Evaluation of Different Dispersants on the Dispersion/Sedimentation Behavior of Halloysite, Kaolinite, and Quartz Suspensions in the Enrichment of Halloysite Ore by Mechanical Dispersion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Sample Characterization
2.2.2. Zeta Potential Measurements
2.2.3. Dispersion/Sedimentation Experiments
3. Results and Discussions
3.1. Sample Characterization
3.2. Zeta Potential Measurements
3.2.1. Without Dispersants
3.2.2. With Dispersants
3.3. Dispersion/Sedimentation Studies
3.3.1. Effect of pH
3.3.2. Effect of Dispersants
3.3.3. Effect of Dispersants on Halloysite Ore Dispersion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bayda, S.; Adeel, M.; Tuccinardi, T.; Cordani, M.; Rizzolio, F. The history of nanoscience and nanotechnology: From chemical–physical applications to nanomedicine. Molecules 2020, 25, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bates, T.F.; Hildebrand, F.A.; Swineford, A. Morphology and structure of endellite and halloysite. Am. Mineral. 1950, 35, 463–484. [Google Scholar]
- Taniguchi, N. On the basic concept of ‘nano-technology’. In Proceedings of the International Conference on Production Engineering, Tokyo, Japan, 26–29 August 1974; pp. 18–23. [Google Scholar]
- Iijima, S. Helical microtubes of graphite carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Cheng, R.; Li, H.; Liu, Z.; Du, C. Halloysite Nanotubes as an Effective and Recyclable Adsorbent for Removal of Low-Concentration Antibiotics Ciprofloxacin. Minerals 2018, 8, 387. [Google Scholar] [CrossRef] [Green Version]
- Churchman, G.J.; Pasbakhsh, P.; Hillier, S. The rise and rise of halloysite. Clay Miner. 2016, 51, 303–308. [Google Scholar] [CrossRef] [Green Version]
- Lázaro, B.B. Halloysite and kaolinite: Two clay minerals with geological and technological importance. Rev. Real Academia Ciencias. Zaragoza 2015, 70, 1–33. [Google Scholar]
- Churchman, G. Properties and Processes, Handbook of Soil Sciences, 2nd ed.; Sumner, M.E., Ed.; CRC Press: Boca Raton, FL, USA, 1999; pp. F3–F76, 2nd Chapter. [Google Scholar]
- Ross, T.J.; Kerr, P.F. Halloysite and Allophone; US Geological Survey, Department of the Interior: Washington, WC, USA, 1934; Volume 185-G, pp. 135–148.
- MacEwan, D.M.C. The nomenclature of the halloysite minerals. Mineral. Mag. J. Mineral. Soc. 1947, 28, 36–44. [Google Scholar] [CrossRef]
- Churchman, G.J.; Carr, R.M. The definition and nomenclature of halloysites. Clays Clay Miner. 1975, 23, 382–388. [Google Scholar] [CrossRef]
- Brindley, G.W. Kaolin, serpentine and kindred minerals. In The X-ray Identification and Crystal Structures of Clay Minerals; Brown, G., Ed.; Mineralogical Society: London, UK, 1961; pp. 51–131. [Google Scholar]
- Santos, P.S.; Brindley, G.W.; Santos, H.D. Mineralogical studies of kaolinite-halloysite clays Part III. A fibrous kaolin mineral from Piedade, Sao Paulo, Brazil. Am. Mineral. 1965, 50, 619–628. [Google Scholar]
- Grim, R.E. Clay Mineralogy; McGraw-Hill: New York, NY, USA, 1968. [Google Scholar]
- Churchman, G.J.; Whitton, J.S.; Claridge, G.G.C.; Theng, B.K.G. Intercalation method using formamide for differentiating halloysite from kaolinite. Clays Clay Miner. 1984, 32, 241–248. [Google Scholar] [CrossRef]
- Robertson, I.D.M.; Eggleton, R.A. Weathering of granitic muscovite to kaolinite and halloysite and plagioclase-derived kaolinite to halloysite. Clays Clay Miner. 1991, 39, 113–126. [Google Scholar] [CrossRef]
- Kohyama, N.; Fukushima, K.; Fukami, A. Observation of the hydrated form of tubular halloysite by an electron microscope equipped with an environmental cell. Clays Clay Miner. 1978, 26, 25–40. [Google Scholar] [CrossRef]
- Rawtani., D.; Agrawal, Y.K. Multifarious applications of halloysite nanotubes: A review. Rev. Adv. Mater. Sci. 2012, 30, 282–295. [Google Scholar]
- Zubkiewicz, A.; Szymczyk, A.; Franciszczak, P.; Kochmanska, A.; Janowska, I.; Paszkiewicz, S. Comparing Multi-Walled Carbon Nanotubes and Halloysite Nanotubes as Reinforcements in EVA Nanocomposites. Materials 2020, 13, 3809. [Google Scholar] [CrossRef]
- Vergaro, V.; Abdullayev, E.; Lvov, Y.M.; Zeitoun, A.; Cingolani, R.; Rinaldi, R.; Leporatti, S. Halloysite clay nanotubes: Characterization, biocompatibility and use as drug carriers. Biomacromolecules 2010, 11, 820–826. [Google Scholar] [CrossRef] [PubMed]
- Lun, H.; Ouyang, J.; Yang, H. Enhancing dispersion of halloysite nanotubes via chemical modification. Phys. Chem. Miner. 2014, 41, 281–288. [Google Scholar] [CrossRef]
- Durgut, E.; Cinar, M.; Terzi, M.; Unver, I.K.; Yildirim, Y.; Boylu, F.; Ozdemir, O. Effect of Blunging/Dispersion Parameters on Separation of Halloysite Nanotubes from Gangue Minerals. Minerals. 2022, 12, 683. [Google Scholar] [CrossRef]
- Sachan, A.; Penumadu, D. Identification of microfabric of kaolinite clay mineral using x-ray diffraction technique. Geotech. Geol. Eng. 2007, 25, 603–616. [Google Scholar] [CrossRef]
- Bobos, I.; Duplay, J.; Rocha, J.; Gomes, C. Kaolinite to halloysite-7A transformation in the kaolin deposit of Sao Vicente de Pereira, Portugal. Clay Clay Miner. 2001, 49, 596–607. [Google Scholar] [CrossRef]
- Madejová, J.; Gates, W.P.; Petit, S. Chapter 5—IR Spectra of Clay Minerals. Dev. Clay Sci. 2017, 8, 107–149. [Google Scholar]
- Saikia, B.J.; Parthasarathy, G. Fourier Transform Infrared Spectroscopic Characterization of Kaolinite from Assam and Meghalaya, Northeastern India. J. Mod. Phys. 2010, 01, 206–210. [Google Scholar] [CrossRef] [Green Version]
- Calhoun, F.G.; Carlisle, V.W. Infrared spectra of selected Colombian Andosols. Proc. Soil Crop Sci. Soc. Fla. 1972, 31, 157–161. [Google Scholar]
- Cheng, H.; Frost, R.L.; Yang, J.; Liu, Q.; He, J. Infrared and infrared emission spectroscopic study of typical Chinese kaolinite and halloysite. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2010, 77, 1014–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saikia, B.J. Spectroscopic estimation of geometrical structure elucidation in natural SiO2 crystal. J. Mater. Phys. Chem. 2014, 2, 28–33. [Google Scholar]
- Saikia, B.J.; Parthasarathy, G.; Sarmah, N.C. Fourier transform infrared spectroscopic estimation of crystallinity in SiO2 based rocks. Bull. Mater. Sci. 2018, 31, 775–779. [Google Scholar] [CrossRef] [Green Version]
- Kitagawa, Y.; Yorozu, Y.; Itami, K. Zeta potentials of clay minerals estimated by an electrokinetic sonic amplitude method and relation to their dispersibilıty. Clay Sci. 2001, 11, 329–336. [Google Scholar]
- Ersoy, B.; Evcin, A.; Uygunoglu, T.; Akdemir, Z.B.; Brostow, W.; Joshua, W. Zeta Potential–viscosity relationship in kaolinite slurry in the presence of dispersants. Arab. J. Sci. Eng. 2014, 39, 5451–5457. [Google Scholar] [CrossRef]
- Tarí, G.; Bobos, I.; Gomes, C.S.F.; Ferreira, J.M.F. Modification of surface charge properties during kaolinite to halloysite 7 Å transformation. J. Colloid Interface Sci. 1999, 210, 360–366. [Google Scholar] [CrossRef]
- Eygi, M.S.; Ateşok, G. An investigation on utilization of poly-electrolytes as dispersant for kaolin slurry and its slip casting properties. Ceram. Int. 2008, 34, 1903–1908. [Google Scholar] [CrossRef]
- Amorós, J.L.; Sanz, V.; Jarque, J.C. Electrokinetic and rheological properties of highly concentrated kaolin dispersion: Influence of particle volume fraction and dispersant concentration. Appl. Clay Sci. 2010, 49, 33–43. [Google Scholar] [CrossRef]
- Vitali, S.; Giorgini, L. Overview of the rheological behaviour of ceramic slurries. FME Trans. 2019, 47, 42–47. [Google Scholar] [CrossRef]
- Joo, Y.; Sim, J.H.; Jeon, Y.; Lee, S.U.; Sohn, D. Opening and blocking the inner-pores of halloysite. Chem. Commun. 2013, 49, 4519–4521. [Google Scholar] [CrossRef] [PubMed]
- Özgen, S.; Çilek, E.C. Effects of some cations to the surface properties of silicates (feldspar and quartz). Erciyes Univ. J. Inst. Sci. Technol. 2012, 28, 116–121. [Google Scholar]
- Hou, T.; Xu, R.; Zhao, A. Interaction between electric double layers of kaolinite and Fe/Al oxides in suspensions. Colloids Surf. A Physicochem. Eng. Asp. 2007, 297, 91–94. [Google Scholar] [CrossRef]
- Kobayashi, M.; Juillerat, F.; Galletto, P.; Bowen, P.; Borkovec, M. Aggregation and charging of colloidal silica particles: Effect of particle size. Langmuir 2005, 21, 5761–5769. [Google Scholar] [CrossRef]
- Singh, B.P.; Mencavez, R.; Takai, C.; Fuji, M.; Takahashi, M. Stability of dispersions of colloidal alumina particles in aqueous suspensions. J. Colloid Interface Sci. 2005, 291, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Murray, H.H. Applied Clay Mineralogy: Developments in Clay Science 2; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Ouyang, J.; Zhou, Z.; Zhang, Y.; Yang, H. High morphological stability and structural transition of halloysite (Hunan, China) in heat treatment. Appl. Clay Sci. 2014, 101, 16–22. [Google Scholar] [CrossRef]
- Önen, V.; Göçer, M.; Taner, H.A. Effect of coagulants and flocculants on dewatering of kaolin suspensions. Omer Halisdemir Univ. J. Eng. Sci. 2018, 7, 297–305. [Google Scholar]
- Chorom, M.; Rengasamy, P. Dispersion and zeta potential of pure clays as related to net particle charge under varying pH, electrolyte concentration and cation type. Eur. J. Soil Sci. 1995, 46, 657–665. [Google Scholar] [CrossRef]
- Yükselen-Aksoy, Y.; Kaya, A. Zeta potential of kaolinite in the presence of alkali, alkaline earth and hydrolyzable metal ions. Water Air Soil Pollut. 2003, 145, 155–168. [Google Scholar] [CrossRef]
Mineral | LOI * | SiO2 | Al2O3 | TiO2 | Fe2O3 | CaO | MgO | Na2O | K2O |
---|---|---|---|---|---|---|---|---|---|
Halloysite | 17.0 | 44.0 | 38.3 | 0.2 | 0.3 | 0.0 | 0.1 | 0.0 | 0.0 |
Kaolinite | 13.5 | 46.6 | 38.2 | 0.8 | 0.3 | 0.1 | 0.1 | 0.0 | 0.5 |
Quartz | 0.2 | 99.2 | 0.5 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Halloysite ore | 12.0 | 50.9 | 29.7 | 0.7 | 3.9 | 0.2 | 0.4 | 0.2 | 1.1 |
Mineral | D10 (µm) | D50 (µm) | D90 (µm) |
---|---|---|---|
Halloysite | 2.8 | 9.4 | 23.8 |
Kaolinite | 2.3 | 6.5 | 17.5 |
Quartz | 3.8 | 14.2 | 32.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durgut, E.; Cinar, M.; Terzi, M.; Kursun Unver, I.; Yildirim, Y.; Ozdemir, O. Evaluation of Different Dispersants on the Dispersion/Sedimentation Behavior of Halloysite, Kaolinite, and Quartz Suspensions in the Enrichment of Halloysite Ore by Mechanical Dispersion. Minerals 2022, 12, 1426. https://doi.org/10.3390/min12111426
Durgut E, Cinar M, Terzi M, Kursun Unver I, Yildirim Y, Ozdemir O. Evaluation of Different Dispersants on the Dispersion/Sedimentation Behavior of Halloysite, Kaolinite, and Quartz Suspensions in the Enrichment of Halloysite Ore by Mechanical Dispersion. Minerals. 2022; 12(11):1426. https://doi.org/10.3390/min12111426
Chicago/Turabian StyleDurgut, Emrah, Mustafa Cinar, Mert Terzi, Ilgin Kursun Unver, Yildiz Yildirim, and Orhan Ozdemir. 2022. "Evaluation of Different Dispersants on the Dispersion/Sedimentation Behavior of Halloysite, Kaolinite, and Quartz Suspensions in the Enrichment of Halloysite Ore by Mechanical Dispersion" Minerals 12, no. 11: 1426. https://doi.org/10.3390/min12111426
APA StyleDurgut, E., Cinar, M., Terzi, M., Kursun Unver, I., Yildirim, Y., & Ozdemir, O. (2022). Evaluation of Different Dispersants on the Dispersion/Sedimentation Behavior of Halloysite, Kaolinite, and Quartz Suspensions in the Enrichment of Halloysite Ore by Mechanical Dispersion. Minerals, 12(11), 1426. https://doi.org/10.3390/min12111426