Effects of Nanohydroxyapatite Incorporation into Glass Ionomer Cement (GIC)
Abstract
:1. Introduction
1.1. Glass Ionomer Cement
1.2. Hydroxyapatite
2. Incorporating Nanohydroxyapatite into Glass Ionomer Cement (GIC)
2.1. Incorporation Technique of Nanohydroxyapatite into Glass Ionomer Cement (GIC)
2.1.1. Sol–Gel Method
2.1.2. Precipitation Method
2.1.3. Hydrothermal Method
2.1.4. Solid-State Reaction
2.2. Effects of Incorporating Nanohydroxyapatite into Glass Ionomer Cement (GIC)
2.2.1. Mechanical Strength
2.2.2. Flexural Strength
2.2.3. Microhardness
2.2.4. Cytotoxicity
2.2.5. Microleakage
2.2.6. Fluoride Ion Release
2.2.7. Antibacterial Properties
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Croll, T.P.; Nicholson, J.W. Glass ionomer cements in pediatric dentistry: Review of the literature. Pediatric Dent. 2002, 24, 423–429. [Google Scholar]
- Da Silva, R.C.; Cilense, Z.C. Surface roughness of glass ionomer cements indicated for atrumatic restorative treatment (ART). Braz. Dent. J. 2006, 17, 106–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berg, J.H.; Croll, T.P. Glass ionomer restorative cement systems: An update. Pediatric Dent. 2015, 37, 116–124. [Google Scholar]
- Nagaraja Upadhya, P.; Kishore, G. Glass ionomer cement—The different generations. Trends Biomater. Artif. Organs 2005, 18, 158–165. [Google Scholar]
- Sidhu, S.; Nicholson, J. A Review of Glass-Ionomer Cements for Clinical Dentistry. J. Funct. Biomater. 2016, 7, 16. [Google Scholar] [CrossRef]
- Davidson, C.L. Advances in glass-ionomer cements. J. Appl. Oral Sci. 2006, 14, 3–9. [Google Scholar] [CrossRef]
- Alobiedy, A.N.; Al-Helli, A.H.; Al-Hamaoy, A.R. Effect of adding micro and nano-carbon particles on conventional glass ionomer cement mechanical properties. Ain Shams Eng. J. 2019, 10, 785–789. [Google Scholar] [CrossRef]
- Gupta, A.A.; Mulay, S.; Mahajan, P.; Raj, A.T. Assessing the effect of ceramic additives on the physical, rheological and mechanical properties of conventional glass ionomer luting cement—An in-vitro study. Heliyon 2019, 5, e02094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garoushi, S.; He, J.; Vallittu, P.K.; Lasilla, L.V. Effect of discontinuous glass fibers on mechanical properties of glass ionomer cement. Acta Biomater. 2018, 4, 72–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mustafa, H.A.; Soares, A.P.; Paris, S.; Elhennawy, K.; Zaslansky, P. The forgotten merits of GIC restorations: A systematic review. Clin. Oral Investig. 2020, 24, 2189–2201. [Google Scholar] [CrossRef]
- Arita, K.; Yamamoto, A.; Shinonaga, Y.; Harada, K.; Abe, Y.; Nakagawa, K.; Sugiyama, S. Hydroxyapatite particle characteristics influence the enhancement of the mechanical and chemical properties of conventional restorative glass ionomer cement. Dent. Mater. J. 2011, 30, 672–683. [Google Scholar] [CrossRef] [Green Version]
- Simmons, J.J. The miracle mixture. Glass ionomer and alloy powder. Tex. Dent. J. 1983, 100, 6–12. [Google Scholar]
- Sajjad, A.; Bakar, W.Z.W.; Mohamad, D.; Kannan, T.P. Characterization and Enhancement. Physico-Mechanical Properties Glass Ionomer Cement by Incorportaing A Novel Nano Zirconia Silica Hydroxyapatite Synthesized via Sol-Gel. AIMS Mater. Sci. 2019, 6, 730–747. [Google Scholar] [CrossRef]
- Cho, E.; Kopel, H.; White, S.N. Moisture susceptibility of resin-modified glass ionomer materials. Quintessence Int. 1995, 26, 351–358. [Google Scholar]
- Yap, A.; Cheang, P.; Chay, P. Mechanical properties of two restorative reinforced glass-ionomer cements. J. Oral Rehabil. 2002, 29, 682–688. [Google Scholar] [CrossRef]
- Lucas, M.E.; Arita, K.; Nishino, M. Toughness, bonding and fluoride-release properties of hydroxyapatite-added glass ionomer cement. Biomaterials 2003, 24, 3787–3794. [Google Scholar] [CrossRef]
- Haider, A.; Haider, S.; Han, S.S.; Kang, I.-K. Recent advances in the synthesis, functionalization and biomedical applications of hydroxyapatite: A review. Rsc Adv. 2017, 7, 7442–7458. [Google Scholar] [CrossRef] [Green Version]
- Xiaoying, L.; Yongbin, F.; Wei, C. Preparation and characterization of natural hydroxyapatite from animal hard tissues. Key Eng. Mater. 2007, 342, 213–216. [Google Scholar]
- Pu’ad, N.A.M.; Koshy, P.; Abdullah, H.; Idris, M.; Lee, T. Syntheses of hydroxyapatite from natural sources. Heliyon 2019, 5, e01588. [Google Scholar]
- Dorozhkin, S. Calcium orthophosphates in nature, biology and medicine. Materials 2009, 2, 399–498. [Google Scholar] [CrossRef] [Green Version]
- Akram, M.; Ahmed, R.; Shakir, I. Extracting hydroxyapatite and its precursors from natural resources. J. Mater. Sci. 2014, 49, 1461–1475. [Google Scholar] [CrossRef]
- Mobasherpour, I.; Heshajin, M.S.; Kazemzadeh, A.; Zakeri, M. Synthesis of nanocrystalline hydroxyapatite by using precipitation method. J. Alloys Compd. 2007, 430, 330–333. [Google Scholar] [CrossRef]
- Wahab, R.M.A.; Abdullah, N.; Ariffin, S.H.Z.; Abdullah, C.A.C.; Yazid, F. Effects of the Sintering Process on Nacre-Derived Hydroxyapatite Scaffolds for Bone Engineering. Molecules 2020, 25, 3129. [Google Scholar] [CrossRef] [PubMed]
- Barandehfard, F.; Rad, M.K.; Hosseinnia, A.; Khoshroo, K.; Tahriri, M.; Jazayeri, H.E.; Moharamzadeh, K.; Tayebi, L. The addition of synthesized hydroxyapatite and fluorapatite nanoparticles to a glass-ionomer cement for dental restoration and its effects on mechanical properties. Ceram. Int. 2016, 42, 17866–17875. [Google Scholar] [CrossRef] [Green Version]
- Lin, K.; Chang, J. Structure and properties of hydroxyapatite for biomedical applications. In Hydroxyapatite (HAp) for Biomedical Applications; Woodhead Publishing: Oxford, UK, 2015; pp. 3–9. [Google Scholar]
- Prakasam, M.; Locs, J.; Ancane, K.S.; Loca, D.; Largeteau, A.; Berzina-Cimdina, L. Fabrication, properties and applications of dense hydroxyapatite: A review. J. Funct. Biomater. 2015, 6, 1099–1140. [Google Scholar] [CrossRef] [Green Version]
- Kong, L.B.; Ma, J.; Boey, F. Nanosized hydroxyapatite powders derived from coprecipitation process. J. Mater. Sci. 2002, 37, 1131–1134. [Google Scholar] [CrossRef]
- Kantharia, N.; Naik, S.; Apte, S.; Kheur, M.; Kheur, S.; Kale, B. Nano-hydroxyapatite and its contemporary applications. Bone 2017, 34, 1–71. [Google Scholar] [CrossRef] [Green Version]
- Amit, K.N. Hydroxyapatite synthesis methodologies: An overview. Int. J. ChemTech Res. 2010, 2, 903–907. [Google Scholar]
- Rahman, I.A.; Masudi, S.M.; Luddin, N.; Rayees, A.S. One-pot synthesis of hydroxyapatite-silica nanopowder composite for hardness enhancement of glass ionomer cement (GIC). Bull. Mater. Sci. 2014, 37, 213–219. [Google Scholar] [CrossRef] [Green Version]
- Shiekh, R.A.; Rahman, I.A.; Masudi, S.M.; Luddin, N. Modification of glass ionomer cement by incorporating hydroxyapatite-silica nano-powder composite: Sol-gel synthesis and characterization. Ceram. Int. 2013, 40, 3165–3170. [Google Scholar] [CrossRef]
- Moshaverinia, A.; Ansari, S.; Moshaverinia, M.; Roohpour, N.; Darr, J.A.; Rehman, I. Effects of incorporation of hydroxyapatite and fluoroapatite nanobioceramics into conventional glass ionomer cements (GIC). Acta Biomater. 2008, 4, 432–440. [Google Scholar] [CrossRef]
- Anitha, P.; Pandya, H.M. Comprehensive review of preparation methodologies of nanohydroxyapatite. J. Environ. Nanotechnol. 2014, 3, 101–121. [Google Scholar]
- Huang, G.; Lu, C.-H.; Yang, H.-H. Magnetic nanomaterials for magnetic bioanalysis. Nov. Nanomater. Biomed. Environ. Energy Appl. 2019, 89, 109. [Google Scholar]
- Bilic-Pricic, M.; Rajic, V.B.; Ivanisevic, A.; Pilipovic, A.; Gurgan, S.; Miletic, I. Mechanical properties of glass ionomer cements after incorporation of Marine Derived Hydroxyapatite. Materials 2020, 13, 3542. [Google Scholar] [CrossRef]
- Rogina, A.; Antunovic, M.; Milovac, D. Biomimetic design of bone substitutes based on cuttlefish bone-derived hydroxyapatite and biodegradable polymers. Biomed. Mater. Res. B Appl. Biomater. 2019, 107, 197–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmoud, N.A.; Metwally, A.A. Fluoride release and recharging ability of glass ionomer cement incorporating hydroxyapatite nanoparticles. Egypt. Dent. J. 2021, 67, 3741–3749. [Google Scholar] [CrossRef]
- Al-Hamaoy, A.R.; Alobiedy, A.N.; Alhille, A.H. Glass ionomer cement mechanical properties enhancement using hydroxyapatite micro and nano particles. ARPN J. Eng. Appl. Sci. 2018, 13, 2090–2095. [Google Scholar]
- Rhee, S.-H. Synthesis of hydroxyapatite via mechanochemical treatment. Biomaterials 2002, 23, 1147–1152. [Google Scholar] [CrossRef]
- Lin, K.; Chang, J.; Cheng, R.; Ruan, M. Hydrothermal microemulsion synthesis of stoichiometric single crystal hydroxyapatite nanorods with mono-dispersion and narrow-size distribution. Mater. Lett. 2007, 61, 1683–1687. [Google Scholar] [CrossRef]
- Hapuhinna, H.K.G.K.D.; Gunaratne, R.; Pitawala, H.M.J. A novel approach of synthesizing 2-hydroxyethyl methacrylate embedded hydroxyapatite composites for dentistry applications. R. D. Gunaratne J. Eng. Res. Appl. 2019, 9, 51–57. [Google Scholar]
- Rahman, N.A.A.; Matori, K.; Zaid, M.; Zainuddin, N.; Aziz, S.A.; Khiri, M.Z.A.; Jalil, R.A.; Jusoh, W.N.W. Fabrication of Alumino-Silicate-Fluoride based bioglass derived from waste clam shell and soda lime silica glasses. Results Phys. 2019, 12, 743–747. [Google Scholar] [CrossRef]
- Moheet, I.A.; Luddin, N.; Rahman, I.A.; Masudi, S.M.; Kannan, T.P.; Ghani, N.R.N.A. Evaluation of mechanical properties and bond strength of nano-hydroxyapatite-silica added glass ionomer cement. Ceram. Int. 2018, 44, 9899–9906. [Google Scholar] [CrossRef]
- Basir, M.M.; Ataei, M.; Rezvani, M. The effect of different amounts of hydroxyapatite nanoparticles on the mechanical properties of resin modified glass ionomer. J. Dent. Sch. 2011, 30, 216–223. [Google Scholar]
- Masaeli, R.; Ketabat, F.; Zandsalimi, K. Microhardness and wear resistance of glass ionomer cements modified by chitosan anf nano-hydroxyapatite. J. Dentomaxillofacial 2019, 8, 8–13. [Google Scholar]
- Noorani, T.Y.; Norhayati, L.; Rahman, I.A.; Masudi, S.M. In vitro Cytotoxicity Evaluation of Novel Nano-Hydroxyapatite-Silica Incorporated Glass Ionomer Cement. J. Clin. Diagn. Res. 2017, 11, ZC105. [Google Scholar] [CrossRef]
- Pagano, S.; Chieruzzi, M.; Balloni, S.; Lombardo, G.; Torre, L.; Bodo, M.; Cianetti, S.; Marinucci, L. Biological, thermal and mechanical characterization of modified glass ionomer cements: The role of nanohydroxyapatite, ciprofloxacin and zinc L-carnosine. Mater. Sci. Eng. C 2019, 94, 76–85. [Google Scholar] [CrossRef] [PubMed]
- De Castro, A.K.B.B.; Pimenta, L.A.F.; Amaral, C.M.; Ambrosano, G.M.B. Evaluation of microleakage in cervical margins of various posterior restorative systems. J. Esthet. Restor. Dent. 2002, 14, 107–114. [Google Scholar] [CrossRef]
- Mu, Y.; Zang, X.; Sun, H.; Wang, C. Effect of nano-hydroxyapatite to glass ionomer cement. West China J. Stomatol. 2007, 25, 544–547. [Google Scholar]
- Enan, E.T.; Hammad, S.M. Microleakage under orthodontic bands cemented with nano-hydroxyapatite- modified glass ionomer An in vivo study. Angle Orthod. 2013, 83, 981–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishimura, T.; Shinonaga, Y.; Abe, Y.; Kawai, S.; Arita, K. Porous hydroxyapatite can improve strength and bioactive functions of glass ionomer cement. Nano Biomed. 2014, 6, 53–62. [Google Scholar]
- Selimovic-Dragas, M.; Lajla, H.-B.; Huseinbegovic, A.; Kobaslija, S.; Lekic, M.; Hatibovic-Kofman, S. In vitro fluoride release from a different kind of conventional and resin modified glass-ionomer cements. Bosn. J. Basic Med. Sci. 2013, 13, 197. [Google Scholar] [CrossRef] [PubMed]
- Alatawi, R.A.S.; Elsayed, N.H.; Mohamed, W.S. Influence of hydroxyapatite nanoparticles on the properties of glass ionomer cement. J. Mater. Res. Technol. 2019, 8, 344–349. [Google Scholar] [CrossRef]
- Hoszek, A.; Ericson, D. In vitro fluoride release and the antibacterial effect of glass lonomers containing chlorhexidine gluconate. Oper. Dent. 2008, 33, 696–701. [Google Scholar] [CrossRef] [Green Version]
- Attar, N.; Önen, A. Fluoride release and uptake characteristics of aesthetic restorative materials. J. Oral Rehabil. 2002, 29, 791–798. [Google Scholar] [CrossRef]
- Moheet, I.A.; Luddin, N.; Rahman, I.A.; Masudi, S.M.; Kannan, T.P.; Ghani, N.R.N.A. Novel nano-hydroxyapatite-silica–added glass ionomer cement for dental application: Evaluation of surface roughness and sol-sorption. Polym. Polym. Compos. 2020, 28, 299–308. [Google Scholar] [CrossRef]
- Chen, C.N.; Huang, G.F.; Guo, M.K.; Lin, C.P. An in vitro study on restoring bond strength of a GIC to saliva contaminated enamel under unrinse condition. J. Dent. 2002, 30, 189–194. [Google Scholar] [CrossRef]
- Vega-Avila, E.; Pugsley, M. An overview of colorimetric assay methods used to assess survival or proliferation of mammalian cells. Proc. West. Pharmacol. Soc. 2011, 54, 10–14. [Google Scholar] [PubMed]
- Hafshejani, T.M.; Zamanian, A.; Reddy, V.J.; Zahra, R.; Sefat, F.; Mohammad, R.S.; Vahabi, H.; Zarrintaj, P. Mozafari Antibacterial glass-ionomer cement restorative materials: A critical review on the current status of extended release formulations. J. Control Release 2017, 26, 317–328. [Google Scholar] [CrossRef]
- Gupta, A.; Singh, D.; Raj, P.; Gupta, H.; Verma, S.; Bhattacharya, S. Investigaton of ZnO-hydroxyapatite nanocomposite incorporated in restorative glass ionomer cement to enhance its mechanical and antibacterial properties. J. Bionanoscience 2015, 9, 190–196. [Google Scholar] [CrossRef]
- Shinonaga, Y.; Arita, K.; Nishimura, T.; Chiu, S.Y.; Chiu, H.H.; Abe, Y.; Sonomoto, M.; Harada, K.; Nagaoka, M. Effects of porous-hydroxyapatite incorporated into glass-ionomer sealants. Dent. Mater. J. 2015, 34, 196–202. [Google Scholar] [CrossRef] [Green Version]
- Guan, X.; Zhang, H.; Bi, Y.; Zhang, L.; Hao, D.-L. Rapid detection of pathogens using antibody-coated microbeads with bioluminescence in microfluidic chips. Biomed. Microdevices 2010, 12, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Kheur, M.; Kantharia, N.; Lakha, T.; Kheur, S.; Husain, N.A.-H.; Ozcan, M. Evaluation of mechanical and adhesion properties of glass ionomer cement incorporating nano-sized hydroxyapatite particles. Odontology 2020, 108, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Genaro, L.E.; Anovazzi, G.; Hebling, J.; Zuanon, A.C.C. Glass ionomer cement modified by resin with incorporation of nanohydroxyapatite: In vitro evaluation of physical-biological properties. Nanomaterials 2020, 10, 1412. [Google Scholar] [CrossRef] [PubMed]
Type/Composition of GIC | Type of HA Used | Analysis | Outcomes | Reference |
---|---|---|---|---|
Fuji I GC Fluoroalumino-silicate glass powder and liquid PAA | NanoHA | Flexural strength Shear bond strength | 6% nanoHA enhanced both flexural strength and shear bond strength | [63] |
Conventional GIC Fluoroalumino-silicate glass powder, acrylic and maleic acid polybase carboxylic acid, water | ZnO- nanoHA | Antimicrobial properties using disk diffusion test. Microhardness testing using Vickers hardness indentation test. | ZnO-nHA improved the antimicrobial activity of GIC against S.mutans and E.coli. The microhardness of GIC is increased by the addition of ZnO-nHA. | [60] |
Fuji Ⅲ Fluoroalumino-silicate powder, liquid PAA and water. | Porous hydroxyapatite (HA) | Flexural strength via three point bending test. Antibacterial activity using ATP luminescence method. Fluoride ion release test. | Flexural strength significantly increased when 28% HA is added. Addition of HA increased the antibacterial activity and fluoride ion release. | [61] |
Fuji Ⅱ LC Fluoro-alumino-silicate glass powder, liquid PAA, distilled water, 2-HEMA, urethane dimethylacrylate, camphorquinone. | nanoHA | Flexural strength. Compressive strength. | 8% nHA addition increased flexural and compressive strength. | [49] |
Resin-modified GIC (RMGIC) Aluminosilicate glass powder, liquid PAA, distilled water, HEMA, dimethacrylate monomer and camphorquinone. | NanoHA | Cytotoxicity test using MTT assay. | Cell viability increased when nHA is increased up to 10% | [64] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murugan, R.; Yazid, F.; Nasruddin, N.S.; Anuar, N.N.M. Effects of Nanohydroxyapatite Incorporation into Glass Ionomer Cement (GIC). Minerals 2022, 12, 9. https://doi.org/10.3390/min12010009
Murugan R, Yazid F, Nasruddin NS, Anuar NNM. Effects of Nanohydroxyapatite Incorporation into Glass Ionomer Cement (GIC). Minerals. 2022; 12(1):9. https://doi.org/10.3390/min12010009
Chicago/Turabian StyleMurugan, Rishnnia, Farinawati Yazid, Nurrul Shaqinah Nasruddin, and Nur Najmi Mohamad Anuar. 2022. "Effects of Nanohydroxyapatite Incorporation into Glass Ionomer Cement (GIC)" Minerals 12, no. 1: 9. https://doi.org/10.3390/min12010009
APA StyleMurugan, R., Yazid, F., Nasruddin, N. S., & Anuar, N. N. M. (2022). Effects of Nanohydroxyapatite Incorporation into Glass Ionomer Cement (GIC). Minerals, 12(1), 9. https://doi.org/10.3390/min12010009