A Study on Long-Term Retardation Effect of Integrated Buffer Materials Based on Bentonite on Uranium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Constant Source Diffusion Experimental Procedure
2.3. Evaluation of Long-Term Retardation Effect of B7AP Integrated Buffer Material to U
3. Results and Discussion
3.1. Migration and Diffusion Characteristics of Uranium in Integrated Buffer Material (B7AP)
3.2. Prediction of Uranium Migration Degree in Integrated Buffer Material (B7AP) of Different Time Scales, Retardation Factors, Diffusion Coefficients and Seepage Velocity
3.2.1. Prediction of Uranium Migration Degree in Integrated Buffer Material (B7AP) of Different Time Scales
3.2.2. Simulation of the Effect of Seepage Velocity on Uranium Migration
3.2.3. Simulation Analysis of the Uranium Migration Affected by Apparent Diffusion Coefficient
3.2.4. Simulation Analysis of the Uranium Migration Affected by the Retardation Factor
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. The Source Code for Prediction of Uranium Migration Degree in Integrated Buffer Material (B7AP) By the MATLAB Software
Algorithms 1: The source code for prediction of uranium migration degree in integrated buffer material (B7AP) of different time scales. |
1. clc 2. clear 3. Rd=3.49 4. t=[100 300 1000 5000 10000] 5. rou=1.70 6. e=0.32 7. v=3.15E-5 8. Da=1.29E-4 9. for i=1:2500 10. for j=1:5 11. c(i,j) =1/2*erfc((Rd*i*0.01-v*t(j))/(2*(Da*Rd*t(j))^0.5))+1/2*exp(v*i*0.01/Da)... 12. *erfc((Rd*i*0.01+v*t(j))/(2*(Da*Rd*t(j))^0.5)) 13. end 14. end 15. for j=1:5 16. line(0:0.01:24.99, c(1:2500,j)) 17. hold on 18. end |
Algorithms 2: The source code for simulation of the effect of seepage velocity(v) on uranium migration. |
1. clc 2. clear 3. Rd=3.49 4. t=10000 5. rou=1.70 6. e=0.32 7. v=[3.15E-6, 3.15E-5,6.30E-5,3.15E-4,6.30E-4,3.15E-3,6.30E-3] 8. Da=1.29E-4 9. for i=1:1600 10. for j=1:7 11. c(i,j) =1/2*erfc((Rd*i*0.01-v(j)*t)/(2*(Da*Rd*t)^0.5))+1/2*exp(v(j)*i*0.01/Da)... 12. *erfc((Rd*i*0.01+v(j)*t)/(2*(Da*Rd*t)^0.5)) 13. End 14. end 15. for j=1:7 16. line(0:0.01:15.99, c(1:1600,j)) 17. hold on 18. end |
Algorithms 3: The source code for simulation of the effect of apparent diffusion coefficient (Da) on uranium migration. |
1. clc 2. clear 3. Rd=3.49 4. t=10000 5. rou=1.7 6. e=0.32 7. v=3.15E-5 8. Da=[1.29E-5,1.29E-4,2.58E-4,1.29E-3,2.58E-3] 9. for i=1:1000 10. for j=1:5 11. c(i,j) =1/2*erfc((Rd*i*0.01-v*t)/(2*(Da (j)*Rd*t)^0.5))+1/2*exp(v*i*0.01/Da(j))... 12. *erfc((Rd*i*0.01+v*t)/(2*(Da (j)*Rd*t)^0.5)) 13. End 14. end 15. for j=1:5 16. line(0:0.01:9.99, c(1:1000,j)) 17. hold on 18. end |
Algorithms 4: The source code for simulation of the effect of retardation factor (Rd) on uranium migration. |
1. clc 2. clear 3. Rd=[1.00,1.75,3.49,6.98,13.96] 4. t=10000 5. rou=1.70 6. e=0.32 7. v=3.15E-5 8. Da=1.29E-4 9. for i=1:1200 10. for j=1:5 11. c(i,j) =1/2*erfc((Rd(j)*i*0.01-v*t)/(2*(Da*Rd(j)*t)^0.5))+1/2*exp(v*i*0.01/Da)... 12. *erfc((Rd(j)*i*0.01+v*t)/(2*(Da*Rd(j)*t)^0.5)) 13. End 14. end 15. for j=1:5 16. line(0:0.01:11.99, c(1:1200,j)) 17. hold on 18. End |
References
- Carey, T.; Williams, C.D.; McArthur, D.J.; Malkinson, T.; Thompson, O.R.; Baidak, A.; Murtagh, L.; Glodan, G.; Morgan, S.P.; Banford, A.W. Removal of Cs, Sr, U and Pu species from simulated nuclear waste effluent using graphene oxide. J. Radioanal. Nucl. Chem. Artic. 2018, 317, 93–102. [Google Scholar] [CrossRef]
- Rana, M.A. Challenges in spent nuclear fuel final disposal: Conceptual design models. Nucl. Sci. Tech. 2008, 19, 117–120. [Google Scholar] [CrossRef]
- Fröhlich, D.R.; Kaplan, U. Sorption of Am(III) on clays and clay minerals: A review. J. Radioanal. Nucl. Chem. Artic. 2018, 318, 1785–1795. [Google Scholar] [CrossRef]
- Birkholzer, J.; Houseworth, J.; Tsang, C.-F. Geologic Disposal of High-Level Radioactive Waste: Status, Key Issues, and Trends. Annu. Rev. Environ. Resour. 2012, 37, 79–106. [Google Scholar] [CrossRef]
- Kim, J.-S.; Kwon, S.-K.; Sanchez, M.; Cho, G.-C. Geological storage of high level nuclear waste. KSCE J. Civ. Eng. 2011, 15, 721–737. [Google Scholar] [CrossRef]
- Kurniawan, T.A.; Othman, M.H.D.; Singh, D.; Avtar, R.; Hwang, G.H.; Setiadi, T.; Lo, W.-H. Technological solutions for long-term storage of partially used nuclear waste: A critical review. Ann. Nucl. Energy 2021, 166, 108736. [Google Scholar] [CrossRef]
- Pusch, R. Highly Compacted Sodium Bentonite for Isolating Rock-Deposited Radioactive Waste Products. Nucl. Technol. 1979, 45, 153–157. [Google Scholar] [CrossRef]
- Motsi, T.; Rowson, N.A.; Simmons, M.J.H. Adsorption of heavy metals from acid mine drainage by natural zeolite. Int. J. Miner. Process. 2009, 92, 42–48. [Google Scholar] [CrossRef]
- Salem, A.; Sene, R.A. Removal of lead from solution by combination of natural zeolite–kaolin–bentonite as a new low-cost adsorbent. Chem. Eng. J. 2011, 174, 619–628. [Google Scholar] [CrossRef]
- Hodges, F.N.; Westsik, J.H.; Bray, L.A. Development of a Backfill for Containment of High-Level Nuclear Waste. MRS Proc. 1981, 11, 641. [Google Scholar] [CrossRef]
- Komine, H. Predicting hydraulic conductivity of sand–bentonite mixture backfill before and after swelling deformation for underground disposal of radioactive wastes. Eng. Geol. 2010, 114, 123–134. [Google Scholar] [CrossRef]
- Akgun, H.; Ada, M.; Kockar, M.K. Geotechnical Assessment of Compacted Sand Bentonite Mixtures to be Utilized in Un-derground Nuclear Waste Repositories and Barrier Design. TEKNIK DERGI 2016, 27, 7477–7496. [Google Scholar]
- Alzamel, M.; Fall, M.; Haruna, S. Swelling ability and behaviour of bentonite-based materials for deep repository engineered barrier systems: Influence of physical, chemical and thermal factors. J. Rock Mech. Geotech. Eng. 2022, 14, 689–702. [Google Scholar] [CrossRef]
- Wen, Z.J. Selection and Basic Properties of the Buffer Material for High-Level Radioactive Waste Repository in China. Acta Geol. Sin.-Engl. Ed. 2008, 82, 1050–1055. [Google Scholar]
- Wang, Z.; Wang, Y.; Yi, F. Effect of Various Aqueous Mediums on the Microstructure of Compacted Bentonite–Sand Mixture Characterized by X-ray CT Investigation. Sustainability 2022, 14, 9427. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, H.; Yan, M.; Chen, H.; Zhang, M. Laboratory determination of migration of Eu(III) in compacted bentonite–sand mixtures as buffer/backfill material for high-level waste disposal. Appl. Radiat. Isot. 2013, 82, 139–144. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Wang, S.Y.; Hou, H.J. China’s progress in radionuclide migration study over the past decade (2010–2021): Sorption, transport and radioactive colloid. Chin. Chem. Lett. 2022, 33, 3405–3412. [Google Scholar] [CrossRef]
- Sellin, P.; Leupin, O.X. The Use of Clay as an Engineered Barrier in Radioactive-Waste Management—A Review. Clays Clay Miner. 2013, 61, 477–498. [Google Scholar] [CrossRef]
- Wang, C.; Myshkin, V.F.; Khan, V.A.; Panamareva, A.N. A review of the migration of radioactive elements in clay minerals in the context of nuclear waste storage. J. Radioanal. Nucl. Chem. Artic. 2022, 331, 3401–3426. [Google Scholar] [CrossRef]
- Chen, Y.; Jia, L.; Niu, L.; Ye, W.; Chen, B.; Cui, Y. Effect of dry density and pH on the diffusion behavior of lanthanum in compacted Chinese GMZ bentonite. J. Radioanal. Nucl. Chem. Artic. 2016, 310, 1303–1310. [Google Scholar] [CrossRef]
- Wang, Z.; Yi, F.; Li, H. Study on the retardancy of uranium by integrated buffer material based on bentonite. Non-Met. Mines 2015, 5, 60–63. [Google Scholar]
- Wang, Z.; Yi, F. Long-term of retardancy integrated buffer material on strontium. J. Nucl. Radiochem. 2017, 39, 235–242. (In Chinese) [Google Scholar]
- Eglizaud, N.; Miserque, F.; Simoni, E.; Schlegel, M.; Descostes, M. Uranium(VI) interaction with pyrite (FeS2): Chemical and spectroscopic studies. Radiochim. Acta 2006, 94, 651–656. [Google Scholar] [CrossRef]
- Aubriet, H.; Humbert, B.; Perdicakis, M. Interaction of U(VI) with pyrite, galena and their mixtures: A theoretical and mul-titechnique approach. Radiochim. Acta 2006, 94, 657–663. [Google Scholar] [CrossRef]
- Bruggeman, C.; Maes, A.; Vancluysen, J.; Vandemussele, P. Selenite reduction in Boom clay: Effect of FeS2, clay minerals and dissolved organic matter. Environ. Pollut. 2005, 137, 209–221. [Google Scholar] [CrossRef] [PubMed]
- Bruggeman, C.; Maes, A.; Vancluysen, J. The identification of FeS2 as a sorption sink for Tc(IV). Phys. Chem. Earth Parts A/B/C 2006, 32, 573–580. [Google Scholar] [CrossRef]
- Descostes, M.; Schlegel, M.; Eglizaud, N.; Descamps, F.; Miserque, F.; Simoni, E. Uptake of uranium and trace elements in pyrite (FeS2) suspensions. Geochim. Cosmochim. Acta 2010, 74, 1551–1562. [Google Scholar] [CrossRef]
- Naveau, A.; Monteil-Rivera, F.; Guillon, E.; Dumonceau, J. Interactions of Aqueous Selenium (−II) and (IV) with Metallic Sulfide Surfaces. Environ. Sci. Technol. 2007, 41, 5376–5382. [Google Scholar] [CrossRef]
- Torstenfelt, B.; Allard, B.; Andersson, K.; Kipatsi, H.; Eliasson, L. Radionuclide diffusion and mobilities in compacted bentonite. Nucl. Eng. Technol. 1983, 28, 1–35. [Google Scholar]
- Sato, H.; Ashida, T.; Kohara, Y.; Yui, M.; Sasaki, N. Effect of dry density on diffusion of some radionuclides in compacted sodium bentonite. J. Nucl. Sci. Technol. 1992, 29, 873–882. [Google Scholar] [CrossRef]
- Lee, J.O.; Cho, W.J.; Hahn, P.S.; Lee, K.J. Effect of dry density on Sr-90 diffusion in a compacted Ca-bentonite for a backfill of radioactive waste repository. Ann. Nucl. Energy 1996, 23, 727–738. [Google Scholar] [CrossRef]
- Yu, J.W.; Neretnieks, I. Diffusion and Sorption Properties of Radionuclides in Compacted Bentonite; Swedish Nuclear Fuel and Waste Management Co.: Stockholm, Sweden, 1997; pp. 1–106. [Google Scholar]
- Dong, W.; Wang, X.; Bian, X.; Wang, A.; Du, J.; Tao, Z. Comparative study on sorption/desorption of radioeuropium on alumina, bentonite and red earth: Effects of pH, ionic strength, fulvic acid, and iron oxides in red earth. Appl. Radiat. Isotopes. 2001, 54, 603–610. [Google Scholar]
- Wang, X.K.; Dong, W.M.; Gong, Y.C.; Wang, C.H.; Tao, Z.Y. Sorption characteristics of radioeuropium on bentonite kaolinite. J. Radioanal. Nucl. Chem. 2001, 250, 267–270. [Google Scholar] [CrossRef]
- Wang, X.K.; Montavon, G.; Grambow, B. A new experimental design to investigate the concentration dependent diffusion of Eu(III) in compacted bentonite. J. Radioanal. Nucl. Chem. Artic. 2003, 257, 293–297. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Y.; Wu, Y. Diffusion of Eu(III) in compacted bentonite-effect of pH, solution concentration and humic acid. Appl. Radiat. Isotopes 2004, 60, 963–969. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, X. Effect of pH and concentration on the diffusion of radiostrontium in compacted bentonite-a capillary ex-perimental study. Appl. Radiat. Isotopes 2004, 61, 1413–1418. [Google Scholar] [CrossRef]
- Wang, X.; Tao, Z. Diffusion of 99TcO4-in compacted bentonite: Effect of pH, concentration, density and contact time. J. Radioanal. Nucl. Chem. 2004, 260, 305–309. [Google Scholar] [CrossRef]
- Wang, X.K.; Chen, C.L.; Zhou, X.; Tan, X.L.; Hu, W.P. Diffusion and sorption of U(VI) in compacted bentonite studied by a capillary method. Radiochim. Acta 2005, 93, 273–278. [Google Scholar] [CrossRef]
- Ochs, M.; Lothenbach, B.; Shibata, M.; Sato, H.; Yui, M. Sensitivity analysis of radionuclide migration in compacted bentonite: A mechanistic model approach. J. Contam. Hydrol. 2003, 61, 313–328. [Google Scholar] [CrossRef]
- Montes-H, G.; Marty, N.; Fritz, B.; Clement, A.; Michau, N. Modelling of long-term diffusion–reaction in a bentonite barrier for radioactive waste confinement. Appl. Clay Sci. 2005, 30, 181–198. [Google Scholar] [CrossRef]
- García-Gutiérrez, M.; Cormenzana, J.; Missana, T.; Alonso, U.; Mingarro, M. Diffusion of strongly sorbing cations (60Co and 152Eu) in compacted FEBEX bentonite. Phys. Chem. Earth Parts A/B/C 2011, 36, 1708–1713. [Google Scholar] [CrossRef]
- Iida, Y.; Yamaguchi, T.; Tanaka, T. Experimental and modeling study on diffusion of selenium under variable bentonite content and porewater salinity. J. Nucl. Sci. Technol. 2011, 48, 1170–1183. [Google Scholar] [CrossRef]
- Kasar, S.; Kumar, S.; Bajpai, R.; Tomar, B. Diffusion of Na(I), Cs(I), Sr(II) and Eu(III) in smectite rich natural clay. J. Environ. Radioact. 2016, 151, 218–223. [Google Scholar] [CrossRef]
- Chen, Y.; Niu, L.; He, Y.; Ye, W.; Zhu, C. Diffusion of La3+ in Compacted GMZ Bentonite Used as Buffer Material in HLW Disposal. In Engineering Geology for Society and Territory-Volume 6; Springer: Cham, Switzerland, 2014; pp. 515–517. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, J.; Chen, J.; Zhang, Z.; Zheng, Q.; Li, J.; Wu, T. Diffusion behavior of Re (VII) in compacted illite-, hematite- and limonite-montmorillonite mixtures. J. Radioanal. Nucl. Chem. 2016, 311, 655–661. [Google Scholar] [CrossRef]
- Wu, T.; Wang, Z.; Li, Q.; Pan, G.; Li, J.; Van Loon, L.R. Re (VII) diffusion in bentonite: Effect of organic compounds, pH and temperature. Appl. Clay Sci. 2016, 127–128, 10–16. [Google Scholar] [CrossRef]
- Hamada, R.; Maeda, N.; Idemitsu, K.; Inagaki, Y.; Arima, T.; Akiyama, D.; Konashi, K.; Watanabe, M.; Koyama, S.-I. Effect of pH on Plutonium Migration Behavior in Compacted Bentonite. MRS Adv. 2016, 1, 4011–4017. [Google Scholar] [CrossRef]
- Joseph, C.; Mibus, J.; Trepte, P.; Müller, C.; Brendler, V.; Park, D.M.; Jiao, Y.; Kersting, A.B.; Zavarin, M. Long-term diffusion of U(VI) in bentonite: Dependence on density. Sci. Total Environ. 2017, 575, 207–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, T.-L.; Tsai, S.-C.; Shih, Y.-H.; Chen, L.-C.; Lee, C.-P.; Su, T.-Y. Diffusion characteristics of HTO and 99TcO4 − in compacted Gaomiaozi (GMZ) bentonite. Nucl. Sci. Tech. 2017, 28, 67. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, T.; Wang, Z.; Zhao, S.; Li, H.; Yang, Z.; Che, L.; Zhu, S.; Wu, R. Diffusion of Re(VII) in gamma-irradiated bentonite: Effect of compacted dry density and pH. J. Radioanal. Nucl. Chem. Artic. 2017, 314, 395–401. [Google Scholar] [CrossRef]
- Wang, X.; Du, J.; Tao, Z.; Li, Z. Evaluation of Eu(III) migration in compacted bentonite. J. Radioanal. Nucl. Chem. Artic. 2004, 260, 69–73. [Google Scholar] [CrossRef]
- Wang, X.; Tan, X.; Ning, Q.; Chen, C. Simulation of radionuclides 99Tc and 243Am migration in compacted bentonite. Appl. Radiat. Isot. 2005, 62, 759–764. [Google Scholar] [CrossRef]
- Wang, X.K. Diffusion of 137Cs in compacted bentonite: Effect of pH and concentration. J. Radioanal. Nucl. Chem. Artic. 2003, 258, 315–319. [Google Scholar] [CrossRef]
- Cao, X.; Zheng, L.; Hou, D.; O’Connor, D.; Wu, J. Modeling the risk of U(VI) migration through an engineered barrier system at a proposed Chinese high-level radioactive waste repository. Sci. Total Environ. 2019, 707, 135472. [Google Scholar] [CrossRef]
- JNC. H12 Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan, Project Overview Report; JNC Technical Report TN1410 2000-001; Japan Nuclear Cycle Development Institute: Tokaimura, Japan, 2000. [Google Scholar]
- Neretnieks, I. Diffusivities of Some Constituents in Compacted Wet Bentonite Clay and the Impact on Radionuclide Migration in the Buffer. Nucl. Technol. 1985, 71, 458–470. [Google Scholar] [CrossRef]
- Shackelford, C.D. Laboratory diffusion testing for waste disposal—A review. J. Contam. Hydrol. 1991, 7, 177–217. [Google Scholar] [CrossRef]
- He, S.; Yang, Z.; Cui, X.; Zhang, X.; Niu, X. Fabrication of the novel Ag-doped SnS2@InVO4 composite with high adsorp-tion-photocatalysis for the removal of uranium (VI). Chemosphere 2020, 260, 127548. [Google Scholar] [CrossRef]
- Sudicky, E.A.; McLaren, R.G. The Laplace Transform Galerkin Technique for large-scale simulation of mass transport in discretely fractured porous formations. Water Resour. Res. 1992, 28, 499–514. [Google Scholar] [CrossRef]
- Deng, J.; Yi, F.; Wang, Z. Migration and diffusion prediction of radionuclide Cs in compacted backfill material. At. Energy Sci. Technol. 2011, 45, 288–292. [Google Scholar]
- Van Genuchten, M.T.; Wierenga, P.J.; Klute, A. Solute Dispersion Coefficients and Retardation Factors. Methods Soil Anal. Part 1 Phys. Mineral. Methods 2018, 5, 1025–1054. [Google Scholar] [CrossRef]
- Muurinen, A. Diffusion of uranium in compacted sodium bentonite. Eng. Geol. 1990, 28, 359–367. [Google Scholar] [CrossRef]
- Idemitsu, K.; Tachi, Y.; Furuya, H.; Inagaki, Y.; Arima, T. Diffusion of Uranium in Compacted Bentonites in the Reducing Condition with Corrosion Products of Iron. MRS Proc. 1995, 412, 683. [Google Scholar] [CrossRef]
- García-Gutiérrez, M.; Cormenzana, J.; Missana, T.; Mingarro, M. Diffusion coefficients and accessible porosity for HTO and 36Cl in compacted FEBEX bentonite. Appl. Clay Sci. 2004, 26, 65–73. [Google Scholar] [CrossRef]
- Korichi, S.; Keddam, M.; Bensmaili, A. Effects of compression on porous texture of clay powder: Application to uranium diffusion. Chem. Eng. Res. Des. 2014, 92, 1267–1278. [Google Scholar] [CrossRef]
- Bai, J.; Liu, C.; Ball, W.P. Study of Sorption-Retarded U(VI) Diffusion in Hanford Silt/Clay Material. Environ. Sci. Technol. 2009, 43, 7706–7711. [Google Scholar] [CrossRef]
- Hou, L. Study on the Optimization and Integration of Backfill Materials. Master’s Thesis, Southwest University of Science and Technology, Mianyang, China, 2008. [Google Scholar]
- Chen, L.; Wang, J.; Beiyuan, J.; Guo, X.; Wu, H.; Fang, L. Environmental and health risk assessment of potentially toxic trace elements in soils near uranium (U) mines: A global meta-analysis. Sci. Total Environ. 2021, 816, 151556. [Google Scholar] [CrossRef]
- Fan, X. Study on the Engineering Performance of Backfill Materials. Master’s Thesis, Southwest University of Science and Technology, Mianyang, China, 2010. [Google Scholar]
- Wang, Y.-P.; Wang, Z.; Zhao, Y.; Yi, F.-C.; Zhu, B.-L. Swelling Properties and Permeability of GMZ Bentonite-Sand Mixtures during Different Solutions Infiltration. Sustainability 2021, 13, 1622. [Google Scholar] [CrossRef]
- Wu, T.; Wang, H.; Zheng, Q.; Zhao, Y.L.; Van Loon, L.R. Diffusion behavior of Se(IV) and Re(VII) in GMZ bentonite. Appl. Clay Sci. 2014, 101, 136–140. [Google Scholar] [CrossRef]
- Wu, T.; Wang, H.; Zheng, Q.; Li, J.Y. Effect of organic matter on 125I diffusion in bentonite. J. Radioanal. Nucl. Chem. Artic. 2014, 303, 255–260. [Google Scholar] [CrossRef]
- IAEA. Extrapolation of Short Term Observations to Time Periods Relevant to the Isolation of Long lived Radioactive Waste; IAEA-TECDOC-1177; International Atomic Energy Agency: Vienna, Austria, 2000. [Google Scholar]
- Xie, S.B.; Chen, Z.A.; Zhang, X.J.; He, S.H.; Lu, J.W. Effect of Macrodispersivity and Retardation Coefficient on Radionuclide Mi-gration Simulation. J. Hunan Univ. 2007, 34, 78–82. [Google Scholar]
- Liu, Y.; Yi, F.; Wang, Z. Study on Sorption of Bentonite to Uranium. Non-Met. Mines 2010, 1, 52–53+57. [Google Scholar]
Sample | Nuclide | C0/(mg·L−1) | ρd/(g·cm−3) | k/d−1 | tg/d | De/(m2·s−1) | α | Da/(m2·s−1) |
---|---|---|---|---|---|---|---|---|
B7AP | uranium | 75 | 1.70 | 0.0014 | 11.86 | 4.54 × 10−12 | 1.116 | 4.1 × 10−12 |
Sample | Nuclide | C0/(mg·L−1) | ρd/(g·cm−3) | v/(m·a−1) | k/(m·s−1) | e | Da (m2·a−1) | α | Rd |
---|---|---|---|---|---|---|---|---|---|
B7AP | Uranium | 75 | 1.70 | 3.15 × 10−5 | 1.0 × 10−12 | 0.32 | 1.29 × 10−4 | 1.116 | 3.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Liu, Y.; Tian, D.; Zhang, Z.-L.; Zhang, J.-Q.; Zeng, Q.-P.; Li, C.; Liu, G.-J.; Wu, Y.-D. A Study on Long-Term Retardation Effect of Integrated Buffer Materials Based on Bentonite on Uranium. Minerals 2022, 12, 1550. https://doi.org/10.3390/min12121550
Wang Z, Liu Y, Tian D, Zhang Z-L, Zhang J-Q, Zeng Q-P, Li C, Liu G-J, Wu Y-D. A Study on Long-Term Retardation Effect of Integrated Buffer Materials Based on Bentonite on Uranium. Minerals. 2022; 12(12):1550. https://doi.org/10.3390/min12121550
Chicago/Turabian StyleWang, Zhe, Yan Liu, Duan Tian, Zhen-Long Zhang, Jia-Qian Zhang, Qiu-Ping Zeng, Chao Li, Gui-Jian Liu, and Ya-Dong Wu. 2022. "A Study on Long-Term Retardation Effect of Integrated Buffer Materials Based on Bentonite on Uranium" Minerals 12, no. 12: 1550. https://doi.org/10.3390/min12121550
APA StyleWang, Z., Liu, Y., Tian, D., Zhang, Z.-L., Zhang, J.-Q., Zeng, Q.-P., Li, C., Liu, G.-J., & Wu, Y.-D. (2022). A Study on Long-Term Retardation Effect of Integrated Buffer Materials Based on Bentonite on Uranium. Minerals, 12(12), 1550. https://doi.org/10.3390/min12121550