges from tens to thousands of µm (Figure 4f,g). The content of pyrite in ore
ranges from 1% to 5%. Pyrite in ore often shows stellate distributed, disseminated, and
occurring with galena, sphalerite, and chalcopyrite. Py2 is formed in the middle-stage
veins and most Py2 is surrounded by quartz; moreover, some are overprinted by late-stage
calcite veins. Micron-size native gold inclusions are present in Py2. Pyrite of stage 3
(Py3) occurs as subhedral grains and ranges from tens to thousands of µm (Figure 4h,i).
The content of pyrite in ore ranges from 0.1% to 1%. Pyrite in ore often shows stellate
distributed, disseminated, and occurring with calcite, sericite, and chlorite. Py3 is formed
in the quartz-calcite veins.
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Figure 4. Photomicrographs showing the textural characteristics of pyrite and its relationships
with native gold and other sulfides. (a) The textural characteristics of native gold and Py2; (b) The
textural characteristics of native gold and Py2; (c) The textural characteristics of bismuthinite; (d) The
textural characteristics of Py1; (e) The textural characteristics of Py1; (f) The textural characteristics
of Py2; (g) The textural characteristics of Py2 and pyrrhotine; (h) The textural characteristics of Py3;
(i) The textural characteristics of Py3, quartz, and calcite. Abbreviations: Py—pyrite; Au—gold;
Bis—bismuthinite; Po—pyrrhotite; Qtz—quartz; Cal—calcite.

Hydrothermal alteration is well-developed at Wulong, including mainly silicic, pyrite,
sericite, chlorite, and carbonate alterations, in which the former two are closely ore-
related [10,12,13]. Silicification and pyritization alteration are spatially and temporally
associated with high-grade gold mineralization and occur outside of the orebody. Silicifica-
tion is characterized by abundant quartz veins associated with pyrite and sericite alterations.
The intensity of silicification gradually decreases outward from the orebody (Figure 5).
Pyrite is the main gold-bearing mineral, and pyritization also fades away from the orebody
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like silicification (Figure 5). Pyritization near the orebody is characterized by abundant
quartz associated with sericite, muscovite, and pyrite. Sericitization occurs around the
orebody and outside of the silicification zone and occurs with quartz and pyrite to form
pyritic-phyllic alterations. Chloritization is orebody distal and is not ore-related [10,12,13].
Chloritization occurs in the outermost zone and is typically dominated by assemblages of
chlorite, epidote, quartz, sericite, and calcite. Carbonatization is widespread with euhedral
to subhedral carbonate minerals occurring in veins and veinlets.
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Figure 5. Spatial alteration features in a typical field profile of underground tunnels at −756 m level.
(a) The boundary between gneissic two-mica granite and dolerite; (b) The intensity of silicification is
weak in diorite; (c) Pyrite in ore; (d) The intensity of silicification is strong in diorite. Abbreviations:
Py—pyrite; Q—quartz.

4. Sampling and Analytical Methods

In this study, the least altered and silicified microdiorite samples were selected for
whole-rock major and trace element analyses. Moreover, pyrite of stage 1 (Py1) was selected
for backscattered electron (BSE) imaging and LA-ICP-MS trace element analyses. Due to
the restriction of mining conditions, samples of Py2 and Py3 were not collected in this study.
The trace element dates of Py2 and Py3 were collected from [12]. The least altered (n = 8)
and silicified (n = 4) microdiorite samples were collected from underground tunnels at the
−756 m level (Figure 5). Pyrite samples (n = 26) from the silicified microdiorite samples
were also collected from underground tunnels at the −756 m level.
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Major and trace element concentrations were analyzed at ALS Minerals (Guangzhou).
Major element contents were measured with an XRF-1500 X-ray fluorescence spectrometer
using fused glass disks, with analytical precision better than 1%. Trace element concentra-
tions were analyzed by solution ICP-MS after acid digestion of the samples, with precision
better than 5%.

The petrological features of sandstones and mineralogical characteristics of pyrite mi-
cromorphologies were characterized by secondary electron (SE) and backscattered electron
(BSE) imaging using a Zeiss ULTRA PLUS scanning electron microscope (SEM) equipped
with Oxford IE350 X-MAX20 electric refrigeration energy spectrometer at the National
Research Center for Geoanalysis, China Geological Survey. Operating conditions for the
SEM were 15 kV accelerating voltage and the maximum magnification was 1,000,000 times.
A high energy electron beam was generated through a scanning electron microscope fila-
ment and applied to the surface of the sample. A total of 99% of the energy of the incident
electron beam is converted into thermal energy dissipation, and about 1% of the electron
energy is excited from the sample, such as secondary electrons, backscattered electrons,
characteristic X-rays, Auger electrons, transmission electrons, etc., which are received by the
probe to obtain the morphology, structure, and composition of the sample. The secondary
electron emission varies with the surface morphology of the sample, and the backscattered
electron emission varies with the atomic number of elements in the sample. Therefore, the
secondary electron probe (SE) can reflect the surface structure and morphology information
of the sample, and the backscattered electron probe (BSE) can reflect the composition infor-
mation of the sample. When the SEM is equipped with an energy-dispersion spectrometer
or spectrometer, X-ray signals can be used to obtain qualitative or quantitative chemical
composition analysis data of samples.

Trace element analysis of pyrite was conducted with a New Wave UP 213 Nd: YAG
Laser Ablation (LA) system connected to a Thermo Element II ICP-MS at the MRL Key
Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chi-
nese Academy of Geological Sciences (CAGS Beijing). Detailed operating conditions for the
LA-ICP-MS instrument and data reduction were as described by [48,49]. Helium was used
as a carrier gas, while argon was used as a makeup gas and mixed with the helium via a
T-connector before entering the ICP. By adjusting the helium and argon flow, the optimal
signal strength and stability of NIST SRM 612 were obtained to optimize the experimental
conditions and control the oxidation yield to <0.3%. Each analysis was performed with
40 µm laser spot size and 10 Hz frequency and included a 20 s gas-blank background
acquisition followed by 40 s sample data acquisition. Elemental contents of sulfides were
calibrated against multiple reference materials (NIST SRM 610, MASS-1) using 57Fe as the
internal standard [49–53].

5. Results
5.1. Mass Balance Calculation

Al and Ti are generally considered immobile in hydrothermal alteration, yet Al can
also be mobilized during high-temperature alteration/metamorphism [54,55]. In particular,
a small amount of Al precipitates out during the sericitization process [56]. The sericiti-
zation of the Wulong deposit showed that Al is not suitable to be used as an immobile
component to study the migration and enrichment of elements during hydrothermal al-
teration. So, TiO2 is selected as the immobile component in this study. The migration and
enrichment of elements during silicic alteration at Wulong can be expressed in the formula
∆Ci = Ci

A/k-Ci
o, with Ci

o representing the content of the ith element in the unaltered
rock. Ci

A denotes the content of the ith element in the altered rock. K = Mo/MA = CA/Co,
with Co and CA representing the mass of inactive elements in the unaltered and altered
rock, respectively. Mo and MA denote the mass of the unaltered and altered rock, respec-
tively [16,54,55,57–59].
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Mass balance calculation results show that during silicification, Al2O3, CaO, Fe2O3,
K2O, SiO2, Ag, As, Cu, and Pb were brought into the system, whereas MgO, Na2O, FeO,
Cr, Zn, and Ni were leached away (Table 1; Figure 6).

5.2. Geochemical Trends of Pyrite

Backscattered electron (BSE) images shows that Py1 occurs as euhedral grains, ranging
in size from 50 to 500 µm, and has voids in the core (Figure 7). There is no zonal structure
in Py1 (Figure 7).

The trace element compositions of Py1 were obtained by LAICP-MS analyses, includ-
ing 25 spots on Py1. However, the previously reported data of the pyrite from [12] were
also cited and discussed. All the analytical spots aim at pyrite without visible mineral
inclusions, but the results suggest that some spots (Py1 and Py2, especially) encountered
micro-inclusions even though they were not visible under microscope. These spots show
irregular peaks such as Co, Ni, Cu, Zn, As, Ag, Sb, Au, Pb, and Bi. In some cases, Au and
Ag peaks coincide, suggesting a gold mineral inclusion, and in other cases, Bi-Pb-Ag-Sb
peaks overlap, suggesting a sulfosalt inclusion. Some grain boundaries show obvious
overlapping signals of multiple elements, indicating that the laser may have encountered
multiple minerals. The results of pyrite that are shown to be contaminated by inclusions
have been excluded for subsequent studies, and the full results are listed in Table 2.

The gold content in the three stages of pyrite also varied greatly, ranging from
0.01~0.16 ppm. Py1 had the largest amount of invisible gold content in the deposit, ranging
from 0.01 to 0.12 ppm. The gold content ranged from 0.02 to 0.07 ppm in Py2 and was
slightly lower than Py1. The gold content of Py3 was similar with Py1 and Py2 and ranged
from 0.02 to 0.16 ppm (Table 2). The gold content of three spots on Py3 were lower than
their respective detection limits (Figure 8a). Silver contents of Py1 and Py3 were similar.
Silver contents of Py2 were a little higher than those of Py1 and Py3 (Figure 8b). Lead
contents were higher in Py3 and slightly lower in Py2 and Py1 (Figure 8c). Zinc contents
were higher in Py1 but were significantly lower in Py2 and Py3 (Figure 8d). Copper and
arsenic contents slightly increased from Py1 to Py3 (Figure 8e,f). Copper contents of Py1,
Py2, and Py3 were 0.12~9.65 ppm, 0.06~10.00 ppm, and 0.35~13.20 ppm, respectively
(Table 2). Arsenic contents of Py1, Py2, and Py3 were 0.36~495.00 ppm, 0.10 ~1219.00 ppm,
and 0.20~1840.00 ppm, respectively (Table 2). The cobalt, nickel, and bismuth contents
slightly decreased from Py1 to Py3 (Figure 8g–i). Stibium contents of Py1, Py2, and Py3
were 0.07~5.91 ppm, 0.01~4.60 ppm, and 0.40~6.79 ppm, respectively (Table 2).
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Table 1. Major and trace elements of the least altered and silicified microdiorite samples from the Wulong gold deposit.

Sample W81030-3 W81030-9 W81030-15 W81030-16 W81030-19 W81031-2 W81031-4 W81101-10 W81030-5 W81031-6 W81101-5 W81101-6

Rock Fresh Rock Fresh Rock Fresh Rock Fresh Rock Fresh Rock Fresh Rock Fresh Rock Fresh Rock Silicified
Rock

Silicified
Rock

Silicified
Rock

Silicified
Rock

Al2O3 16.06 16.81 11.67 12.15 15.85 15.76 10.70 16.35 5.87 0.06 13.78 0.31
BaO 0.08 0.09 0.02 0.05 0.06 0.05 <0.01 0.13 0.09 <0.01 0.06 <0.01
CaO 6.61 4.60 7.47 6.02 4.08 5.32 0.36 4.26 1.00 0.06 4.07 0.20

Fe2O3 6.91 5.56 7.96 6.35 7.22 7.82 5.74 4.87 0.28 0.43 5.99 0.05
K2O 2.04 3.00 3.44 4.61 2.14 3.20 2.38 4.95 4.06 <0.01 4.71 0.13
MgO 6.21 3.33 9.47 8.26 7.05 7.06 3.53 2.03 0.05 <0.01 2.20 0.02
MnO 0.11 0.05 0.14 0.12 0.06 0.08 0.03 0.07 0.02 <0.01 0.06 <0.01
Na2O 3.35 3.29 0.09 1.28 2.76 2.58 0.15 1.89 0.49 0.01 0.63 0.01
P2O5 0.16 0.21 0.07 0.27 0.14 0.16 0.10 0.18 0.01 <0.01 0.16 <0.01
SiO2 56.70 59.43 44.69 49.46 54.98 54.58 72.66 57.64 86.78 98.15 59.95 98.58
LOI 1.51 2.58 14.17 10.04 5.11 2.14 3.52 6.24 1.08 0.39 6.69 0.45
FeO 5.51 4.24 6.01 4.79 5.59 6.27 3.51 3.39 0.20 0.35 2.81 0.05
Ag 0.01 0.03 0.09 0.22 0.40 0.01 1.79 0.45 0.01 2.35 10.15 0.13
As 2.90 4.00 19.00 48.10 14.00 2.60 35.30 9.20 3.00 4.80 122.50 3.20
Co 24.70 14.70 33.10 32.70 30.60 22.80 8.00 10.10 0.20 0.80 10.90 0.10
Cr 297.00 27.00 642.00 541.00 492.00 399.00 214.00 23.00 <1.00 1.00 21.00 1.00
Cs 2.18 17.00 6.28 4.74 7.07 12.00 3.42 8.34 0.89 0.04 6.28 0.12
Cu 22.50 21.20 16.30 22.50 13.70 10.70 19.80 27.60 6.70 3.10 112.50 1.80
Ni 54.20 10.20 131.00 254.00 105.00 60.30 31.30 6.30 <0.2 1.50 5.90 <0.20
Pb 5.40 4.60 3.20 6.80 7.00 1.80 10.70 6.70 5.50 9.10 16.40 0.90
Zn 81.00 38.00 75.00 79.00 65.00 78.00 28.00 47.00 5.00 <2.00 21.00 2.00

Al2O3, BaO, CaO, Fe2O3, K2O, MgO, MnO, Na2O, P2O5, SiO2, LOI, and FeO are in wt.%; The other elements are in ppm.

Table 2. LA-ICP-MS spot analysis data of Py1 to Py3.

Stage Sample Co Ni Cu Zn As Ag Sb Au Pb Bi References

1

30-5_1 168.07 65.42 0.26 1.59 0.40 951.39 104.78 0.12 177,698.20 85,829.09 This paper
30-5_2 227.86 127.37 5.78 4.64 0.59 4.66 0.68 0.10 57.85 177.93 This paper
30-7_2 0.01 < 28.04 51.69 0.76 0.05 0.37 0.10 1.17 0.15 This paper
30-7_3 229.04 8.83 0.46 1.64 < 0.21 < < 90.75 0.96 This paper
30-7_4 233.77 28.88 < 1.36 < 1.32 < 0.02 112.85 7.90 This paper
30-8_1 0.10 0.35 < 0.12 < 0.47 < 0.05 13.44 1.01 This paper
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Table 2. Cont.

Stage Sample Co Ni Cu Zn As Ag Sb Au Pb Bi References

30-10_1 1190.01 3760.94 1.09 3.20 0.36 < < 0.02 0.19 0.83 This paper
30-10_2 1227.76 4316.21 < 1.49 < 0.09 < < 0.59 2.73 This paper
30-10_3 1287.21 4625.49 0.36 < 0.00 < 0.17 < 0.48 2.17 This paper
31-2_1 125.98 136.62 43.37 10.85 2.16 0.51 3.31 0.11 41.89 15.84 This paper
31-2_2 353.62 910.16 2.95 6.50 12.09 0.09 1.39 0.01 8.70 3.59 This paper
31-2_3 30.01 12.53 2.33 0.90 2.18 0.03 1.33 < 8.04 1.53 This paper
31-2_4 28.79 113.82 9.65 5.92 8.83 0.35 2.07 0.06 41.32 11.10 This paper
31-5_1 246.40 946.05 1.81 1.28 2.96 4.24 < 0.01 2.40 34.35 This paper
31-5_2 0.54 1.66 6.55 4.74 29.53 1.92 5.91 0.02 22.35 0.07 This paper
31-5_3 345.98 528.30 < 3.30 < < < < 0.83 1.30 This paper
31-6_1 80.46 2552.55 185.14 1083.31 < 19.35 < < 197.17 32.36 This paper
01-3_1 207.66 488.07 7.67 2.09 0.85 2.11 1.35 0.05 6.43 10.20 This paper
01-3_2 205.57 283.48 2.03 3.87 < 1.47 0.21 0.02 1.43 3.17 This paper
01-8_1 0.61 15.63 2.47 4.91 1.34 9.18 0.34 0.04 1008.80 1001.23 This paper
01-8_2 0.18 < < 0.25 < 0.01 0.32 < 0.36 0.07 This paper
02-5_1 15.50 24.79 1.37 3.18 < 0.07 0.33 0.02 23.37 6.32 This paper
02-7_1 0.03 3.71 1.34 3.16 6022.85 < < 0.29 0.28 0.01 This paper
02-7_2 9.09 1372.98 8.00 4.86 1078.58 1.89 3.99 1.28 292.09 12.02 This paper
02-7_3 110.70 1487.17 100.60 2.60 787.30 1.18 0.07 0.06 83.01 14.92 This paper
02-7_4 0.09 0.23 447.00 9.16 3170.68 2.78 1.60 1.89 143.90 7.36 This paper
1-1-1 0.13 < 0.17 < 784.00 < < < 0.17 0.01 [12]
1-1-2 45.10 6.69 0.46 < 868.00 4.92 0.25 0.02 68.70 2.08 [12]
2-1-1 2.18 1.06 0.23 < 233.40 0.17 < < 1.14 0.06 [12]
2-1-2 0.09 < 0.99 < 240.90 < < < 0.20 0.01 [12]
3-1-1 6.10 6.90 0.50 < 479.00 0.85 < < 11.20 1.02 [12]
3-1-2 61.40 11.70 1.57 < 164.60 1.76 < < 22.30 2.54 [12]
3-2-1 0.67 0.54 0.14 0.19 495.00 0.04 < < 0.44 0.05 [12]
3-2-2 4.93 1.11 0.12 < 20.30 3.23 < < 26.80 1.40 [12]

2

1-1-1 64.00 0.65 0.14 < < < < < 0.34 0.00 [12]
1-1-2 28.70 9.08 23.10 0.16 < 0.48 < < 28.70 0.02 [12]
2-1-1 0.86 0.07 1.35 0.18 < 0.12 0.08 < 17.30 0.02 [12]
2-1-2 109.10 21.60 1.33 0.24 < 0.35 < < 16.70 0.06 [12]
2-1-3 240.00 39.30 4.15 < 0.10 0.60 0.20 < 30.60 0.04 [12]
2-1-4 11.80 2.41 19.60 8.40 0.20 0.70 0.63 0.03 78.50 0.15 [12]
3-1-1 6.20 0.27 0.24 < 1219.00 0.18 0.07 0.07 10.90 0.35 [12]
3-2-1 129.00 0.53 0.41 0.19 4040.00 0.04 0.09 2.22 4.60 0.15 [12]
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Table 2. Cont.

Stage Sample Co Ni Cu Zn As Ag Sb Au Pb Bi References

3-3-1 4.58 0.12 0.06 0.18 564.00 < < < 0.12 0.01 [12]
1-1-1 1.14 6.48 0.24 < 121.00 2.10 0.07 < 7.40 0.50 [12]
1-1-2 0.93 3.73 0.36 0.09 131.00 4.29 0.38 0.03 12.20 2.25 [12]
1-2-1 92.60 23.20 10.00 < 60.00 11.40 15.90 0.03 89.40 16.90 [12]
1-3-1 23.50 8.63 0.52 < 841.00 0.45 0.49 0.02 4.29 0.55 [12]
1-4-1 0.34 < 0.22 0.10 55.40 0.05 0.01 < 0.38 0.04 [12]
2-1-2 1.01 4.17 21.00 290.00 540.00 137.00 4.60 0.34 1550.00 32.70 [12]
2-1-3 7.35 4.30 1.22 < 5890.00 650.00 0.10 2.69 2.66 0.28 [12]
2-2-2 6.70 3.26 0.30 < 620.00 11.30 0.07 0.07 2.80 0.24 [12]
2-2-3 23.40 42.00 2.08 0.13 253.00 10.20 2.14 0.02 41.00 4.20 [12]
2-3-2 26.30 1.74 5.40 < 230.00 48.30 1.62 0.04 125.00 7.90 [12]
2-3-3 568.00 31.40 0.23 < 0.90 0.52 0.06 < 2.68 0.13 [12]
2-4-2 84.40 0.81 0.15 0.13 2.50 0.18 0.06 < 1.10 0.08 [12]
2-5-3 65.60 1.53 0.18 < 6.30 0.92 0.23 < 5.20 0.32 [12]
2-5-4 68.40 8.05 0.12 < 19.80 4.20 0.19 < 19.60 0.76 [12]
2-6-2 20.40 1.36 50.00 0.26 600.00 42.40 1.76 0.03 147.00 7.30 [12]

3

2-8-2 1.48 1.59 123.00 0.55 0.20 8.90 0.40 < 21.50 1.66 [12]
1-1-1 14.49 0.37 13.20 0.34 10.60 2.58 2.39 < 46.20 0.00 [12]
1-1-2 0.63 0.07 0.35 0.14 118.50 0.06 0.41 < 8.50 0.00 [12]
2-1-1 2.77 1.75 10.70 0.84 1840.00 2.77 15.50 0.16 217.00 0.04 [12]
2-1-2 0.80 < 1.94 0.17 77.00 0.80 6.79 0.02 34.50 < [12]

All units are in parts per million (ppm); < = below the detection limit.
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6. Discussion
6.1. Migration and Enrichment of Elements

A substantial amount of SiO2 was likely brought into the hydrothermal system during
silicic alteration, and the strength of silicification near the mineralized zone was stronger
than that in the area away from the mineralized zone. This is related to the increase of the
strength of silicification throughout the hydrothermal alteration process. This also shows
that silicification is ore-related at Wulong. K2O was brought into the system, whereas Na2O
was leached away. K2O and Na2O repel each other and are incompatible. As the K+ and
Na+ components either increased, the other decreased [60]. CaO was brought into the
system, which is related to the emergence of carbonate. Fe2O3 was brought into the system,
which shows that the precipitation of pyrite and the hematite occurs on the surface of
feldspar and altered minerals in the form of microparticles. FeO was leached away, which
shows that the mineralization alteration process is accompanied by the change of oxygen
fugacity of the system, and Fe2O3 is more likely to be converted from FeO in the alteration
system [60–62]. At the same time, iron-rich minerals such as pyrite and chalcopyrite are
commonly found in the Wulong deposit. This indicates that the migration of Fe2+ and Fe3+

may be affected by various occurring forms during hydrothermal alteration [63]. There are
generally two types of As-bearing pyrite. The first type is Fe (S, As)2, which is formed by
As1− instead of S [64,65]. The second type is (Fe, As) S2, which is formed by As3+ instead
of Fe [66]. It is generally believed that the substitution of As into the pyrite lattice structure
would increase the gold carrying capacity in the gold-bisulfide complex [67,68]. During
silicification at Wulong, a large number of As elements migrated in and FeO migrated out.
This suggests that chemical formula of pyrite is (Fe, As) S2, which is formed by As3+ instead
of Fe at Wulong [66]. The precipitation of chalcopyrite and galena during silicic alteration
resulted that Cu and Pb were brought into the hydrothermal system. During silicification,
Ag also was brought into the system because of the positive correlation between Au and
Ag in gold deposits [69–71].

The symbiosis of silicification, sericite, and pyrite can be seen in the study area, indi-
cating that acidic ore-bearing fluids with high sulfur content are generally developed [10].
During silicification, K2O was brought into the system, whereas Na2O was leached away,
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and sericite alteration occurred at the same time. The fact that K2O was brought into the
system and Na2O was leached away indicates that the silicification is caused by plagio-
clase alteration rather than potassium feldspar alteration [10]. The process of silicification
followed the reaction (1):

3 NaAlSi3O8 + 2 H+ + K+ = KAl2 [AlSi3O10] (OH)2 + 6 SiO2 + 3 Na+ (1)

During the process of silicification, ore-bearing fluid migrates upward. Temperature
and pressure gradually decrease, and oxygen fugacity increases during the process [10].
When the oxygen fugacity increases, the ore-bearing fluid is weakly acidic, and the condi-
tions of weak acidity, the decrease of temperature and pressure, and the increase of oxygen
fugacity promote the precipitation of SiO2, resulting in the silicification [10,12,57]. In the
process of silicification, the content of H+ reduces, and the pH value of the fluid increases.
The ore-bearing fluid is weakly alkaline, which can promote the precipitation of pyrite. The
process followed the reaction (2):

ore-bearing fluid + Fe2+ → FeS2 + 2 H+ (2)

During the precipitation of pyrite, the content of HS− is reduced in the ore-bearing
fluid [10,12,57]. Au is mainly transported in the form of Au(HS)2− at the Wulong deposit,
which is discussed in detail below. The depleted HS− concentration in the ore-forming
fluids enhanced the precipitation of Au, resulting in gold precipitation.

6.2. Trace Element Distribution and Pyrite Genesis

Py1 is relatively rich in Au and Zn contents and lacking in Pb, Cu, and As contents.
Py2 is relatively rich in Au and Cu contents and lacking in Pb and Zn contents. Py3 is
relatively rich in Pb, Cu, and As contents and lacking in Au, Zn, Co, Ni, and Bi contents.
The Ag contents are similar in the different generations of pyrite. There is no correlation
between Au vs. As, Au vs. Cu, Au vs. Ag, or Au vs. Sb contents in the different generations
of pyrite. Positive correlations are found in Pb vs. Sb, Sb vs. Ag, Ag vs. Pb, Pb vs. Bi, and
Co vs. Ni (Figure 9).

The change in trace element composition of the later hydrothermal pyrites, compared
to the diagenetic pyrites, is probably due to a number of factors, including the ability of the
trace elements to substitute for Fe2+ and S2– in the pyrite structure and the metal availability
and solubility in the hydrothermal fluid [72–74]. Pb, Zn, Cu, Ag, Ni, and Mo are commonly
present at much lower levels in metamorphic and hydrothermal pyrite compared to early
diagenetic pyrite. This suggests that the recrystallization of diagenetic pyrite to produce
euhedral metamorphic pyrite is accompanied by a release of certain trace elements in the
pyrite structure [35,75–79]. At the Wulong deposit, invisible gold was released by this
process to form native gold and gold telluride inclusions in later pyrite generations [75].
Our data suggest that the trace elements (Ni, Co, As, and Se) which have the ability to form
limited solid-solution series with pyrite are not released during pyrite recrystallization
and tend to concentrate in most euhedral metamorphic and hydrothermal pyrites, forming
discrete growth zones in the pyrite, possibly related to metal diffusion or fluid flow during
recrystallization [76–80]. This is not the case for most other trace elements (e.g., Pb, Cu, Zn,
Ag, Te, and Au), due possibly to their larger ionic size and/or different charge, which leads
them to form discrete mineral inclusions (galena, chalcopyrite, sphalerite, tellurides, and
free gold) within the later metamorphic and/or hydrothermal pyrite [76,81].
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In the Wulong gold deposit, the migration and enrichment of ore-forming elements in
the fluid can be reflected by the pyrite structure and geochemical characteristics of some
trace elements. The differences in the distribution of “invisible” chalcophile minerals in
pyrite reflect the changes in the ability of elements to differentiate in fluids. Arsenic is
also one of the important trace elements in pyrite, and its content is considered to be an
important indicator of gold enrichment. Simon et al. (1999) have already proved that
the occurrence state of arsenic is As− in gold-bearing arsenic pyrite by X-ray absorption
near-edge structure analyses [64]. The previous research also suggested that gold is present
as sub-micrometer size inclusion (Au0) and lattice gold in arsenic pyrite (Au+). Cook and
Chryssouilis (1990) found that the concentrations of arsenic and gold in pyrite are positively
correlated [82]. This shows that the development of arsenic in pyrite is more conducive to
the enrichment of gold, and gold and arsenic exist stably by replacing iron and sulfur in
the crystal lattice of pyrite, respectively [81].

According to the microscopic observations, a large amount of native gold and electrum
are developed in the Wulong gold deposit (Figure 4a,b), which was also reported in
a previous study [83]. The presence of invisible gold is also indicated by the mineral
chemistry of pyrite presented in this study. The micron-size native gold occurs in granular
form in quartz fissures of Py2 (Figure 4a,b). Native gold may have been precipitated directly
from hydrothermal fluid. The high invisible Au content and micron-size native gold in
Py2 reveal that the hydrothermal fluid of the middle stage may have been saturated with
respect to Au.

Bismuth contents of Py1 and Py2 were higher than that in Py3 of the Wulong deposit.
This is consistent with the result of microscopic observation that the bismuthinite only
developed in the stage 1 and stage 2 of mineralization. Bismuthinite is often associated
with gold. Native gold is often found in or around bismuthinite. The molten states of
native bismuth can absorb gold in the fluid and form the combination of natural gold and
natural bismuth [84]. Bismuth element plays an important role in gold precipitation of the
Wulong gold deposit.
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The highest lattice-gold content in pyrite (i.e., solid solution) can be expressed in
CAu = 0.02 × CAs + 4 × 10−5. The Au/As ratios above the “gold solubility line” indicate
that gold likely occurs as nanoparticles, and those below the line indicate that gold likely
occurs as a solid solution (Au+) [76,85,86]. The Au–As diagram shows that most pyrite
data points fall below the Au solubility line (Figure 9a), indicating that most of invisible
gold occurs as solid solution (Au+) [72,86].

The Co/Ni ratio is commonly used to indicate the pyrite genesis in gold deposits [87,88].
Volcanogenic pyrite commonly has Co/Ni ratio above 1 (up to 10) [88,89]. Diagenetic pyrite
commonly has Co/Ni ratio below 1 (often around 0.63) [89]. Hydrothermal pyrite commonly
has a highly variable Co/Ni ratio (mostly above +1) [87,88], which is observed in all Py1 to
Py3 from the Wulong gold deposit.

6.3. Ore-Forming Process

Fluid inclusions studies of stage 1 quartz indicated that inclusions were of medium-
high homogenization temperatures (283~395 ◦C), and varying salinities (0.70~8.95 wt.%
NaCleqv), trapping pressures (184~380 MPa), and CO2 densities (0.24~0.81 g/cm3), and be-
longed to a H2O-CO2-NaCl fluid system. The ore-forming fluids of stage 2 were of medium
temperatures (219~328 ◦C) and varying salinities (0.18~7.86 wt.% NaCleqv), pressures
(135~307 MPa), and CO2 densities (0.18~0.79 g/cm3), and belonged to a H2O-CO2-NaCl ±
CH4 ± N2 fluid system. Stage 3 fluids were of low temperatures (144~255 ◦C) and varying
salinities (0.18~4.96 wt.% NaCleqv) and belonged to a H2O-NaCl fluid system [12,90]. Stage
3 fluids also contain CO2, H2S, and CH4. Fluid immiscibility of the H2O-CO2 fluids was
recorded by the coexistence of different fluid inclusion assemblages [12].

When the ore-forming fluid is at 250~350 ◦C, Au is mainly transported in the form
of Au(HS)2−. If the ore-fluid is H2S poor (<10−4 mol/L), Cl−-rich (>0.5 mol/L), and low
pH (<4.5), Au is mainly transported in the form of AuCl2– [91]. The Wulong ore-fluid
was low-medium temperatures (144~395 ◦C) and low-medium salinities (0.18~8.95 wt.%
NaCleqv). Moreover, the presence of sericite represents weakly acidic fluid conditions [25].
This suggests that Au was mainly transported in the form of Au(HS)2− at Wulong.

Gold precipitation can occur in the following four ways: (1) Hydrothermal fluid–
wallrock reactions increase the fluid oxygen fugacity; (2) Fluid boiling that leads to fluid
H2S degassing, which destabilizes the Au(HS)2− complexes; (3) Meteoric water incursion
that dilutes the fluid sulfur content; (4) Sulfur leached from pre-existing sulfides into the ore
fluids, which promotes chemisorption and thus gold precipitation [92–96]. At Wulong, the
ascending ore-forming fluids may have reacted with the microdiorite, causing silicification
and pyritization. There were elemental migration/enrichment and fluid immiscibility
during the alteration. Temperature and pressure of the ore-forming fluids dropped from
stage 1 to stage 3, which would result in fluid immiscibility and degassing (CO2 and
H2S) [12]. The decrease of reducing volatiles in the fluid would have increased the oxygen
fugacity [92,97], further promoting gold precipitation at Wulong.

Silicification and pyritization are ore-related and widely developed at Wulong. The
water–rock reaction of silicification would have changed the fluid physicochemical condi-
tions (the depleted H+ concentration and HS− concentration in the ore-forming fluids), and
led to the precipitation of pyrite, gold, bismuthinite, galena, sphalerite, and chalcopyrite.

Bismuth migrates mainly in the form of bismuth complex (Bi2S2(OH)2
0, HBi2S4

−)
in sulfur-rich fluids, but it migrates mainly in the form of bismuth complex (BiCl2−) in
chlorine-rich fluids [84]. The characteristics of the fluid and the composition of metal
sulfide indicate that the ore-forming fluid is rich in sulfur. So, bismuth migrates mainly in
the form of bismuth complex (Bi2S2(OH)2

0, HBi2S4
−) at Wulong. When the temperature

decreases and sulfur is depleted in the hydrothermal fluid, desulfurization occurs and the
bismuth complex releases natural bismuth. The molten states of native bismuth can absorb
gold in the fluid and form the combination of natural gold and natural bismuth [84].

At stage 1, pyrite is rich in Au and Zn contents and lacking in Pb, Cu, and As contents.
The ore-forming fluid was likely CO2-rich (belonging to the H2O-CO2-NaCl system) and
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reacted with the microdiorite to form silicification. At this stage, Au was likely transported
as sulfide complexes (such as Au(HS)2− complex in a neutral pH region) [97–102]. The
precipitation of Au followed the reaction (3) and/or reaction (4).

Fe (S, As)2 + 2 Au(HS)2
− = Fe (S, As)2 �Au2S + H2S + 2 HS− (3)

4 Au(HS)2
− + 2 H2O = 4 Au0 + 4 H2S + 4 HS− + O2 (4)

These two reactions show that the H2S activity has a strong influence on the precipita-
tion of Au, regardless of Au occurring as either a solid solution (Au+), or native gold (Au0).
The widely distributed pyrite in all stages of the Wulong deposit is closely related to Au
precipitation and likely depleted the H2S concentration in the ore-forming fluids, which
enhanced the precipitation of Au [81,103]. Therefore, the depleted H+ concentration and
HS− concentration in the ore-forming fluids lead to instability of the Au(HS)2−complexes
during the process of silicification and pyritization [98]. Moreover, the depleted sulfur
and the reduced temperature during silicification and pyritization lead to the precipitation
of gold and bismuthinite. The inclusions of stage 1 are of medium-high homogenization
temperatures (283~395 ◦C). The temperatures are a little higher for the precipitation of gold
and bismuthinite [84]. Only a small amount of bismuthinite can be found at stage 1. The
gold may have then precipitated in the form of a solid solution in pyrite, accompanied by
the precipitation of pyrite, bismuthinite, galena, and sphalerite (Figure 10a).
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At stage 2, pyrite is rich in Au-Cu contents but lacking in Pb-Zn contents. The
ore-forming fluid belonged to the H2O-CO2-NaCl ± CH4 ± N2 system and had lower
temperatures, salinities, pressures, and CO2 densities than those of stage 1. The depleted
H+ concentration and HS− concentration in the ore-forming fluids lead to instability of
the Au(HS)2−complexes during the process of silicification and pyritization [97–100]. The
depleted sulfur and the reduced temperature during silicification and pyritization also lead
to the precipitation of gold and bismuthinite. The inclusions of stage 2 were of medium
temperatures (219~328 ◦C). The temperature is suitable for the precipitation of gold and
bismuthinite. The metallic minerals precipitated are similar to those of Stage 1, but with
chalcopyrite and more bismuthinite (Figure 10b).

At stage 3, pyrite is rich in Pb, Cu, and As contents and lacking in Au, Zn, Co, Ni,
and Bi contents. The ore-forming fluid belonged to the H2O-NaCl fluids system and
had lower temperatures and salinities than those of both stage 1 and 2. There were also
CO2, H2S, and CH4 degassed from the stage 3 fluid [103], which further broke down the
Au(HS)2− complexes and precipitated the refractory gold in pyrite. Lower-temperature
hydrothermal minerals, such as pyrite, quartz, calcite, sericite, and chlorite, were also
precipitated (Figure 10c).
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7. Conclusions

(1) Alteration is well-developed in the mining area, including silicification, pyritization,
sericitization, chloritization, and carbonatization, among which the former two are
closely related to mineralization. Mass balance calculation results indicate that during
silicification, certain elements (Al, Ca, Fe, K, Si, Ag, As, Cu, and Pb) entered the fluid
system, whereas some others (Mg, Na, Fe, Cr, Zn, and Ni) were leached away. During
the process of silicification, the content of H+ and HS− reduced in the ore-forming
fluids.

(2) LA-ICP-MS pyrite trace element analyses indicate that Py1 is relatively rich in Au and
Zn contents and lacking in Pb, Cu, and As contents. Py2 is relatively rich in Au and
Cu contents and lacking in Pb and Zn contents. Py3 is relatively rich of Pb, Cu, and
As contents and lacking in Au, Zn, Co, Ni, and Bi contents.

(3) The depleted H+ concentration and HS− concentration in the ore-forming fluids
lead to instability of the Au(HS)2− complexes during the process of silicification
and pyritization. Moreover, the depleted sulfur and the reduced temperature during
silicification and pyritization also lead to the precipitation of gold and bismuthinite.
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