Depositional Conditions of Cretaceous Ironstones Deposit in the Chulym-Yenisey Basin (Western Siberia)
Abstract
:1. Introduction
2. Geological Background
3. Materials and Methods
4. Results
4.1. Lithology and Mineralogy
4.2. Geochemistry
5. Discussion
5.1. Metal Sources of the Chulym-Yenisey Deposits and West-Siberian Iron-Ore Basin
5.2. Depositional and Diagenetic Conditions
5.3. Paleo-Environmental Conditions
6. Conclusions
- Continental sediments of Cretaceous Ilek and Kia Formations of the Chulym-Yenisei depression consist of two lithofacies: (i) cross-stratified litho-feldspatho-quartzose sandstones and siltstones and (ii) bluish-gray siltstones with ironstones. These two facies document fluvial channel and floodplain–lacustrine–boggy deposits, respectively. Thin layers of ironstones within siltstones indicate deposition in meromictic waters.
- The detrital minerals of studied deposits are represented by quartz and feldspars. The main iron-rich authigenic minerals of ironstones are chlorite group (possible chamosite), goethite, siderite, pyrite, nontronite, and illite. Non-iron minerals are kaolinite, beidellite, aragonite, dolomite, calcite, apatite, and barite. Local bacterial sulfate reduction led to the formation of pyrite framboids in siltstone layers. The subsequent diagenetic iron reduction, induced by microbial activity, promoted iron diffusion transfer and the formation of chamosite. Goethite precipitated in an aqueous system due to the additional input iron-rich water.
- The changes in geochemical proxies in the studied Cretaceous sequence demonstrate fluctuations in paleoenvironmental conditions. Siltstones accumulated under humid conditions, while sandstones were deposited in weakly arid conditions. This could be linked with iron mobilization due to increased weathering of the rocks of the Kuznetsk Alatau as a possible result of intense humidification during oceanic anoxic events.
- During the Cretaceous, the Chulym-Yenisey depression was a part of a distinctive continental environment, unlike the West Siberian plate, where marine ooidal ironstones were deposited. Most irons within the Chulym-Yenisey depression were supplied from the Altai-Sayan mountainous region. Mineralogical and geochemical characteristics of these ironstones are clearly distinguished, indicating different iron sources for the Chulym-Yenisey basin and the ancient West Siberian Sea.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
REE | Rare Earth Elements |
REY | Rare Earth Elements and Yttrium |
LREE | Light Rare Earth Elements |
HREE | Heavy rRare Rarth Elements |
SEM | Scanning Electron Microscopy |
EDS | Energy-Dispersive detector |
XRD | X-ray Diffraction analysis |
TEM | Transmission Electron Microscopy |
CIA | Chemical Index of Alteration |
UCC | Upper Continental Crust |
PAAS | Post-Archean Australian Shale |
References
- Van Houten, F.B. Review of Cenozoic ooidal ironstones. Sediment. Geol. 1992, 78, 101–110. [Google Scholar] [CrossRef]
- Van Houten, F.B.; Bhattacharyya, D.P. Phanerozoic Oolitic Ironstones—Geologic Record and Facies Model. Annu. Rev. Earth Planet. Sci. 1982, 10, 441–457. [Google Scholar] [CrossRef]
- Young, T.P. Phanerozoic ironstones: An introduction and review. Geol. Soc. Lond. Spec. Publ. 1989, 46, ix–xxv. [Google Scholar] [CrossRef]
- Taylor, W.E.G. SEDIMENTARY ROCKS|Ironstones. In Encyclopedia of Geology; Harper & Row: New York, NY, USA, 2005; pp. 97–107. ISBN 9780123693969. [Google Scholar]
- Petranek, J.; Van Houten, F.B. Phanerozoic Ooidal Ironstones. Czech Geol. Surv. Spec. Pap. 1997, 7, 4–71. [Google Scholar]
- Kimberley, M.M. Exhalative origins of iron formations. Ore Geol. Rev. 1989, 5, 13–145. [Google Scholar] [CrossRef]
- Van Houten, F.B. Search for Milankovitch patterns among oolitic ironstones. Paleoceanography 1986, 1, 459–466. [Google Scholar] [CrossRef]
- Van Houten, F.B.; Arthur, M.A. Temporal patterns among Phanerozoic oolitic ironstones and oceanic anoxia. Geol. Soc. Spec. Publ. 1989, 46, 33–49. [Google Scholar] [CrossRef]
- Kimberley, M.M. Debate about ironstone: Has solute supply been surficial weathering, hydrothermal convection, or exhalation of deep fluids? Terra Nova 1994, 6, 116–132. [Google Scholar] [CrossRef]
- Kimberley, M.M. Origin of Oolitic Iron Formations. SEPM J. Sediment. Res. 1979, 49, 111–131. [Google Scholar] [CrossRef]
- Kholodov, V.N.; Nedumov, R.I.; Golubovskaya, E.V. Facies types of sedimentary iron ore deposits and their geochemical features: Communication 2. Problems of the geochemistry of phanerozoic iron ores. Lithol. Miner. Resour. 2013, 48, 14–47. [Google Scholar] [CrossRef]
- Mücke, A. Chamosite, siderite and the environmental conditions of their formation in chamosite-type Phanerozoic ooidal ironstones. Ore Geol. Rev. 2006, 28, 235–249. [Google Scholar] [CrossRef]
- Müller, G.; Förstner, U. Recent iron ore formation in Lake Malawi, Africa. Miner. Depos. 1973, 8, 278–290. [Google Scholar] [CrossRef]
- Rohrlich, V. Microstructure and microchemistry of iron ooliths. Miner. Depos. 1974, 9, 133–142. [Google Scholar] [CrossRef]
- Golubovskaya, E.V. Geochemistry of oolitic iron ores of different facies in the northern Aral region. Lithol. Miner. Resour. 2005, 40, 187–190. [Google Scholar] [CrossRef]
- Morris, R.C.; Ramanaidou, E.R. Genesis of the channel iron deposits (CID) of the Pilbara region, Western Australia. Aust. J. Earth Sci. 2007, 54, 733–756. [Google Scholar] [CrossRef]
- Bekker, A.; Kovalick, A. Ironstones, Iron Formations, and Iron Ore. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Swanner, E.D.; Lambrecht, N.; Wittkop, C.; Harding, C.; Katsev, S.; Torgeson, J.; Poulton, S.W. The biogeochemistry of ferruginous lakes and past ferruginous oceans. Earth-Sci. Rev. 2020, 211, 103430. [Google Scholar] [CrossRef]
- Rudmin, M.; Kalinina, N.; Banerjee, S.; Reva, I.; Kondrashova, E.; Kanaki, A.; Trubin, Y.; Baldermann, A.; Mazurov, A. Origin of Oligocene channel ironstones of Lisakovsk deposit (Turgay depression, northern Kazakhstan). Ore Geol. Rev. 2021, 104391. [Google Scholar] [CrossRef]
- Formozova, L.N. Iron Ores in the Northern Aral Region; USSR Academy Science: Moskow, Russia, 1959. [Google Scholar]
- Yanitskiy, A.L. Oligocene Oolitic Iron Ores of Northern Turgai and Its Genesis; AN USSR: Moscow, Russia, 1960. [Google Scholar]
- Ramanaidou, E.R.; Morris, R.C.; Horwitz, R.C. Channel iron deposits of the Hamersley Province, Western Australia. Aust. J. Earth Sci. 2003, 50, 669–690. [Google Scholar] [CrossRef]
- Dalstra, H.J.; Gill, T.; Faragher, A.; Scott, B.; Kakebeeke, V. Channel iron deposits, a major new district around the Caliwingina Creek, central Hamersley Ranges, Western Australia. Trans. Inst. Min. Metall. Sect. B Appl. Earth Sci. 2010, 119, 12–20. [Google Scholar] [CrossRef]
- McGregor, F.; Ramanaidou, E.; Wells, M. Phanerozoic ooidal ironstone deposits—generation of potential exploration targets. Appl. Earth Sci. 2010, 119, 60–64. [Google Scholar] [CrossRef]
- Simonson, B.M.; Schubel, K.A.; Hassler, S.W. Carbonate sedimentology of the early Precambrian Hamersley Group of Western Australia. Precambrian Res. 1993, 60, 287–335. [Google Scholar] [CrossRef]
- Bodor, S.; Polgári, M.; Szentpétery, I.; Földessy, J. Microbially mediated iron ore formation, Silicic Superunit, Rudabánya, Hungary. Ore Geol. Rev. 2016, 72, 391–401. [Google Scholar] [CrossRef] [Green Version]
- Haest, M.; Cudahy, T.; Laukamp, C.; Gregory, S. Quantitative mineralogy from infrared spectroscopic data. II. Three-dimensional mineralogical characterization of the rocklea channel iron deposit, Western Australia. Econ. Geol. 2012, 107, 229–249. [Google Scholar] [CrossRef]
- Haest, M.; Cudahy, T.; Laukamp, C.; Gregory, S. Quantitative mineralogy from infrared spectroscopic data. I. Validation of mineral abundance and composition scripts at the rocklea channel iron deposit in Western Australia. Econ. Geol. 2012, 107, 209–228. [Google Scholar] [CrossRef]
- Schmitz, B.; Pujalte, V. Sea-level, humidity, and land-erosion records across the initial Eocene thermal maximum from a continental-marine transect in northern Spain. Geology 2003, 31, 689–692. [Google Scholar] [CrossRef]
- Jenkyns, H.C. Cretaceous anoxic events: From continents to oceans. J. Geol. Soc. 1980, 137, 171–188. [Google Scholar] [CrossRef]
- Weijers, J.W.H.; Schouten, S.; Sluijs, A.; Brinkhuis, H.; Sinninghe Damsté, J.S. Warm arctic continents during the Palaeocene–Eocene thermal maximum. Earth Planet. Sci. Lett. 2007, 261, 230–238. [Google Scholar] [CrossRef] [Green Version]
- Poulton, S.W.; Henkel, S.; März, C.; Urquhart, H.; Flögel, S.; Kasten, S.; Sinninghe Damsté, J.S.; Wagner, T. A continental-weathering control on orbitally driven redox-nutrient cycling during Cretaceous Oceanic Anoxic Event 2. Geology 2015, 43, 963–966. [Google Scholar] [CrossRef] [Green Version]
- Brett, C.E.; McLaughlin, P.I.; Histon, K.; Schindler, E.; Ferretti, A. Time-specific aspects of facies: State of the art, examples, and possible causes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 367–368, 6–18. [Google Scholar] [CrossRef]
- Shczepetov, S.V. On Stratigraphy and Flora of Cretaceous Deposits in the Chulym-Yenisei Region, Western Siberia. Stratigr. Geol. Correl. 2018, 26, 474–487. [Google Scholar] [CrossRef]
- Akhmetiev, M.A.; Zaporozhets, N.I. Paleogene events in Central Eurasia: Their role in the flora and vegetation cover evolution, migration of phytochore boundaries, and climate changes. Stratigr. Geol. Correl. 2014, 22, 312–335. [Google Scholar] [CrossRef]
- Kontorovich, A.E.; Ershov, S.V.; Kazanenkov, V.A.; Karogodin, Y.N.; Kontorovich, V.A.; Lebedeva, N.K.; Nikitenko, B.L.; Popova, N.I.; Shurygin, B.N. Cretaceous paleogeography of the West Siberian sedimentary basin. Russ. Geol. Geophys. 2014, 55, 582–609. [Google Scholar] [CrossRef]
- Frieling, J.; Iakovleva, A.I.; Reichart, G.-J.; Aleksandrova, G.N.; Gnibidenko, Z.N.; Schouten, S.; Sluijs, A. Paleocene-Eocene warming and biotic response in the epicontinental West Siberian Sea. Geology 2014, 42, 767–770. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.G.; Smith, D.G.; Funnell, B.M. Atlas of Mesozoic and Cenozoic Coastlines; Cambridge University Press: Cambridge, UK, 1994; ISBN 0521451558. [Google Scholar]
- Belous, N.C.; Nikolaeva, I.V.; Kazansky, Y.P.; Berdnikov, A.P.; Klyarovskiy, V.M.; Kuznetsov, V.P.; Babin, A.A. The Western-Siberian Iron Ore Basin; Siberian Branch of the Academy of Sciences of the USSR: Novosibirsk, Russia, 1964. [Google Scholar]
- Rudmin, M.; Mazurov, A.; Bolsunovskaya, L. Mineral and elemental composition features of “loose” oolitic ores in Bakchar iron ore cluster (Tomsk oblast). In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2014; Volume 21, pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Rudmin, M.; Banerjee, S.; Mazurov, A.; Makarov, B.; Martemyanov, D. Economic potential of glauconitic rocks in Bakchar deposit (S-E Western Siberia) for alternate potash fertilizer. Appl. Clay Sci. 2017, 150, 225–233. [Google Scholar] [CrossRef]
- Rudmin, M.; Reva, I.; Sokol, E.; Abdullayev, E.; Ruban, A.; Kudryavtsev, A.; Tolkachev, O.; Mazurov, A. Minerals of Rare Earth Elements in High-Phosphorus Ooidal Ironstones of the Western Siberia and Turgai Depression. Minerals 2019, 10, 16. [Google Scholar] [CrossRef] [Green Version]
- Rudmin, M.A.; Mazurov, A.K.; Reva, I.V.; Stebletsov, M.D. Prospects of integrated development of Bakchar iron deposit (Western Siberia, Russia). Bull. Tomsk Polytech. Univ. Geo Assets Eng. 2018, 329, 85–94. [Google Scholar]
- Lipayeva, A.V.; Pavlov, D.I. Subsurface waters and the generation of iron ores in the northern Priaralye. Lithol. Miner. Resour. 1986, 104–117. [Google Scholar]
- Pavlov, D.I.; Gorzhevskiy, D.I.; Goleva, G.A.; Kalinko, M.K.; Kartsev, A.A.; Lipayeva, A.V. Conjunction of ore- and oil-forming systems in sedimentary basins and the prediction of ore deposits. Int. Geol. Rev. 1991, 33, 822–829. [Google Scholar] [CrossRef]
- Pavlov, D.I. Relationship of sedimentary iron and manganese deposits with petroleum and gas-bearing basins. Geol. Ore Depos. 1989, 31, 80–91. [Google Scholar]
- Rudmin, M.; Banerjee, S.; Abdullayev, E.; Ruban, A.; Filimonenko, E.; Lyapina, E.; Kashapov, R.; Mazurov, A. Ooidal ironstones in the Meso-Cenozoic sequences in western Siberia: Assessment of formation processes and relationship with regional and global earth processes. J. Palaeogeogr. 2020, 9, 1. [Google Scholar] [CrossRef] [Green Version]
- Rudmin, M.; Mazurov, A.; Banerjee, S. Origin of ooidal ironstones in relation to warming events: Cretaceous-Eocene Bakchar deposit, south-east Western Siberia. Mar. Pet. Geol. 2019, 100, 309–325. [Google Scholar] [CrossRef]
- Rudmin, M.; Roberts, A.P.; Horng, C.-S.; Mazurov, A.; Savinova, O.; Ruban, A.; Kashapov, R.; Veklich, M. Ferrimagnetic Iron Sulfide Formation and Methane Venting Across the Paleocene-Eocene Thermal Maximum in Shallow Marine Sediments, Ancient West Siberian Sea. Geochem. Geophys. Geosystems 2018, 19, 21–42. [Google Scholar] [CrossRef] [Green Version]
- Buslov, M.M.; Watanabe, T.; Smirnova, L.V.; Fujiwara, I.; Iwata, K.; de Grave, I.; Semakov, N.N.; Travin, A.V.; Kir’yanova, A.P.; Kokh, D.A. Role of strike-slip faults in Late Paleozoic-Early Mesozoic tectonics and geodynamics of the Altai-Sayan and East Kazakhstan folded zone. Geol. I Geofiz. 2003, 44, 49–75. [Google Scholar]
- Surkov, V.S. Neogean evolution of the young Ural-Siberian platform. Geol. I Geofiz. 2002, 43, 754–761. [Google Scholar]
- Babin, G.A.; Gusev, N.I.; Yuryev, A.A.; Uvarov, A.N.; Dubskiy, V.C.; Chernykh, A.I.; Tchigrev, A.F.; Chusovitina, G.D.; Korableva, T.V.; Kosyakova, L.N.; et al. State Geological Map of the Russian Federation. Scale 1: 1000000. Third Generation. Series: Altai–Sayan. Sheet N-45-Novokuznetsk; VSEGEI: St. Petersburg, FL, USA, 2007. [Google Scholar]
- Averianov, A.O.; Voronkevich, A.V.; Leshchinskiy, S.V.; Fayngertz, A.V. A Ceratopsian dinosaur Psittacosaurus sibiricus from the Early Cretaceous of West Siberia, Russia and its phylogenetic relationships. J. Syst. Palaeontol. 2010, 4, 359–395. [Google Scholar] [CrossRef]
- Skutschas, P.P.; Markova, V.D.; Boitsova, E.A.; Leshchinskiy, S.V.; Ivantsov, S.V.; Maschenko, E.N.; Averianov, A.O. The first dinosaur egg from the Lower Cretaceous of Western Siberia, Russia. Hist. Biol. 2017, 31, 836–844. [Google Scholar] [CrossRef]
- Leshchinskiy, S.V.; Faingerts, A.V.; Ivantsov, S.V. Bol’shoi Ilek as the Ilek Formation Stratotype of the Lower Cretaceous and a New Dinosaur and Mammoth Fauna Site in the Southeastern Western Siberia. Dokl. Earth Sci. 2019, 488, 1157–1160. [Google Scholar] [CrossRef]
- Skutschas, P.; Morozov, S.; Averianov, A.; Leshchinskiy, S.; Ivantsov, S.; Fayngerts, A.; Feofanova, O.; Vladimirova, O.; Slobodin, D. Femoral histology and growth patterns of the ceratopsian dinosaur Psittacosaurus sibiricus from the Early Cretaceous of Western Siberia. Acta Palaeontol. Pol. 2021, 66. [Google Scholar] [CrossRef]
- Brumsack, H.-J. The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 232, 344–361. [Google Scholar] [CrossRef]
- Tribovillard, N.; Algeo, T.J.; Lyons, T.; Riboulleau, A. Trace metals as paleoredox and paleoproductivity proxies: An update. Chem. Geol. 2006, 232, 12–32. [Google Scholar] [CrossRef]
- Price, J.R.; Velbel, M.A. Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chem. Geol. 2003, 202, 397–416. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 1982, 299, 715–717. [Google Scholar] [CrossRef]
- Mondillo, N.; Boni, M.; Joachimski, M.; Santoro, L. C–O stable isotope geochemistry of carbonate minerals in the nonsulfide zinc deposits of the middle east: A review. Minerals 2017, 7, 217. [Google Scholar] [CrossRef] [Green Version]
- Rudnick, R.L.; Gao, S. Composition of the Continental Crust. In Treatise on Geochemistry; Elsevier: Amsterdam, The Netherlands, 2014; pp. 1–51. ISBN 9780080983004. [Google Scholar]
- Liu, C.; Liu, K.; Wang, X.; Wu, L.; Fan, Y. Chemostratigraphy and sedimentary facies analysis of the Permian Lucaogou Formation in the Jimusaer Sag, Junggar Basin, NW China: Implications for tight oil exploration. J. Asian Earth Sci. 2019, 178, 96–111. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, R.; Liu, Z.; Li, B.; Han, J.; Zhao, K. Influence of volcanic and hydrothermal activity on organic matter enrichment in the Upper Triassic Yanchang Formation, southern Ordos Basin, Central China. Mar. Pet. Geol. 2020, 112, 104059. [Google Scholar] [CrossRef]
- Danzelle, J.; Riquier, L.; Baudin, F.; Thomazo, C.; Pucéat, E. Oscillating redox conditions in the Vocontian Basin (SE France) during Oceanic Anoxic Event 2 (OAE 2). Chem. Geol. 2018, 493, 136–152. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution. An Examination of the Geochemical Record Preserved in Sedimentary Rocks; Blackwell: Oxford, UK, 1985; ISBN 0632011483. [Google Scholar]
- Iakovleva, A.I. Palynological reconstruction of the Eocene marine palaeoenvironments in south of western Siberia. Acta Palaeobot. 2011, 51, 229–248. [Google Scholar]
- Carney, J.P.; Dick, T.A. The historical ecology of yellow perch (Perca flavescens [Mitchill]) and their parasites. J. Biogeogr. 2000, 27, 1337–1347. [Google Scholar] [CrossRef]
- Akhmet’ev, M.A.; Zaporozhets, N.I.; Iakovleva, A.I.; Aleksandrova, G.N.; Beniamovsky, V.N.; Oreshkina, T.V.; Gnibidenko, Z.N.; Dolya, Z.A. Comparative analysis of marine paleogene sections and biota from West Siberia and the Arctic Region. Stratigr. Geol. Correl. 2010, 18, 635–659. [Google Scholar] [CrossRef]
- Nikolaeva, I.V. Bakchar Oolitic Iron Ore Deposit; Siberian Branch of the Academy of Sciences of the USSR: Novosibirsk, Russia, 1967. [Google Scholar]
- Rudmin, M.A.; Mazurov, A.K. Oolitic ores in the Bakchar iron-ore cluster (Tomsk Oblast). Dokl. Earth Sci. 2016, 471, 1238–1241. [Google Scholar] [CrossRef]
- Strakhov, N.M. Iron Ore Facies and Their Analogues in the Earth’s History: Experience of Historical-Geographical Analysis of Sedimentary Processes. Tr. IGN AN SSSR. Geol. Ser. 1947, 22, 261–267. [Google Scholar]
- Kholodov, V.N.; Nedumov, R.I.; Golubovskaya, E.V. Facies types of sedimentary iron ore deposits and their geochemical features: Communication 1. Facies groups of sedimentary ores, their lithology, and genesis. Lithol. Miner. Resour. 2012, 47, 447–472. [Google Scholar] [CrossRef]
- Heikoop, J.M.; Tsujita, C.J.; Risk, M.J.; Tomascik, T.; Mah, A.J. Modern iron ooids from a shallow-marine volcanic setting: Mahengetang, Indonesia. Geology 1996, 24, 759–762. [Google Scholar] [CrossRef]
- Lemoalle, J.; Dupont, B. Iron-bearing Oolites and the Present Conditions of Iron Sedimentation in Lake Chad (Africa). In Ores in Sediments; Springer: Berlin/Heidelberg, Germany, 1973; pp. 167–178. [Google Scholar]
- Sturesson, U.; Heikoop, J.M.; Risk, M.J. Modern and Palaeozoic iron ooids—a similar volcanic origin. Sediment. Geol. 2000, 136, 137–146. [Google Scholar] [CrossRef]
- Di Bella, M.; Sabatino, G.; Quartieri, S.; Ferretti, A.; Cavalazzi, B.; Barbieri, R.; Foucher, F.; Messori, F.; Italiano, F. Modern Iron Ooids of Hydrothermal Origin as a Proxy for Ancient Deposits. Sci. Rep. 2019, 9, 7107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, C.S.; Smith, A.M. Stable oxygen and carbon isotope compositional fields for skeletal and diagenetic components in New Zealand Cenozoic nontropical carbonate sediments and limestones: A synthesis and review. N. Z. J. Geol. Geophys. 1996, 39, 93–107. [Google Scholar] [CrossRef]
- Mozley, P.S.; Wersin, P. Isotopie composition of siderite as an indicator of depositional environment. Geology 1992, 20, 817–820. [Google Scholar] [CrossRef]
- Robert, L. Folk The Natural History Of Crystalline Calcium Carbonate: Effect of Magnesium Content And Salinity. J. Sediment. Res. 1974, 44, 40–53. [Google Scholar] [CrossRef]
- Nindiyasari, F.; Griesshaber, E.; Fernández-Díaz, L.; Astilleros, J.M.; Sánchez-Pastor, N.; Ziegler, A.; Schmahl, W.W. Effects of Mg and hydrogel solid content on the crystallization of calcium carbonate in biomimetic counter-diffusion systems. Cryst. Growth Des. 2014, 14, 4790–4802. [Google Scholar] [CrossRef]
- Casella, L.A.; Griesshaber, E.; Yin, X.; Ziegler, A.; Mavromatis, V.; Müller, D.; Ritter, A.C.; Hippler, D.; Harper, E.M.; Dietzel, M.; et al. Experimental diagenesis: Insights into aragonite to calcite transformation of Arctica islandica shells by hydrothermal treatment. Biogeosciences 2017, 14, 1461–1492. [Google Scholar] [CrossRef] [Green Version]
- Greer, H.F.; Zhou, W.; Guo, L. Phase transformation of Mg-calcite to aragonite in active-forming hot spring travertines. Mineral. Petrol. 2015, 109, 453–462. [Google Scholar] [CrossRef] [Green Version]
- Xing, B.; Graham, N.; Yu, W. Transformation of siderite to goethite by humic acid in the natural environment. Commun. Chem. 2020, 3, 38. [Google Scholar] [CrossRef]
- Rickard, D.; Luther III, G.W. Chemistry of iron sulfides. Chem. Rev. 2007, 107, 514–562. [Google Scholar] [CrossRef]
- Suits, N.S.; Wilkin, R.T. Pyrite formation in the water column and sediments of a meromictic lake. Geology 1998, 26, 1099–1102. [Google Scholar] [CrossRef]
- Davison, W.; Lishman, J.P.; Hilton, J. Formation of pyrite in freshwater sediments: Implications for C S ratios. Geochim. Et Cosmochim. Acta 1985, 49, 1615–1620. [Google Scholar] [CrossRef]
- Rudmin, M.; Wilson, M.J.; Wilson, L.; Savichev, O.; Yakich, T.; Shaldybin, M.; Ruban, A.; Tabakaev, R.; Ibraeva, K.; Mazurov, A. Geochemical and mineralogical features of the substrates of the Vasyugan Mire, Western Siberia, Russia. Catena 2020, 194, 104781. [Google Scholar] [CrossRef]
- Rudmin, M.; Ruban, A.; Savichev, O.; Mazurov, A.; Dauletova, A.; Savinova, O. Authigenic and Detrital Minerals in Peat Environment of Vasyugan Swamp, Western Siberia. Minerals 2018, 8, 500. [Google Scholar] [CrossRef] [Green Version]
- Golovneva, L.B.; Shchepetov, S.V. Phytostratigraphy of Albian-Cenomanian sediments in the Kiya River basin (the Chulym-Yenisei area of the west Siberian lowland). Stratigr. Geol. Correl. 2010, 18, 153–165. [Google Scholar] [CrossRef]
- Jenkyns, H.C. Geochemistry of oceanic anoxic events. Geochem. Geophys. Geosystems 2010, 11, 1–30. [Google Scholar] [CrossRef]
- Heimhofer, U.; Wucherpfennig, N.; Adatte, T.; Schouten, S.; Schneebeli-Hermann, E.; Gardin, S.; Keller, G.; Kentsch, S.; Kujau, A. Vegetation response to exceptional global warmth during Oceanic Anoxic Event 2. Nat. Commun. 2018, 9, 3832. [Google Scholar] [CrossRef]
- Jenkyns, H.C.; Matthews, A.; Tsikos, H.; Erel, Y. Nitrate reduction, sulfate reduction, and sedimentary iron isotope evolution during the Cenomanian-Turonian oceanic anoxic event. Paleoceanography 2007, 22, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Huang, C.; Sun, B.; Quan, C.; Wu, J.; Lin, Z. Paleo-CO2 variation trends and the Cretaceous greenhouse climate. Earth-Sci. Rev. 2014, 129, 136–147. [Google Scholar] [CrossRef]
- Scholz, F.; Beil, S.; Flögel, S.; Lehmann, M.F.; Holbourn, A.; Wallmann, K.; Kuhnt, W. Oxygen minimum zone-type biogeochemical cycling in the Cenomanian-Turonian Proto-North Atlantic across Oceanic Anoxic Event 2. Earth Planet. Sci. Lett. 2019, 517, 50–60. [Google Scholar] [CrossRef]
Form. | Rock | Sample | Na2O | MgO | Al2O3 | SiO2 | K2O | CaO | TiO2 | MnO | Fe2O3t | LOI |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Kiya | silt. | 20 | 1.1 | 1.0 | 15.1 | 60.3 | 2.3 | 0.8 | 0.7 | 0.4 | 8.5 | 9.9 |
Kiya | iron. | 16 | 0.7 | 0.6 | 13.1 | 56.8 | 2.0 | 0.8 | 0.7 | 0.6 | 16.4 | 8.1 |
Kiya | ir.-b. silt. | 14 | 1.2 | 0.9 | 15.1 | 60.9 | 2.4 | 0.8 | 0.7 | 0.5 | 10.9 | 6.6 |
Ilek | sand. | 12 | 2.0 | 1.0 | 11.8 | 67.0 | 1.7 | 3.1 | 0.4 | 0.0 | 3.2 | 9.5 |
Ilek | grit. | 11 | 1.0 | 1.2 | 10.8 | 59.3 | 1.6 | 13.6 | 0.7 | 0.1 | 2.6 | 9.1 |
Ilek | silt. | 10 | 0.6 | 3.4 | 15.5 | 58.8 | 2.0 | 3.8 | 0.9 | 0.1 | 7.0 | 7.8 |
Ilek | iron. | 9 | 0.5 | 2.6 | 14.6 | 49.0 | 2.0 | 6.1 | 0.8 | 0.1 | 18.2 | 5.9 |
Ilek | iron. | 8 | 0.6 | 3.0 | 14.5 | 52.0 | 1.9 | 6.9 | 0.8 | 0.1 | 18.9 | 1.3 |
Ilek | silt. | 7 | 1.6 | 2.5 | 14.7 | 59.4 | 1.8 | 5.2 | 0.8 | 0.1 | 4.1 | 9.8 |
Ilek | silt. | 6 | 1.5 | 2.7 | 14.7 | 61.9 | 1.8 | 5.0 | 0.8 | 0.1 | 4.2 | 7.3 |
Ilek | calc. | 5 | 0.7 | 1.3 | 8.6 | 36.3 | 1.3 | 23.6 | 0.4 | 0.1 | 3.0 | 24.5 |
Ilek | sand. | 4 | 1.8 | 2.1 | 13.7 | 56.7 | 1.6 | 5.2 | 0.8 | 0.1 | 4.8 | 13.2 |
Ilek | silt. | 3 | 1.2 | 2.6 | 14.5 | 55.1 | 2.0 | 5.6 | 0.8 | 0.1 | 5.1 | 12.8 |
Ilek | ir.-b. silt. | 2 | 0.5 | 2.8 | 14.5 | 51.8 | 2.2 | 9.7 | 0.8 | 0.2 | 8.6 | 8.9 |
Ilek | sand. | 1 | 1.3 | 2.1 | 13.3 | 60.7 | 1.5 | 4.6 | 0.8 | 0.1 | 5.2 | 10.4 |
Form. | Rock | Sample | Co | Ni | Cu | Zn | Sr | Zr | Mo | Ag | Ba | Pb | Bi | Th | U |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Kiya | silt. | 20 | 10.6 | 15.8 | 9.0 | 45.7 | 116.5 | 71.5 | 0.5 | 0.19 | 567.9 | 12.7 | 0.08 | 4.3 | 3.3 |
Kiya | iron. | 16 | 10.0 | bdl | 10.5 | 51.8 | 106.2 | 73.7 | 0.6 | 0.12 | 499.7 | 8.5 | 0.07 | 4.3 | 1.8 |
Kiya | ir.-b. silt. | 14 | 11.1 | 7.9 | 17.1 | 46.8 | 112.1 | 73.0 | 2.7 | 0.08 | 516.0 | 11.6 | 0.04 | 4.0 | 1.6 |
Ilek | sand. | 12 | 9.7 | 5.1 | 9.2 | 31.2 | 299.3 | 68.8 | 0.3 | 0.13 | 718.0 | 7.6 | 0.03 | 2.7 | 1.1 |
Ilek | grit. | 11 | 12.7 | 9.8 | 24.3 | 34.6 | 407.5 | 64.3 | 0.4 | 0.22 | 6377.5 | 9.8 | 0.07 | 3.0 | 1.3 |
Ilek | silt. | 10 | 33.3 | 27.1 | 44.6 | 94.7 | 290.3 | 137.3 | 0.8 | 0.22 | 374.2 | 16.4 | 0.17 | 5.9 | 1.9 |
Ilek | iron. | 9 | 20.4 | 22.9 | 39.1 | 72.3 | 292.6 | 137.8 | 0.5 | 0.30 | 498.2 | 14.1 | 0.14 | 5.7 | 1.6 |
Ilek | iron. | 8 | 17.3 | 23.5 | 37.9 | 68.4 | 298.8 | 138.0 | bdl | 0.28 | 530.7 | 12.9 | 0.12 | 5.7 | 1.4 |
Ilek | silt. | 7 | 14.0 | 4.8 | 23.4 | 59.7 | 302.6 | 134.2 | 0.4 | 0.20 | 421.4 | 10.1 | 0.10 | 5.0 | 1.5 |
Ilek | silt. | 6 | 13.4 | 4.0 | 22.8 | 58.0 | 303.1 | 132.8 | 0.4 | 0.18 | 369.9 | 9.8 | 0.09 | 4.9 | 1.5 |
Ilek | calc. | 5 | 17.1 | 1.0 | 16.6 | 36.8 | 284.3 | 77.3 | 0.3 | 0.18 | 241.0 | 7.7 | 0.08 | 3.3 | 1.1 |
Ilek | sand. | 4 | 11.8 | 14.3 | 17.7 | 54.2 | 327.0 | 102.8 | 0.4 | 0.16 | 380.0 | 9.4 | 0.09 | 4.0 | 1.6 |
Ilek | silt. | 3 | 16.8 | 19.0 | 26.6 | 63.7 | 286.5 | 130.9 | 0.5 | 0.20 | 401.8 | 11.8 | 0.10 | 5.2 | 1.5 |
Ilek | ir.-b. silt. | 2 | 19.3 | 19.8 | 39.5 | 85.8 | 265.2 | 125.5 | 0.6 | 0.19 | 303.1 | 13.8 | 0.12 | 5.9 | 1.4 |
Ilek | sand. | 1 | 13.6 | 16.9 | 13.9 | 46.7 | 346.3 | 93.8 | 0.5 | 0.25 | 482.8 | 9.9 | 0.07 | 3.5 | 1.4 |
Form. | Rock | Sample | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Y | REY |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Kiya | silt. | 20 | 16.4 | 34.0 | 4.0 | 15.4 | 3.2 | 0.9 | 3.0 | 0.4 | 2.3 | 0.5 | 1.4 | 0.2 | 1.1 | 0.2 | 12.3 | 95.1 |
Kiya | iron. | 16 | 16.9 | 34.7 | 4.0 | 17.1 | 3.8 | 1.0 | 3.6 | 0.5 | 2.7 | 0.6 | 1.5 | 0.2 | 1.3 | 0.3 | 14.0 | 102.1 |
Kiya | ir.-b. silt. | 14 | 17.2 | 38.2 | 4.4 | 16.3 | 3.3 | 0.9 | 3.4 | 0.5 | 2.8 | 0.6 | 1.6 | 0.2 | 1.6 | 0.2 | 14.9 | 106.0 |
Ilek | sand. | 12 | 14.4 | 31.2 | 3.7 | 13.9 | 2.6 | 0.8 | 2.5 | 0.4 | 2.2 | 0.5 | 1.4 | 0.2 | 1.1 | 0.2 | 11.8 | 86.7 |
Ilek | grit. | 11 | 18.2 | 38.3 | 4.1 | 15.8 | 4.5 | 0.8 | 3.4 | 0.5 | 2.7 | 0.5 | 1.6 | 0.3 | 1.2 | 0.2 | 13.9 | 106.0 |
Ilek | silt. | 10 | 20.0 | 48.7 | 5.5 | 19.2 | 4.5 | 1.1 | 4.6 | 0.7 | 3.7 | 0.8 | 2.1 | 0.3 | 2.0 | 0.3 | 22.5 | 136.0 |
Ilek | iron. | 9 | 22.3 | 50.1 | 5.6 | 20.5 | 5.0 | 1.0 | 4.6 | 0.6 | 3.8 | 0.8 | 2.0 | 0.3 | 2.0 | 0.3 | 20.2 | 139.1 |
Ilek | iron. | 8 | 22.7 | 50.7 | 5.8 | 21.0 | 5.2 | 1.0 | 4.7 | 0.7 | 3.9 | 0.8 | 2.1 | 0.3 | 2.1 | 0.3 | 19.5 | 140.8 |
Ilek | silt. | 7 | 22.5 | 48.0 | 5.7 | 21.3 | 4.9 | 1.2 | 4.8 | 0.7 | 3.8 | 0.8 | 2.1 | 0.3 | 1.8 | 0.3 | 20.2 | 138.4 |
Ilek | silt. | 6 | 22.4 | 47.9 | 5.7 | 21.4 | 4.8 | 1.2 | 4.8 | 0.7 | 3.8 | 0.8 | 2.1 | 0.3 | 1.8 | 0.3 | 20.4 | 138.3 |
Ilek | calc. | 5 | 17.1 | 36.5 | 4.0 | 14.8 | 3.3 | 0.8 | 3.5 | 0.5 | 2.7 | 0.6 | 1.8 | 0.3 | 1.5 | 0.2 | 17.1 | 104.8 |
Ilek | sand. | 4 | 19.5 | 41.5 | 5.1 | 19.4 | 4.2 | 1.0 | 4.2 | 0.6 | 3.4 | 0.8 | 1.9 | 0.3 | 1.7 | 0.3 | 18.2 | 122.2 |
Ilek | silt. | 3 | 22.4 | 48.3 | 5.5 | 20.6 | 4.8 | 1.1 | 4.7 | 0.6 | 3.7 | 0.8 | 2.0 | 0.3 | 1.9 | 0.3 | 20.1 | 137.1 |
Ilek | ir.-b. silt. | 2 | 23.4 | 48.6 | 5.6 | 20.7 | 4.5 | 1.0 | 4.6 | 0.7 | 3.9 | 0.7 | 2.2 | 0.3 | 2.0 | 0.3 | 19.8 | 138.4 |
Ilek | sand. | 1 | 18.9 | 39.5 | 4.8 | 17.4 | 4.0 | 1.1 | 4.0 | 0.6 | 3.1 | 0.7 | 1.8 | 0.3 | 1.6 | 0.2 | 15.4 | 113.3 |
Form. | Rock | Sample | LREE/HREE | Ce* | Eu* | Ysn/Hosn | U/Th | Mo EF | U EF | Sr/Ba | Ca/ (Ca + Fe) | Cu EF | P EF | Sr/Cu | CIA | Fe EF | Mn EF | Ti EF | Si EF |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Kiya | silt. | 20 | 12.5 | 1.0 | 1.4 | 0.9 | 2.9 | 0.5 | 1.2 | 0.2 | 0.1 | 0.3 | 0.7 | 12.9 | 78.4 | 1.6 | 3.9 | 1.1 | 0.9 |
Kiya | iron. | 16 | 11.3 | 1.0 | 1.3 | 0.8 | 1.6 | 0.7 | 0.8 | 0.2 | 0.0 | 0.4 | 1.2 | 10.2 | 78.5 | 3.4 | 6.9 | 1.2 | 1.0 |
Kiya | ir.-b. | 14 | 11.3 | 1.0 | 1.3 | 1.0 | 1.6 | 2.5 | 0.6 | 0.2 | 0.1 | 0.6 | 0.8 | 6.6 | 77.8 | 2.0 | 5.2 | 1.1 | 0.9 |
Ilek | sand. | 12 | 11.8 | 1.0 | 1.5 | 0.9 | 1.5 | 0.3 | 0.5 | 0.4 | 0.5 | 0.4 | 0.8 | 32.7 | 63.2 | 0.7 | 0.4 | 0.9 | 1.3 |
Ilek | grit. | 11 | 12.2 | 1.0 | 1.0 | 1.0 | 1.7 | 0.5 | 0.7 | 0.1 | 0.8 | 1.2 | 0.9 | 16.8 | 40.2 | 0.6 | 1.0 | 1.5 | 1.3 |
Ilek | silt. | 10 | 10.3 | 1.1 | 1.2 | 1.1 | 1.3 | 0.7 | 0.7 | 0.8 | 0.4 | 1.6 | 0.7 | 6.5 | 70.9 | 1.2 | 0.7 | 1.4 | 0.9 |
Ilek | iron. | 9 | 11.1 | 1.0 | 1.0 | 0.9 | 1.1 | 0.5 | 0.6 | 0.6 | 0.3 | 1.5 | 1.0 | 7.5 | 62.5 | 3.4 | 1.1 | 1.3 | 0.9 |
Ilek | iron. | 8 | 10.9 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.6 | 0.6 | 0.3 | 1.4 | 0.8 | 7.9 | 60.8 | 3.6 | 1.1 | 1.4 | 0.9 |
Ilek | silt. | 7 | 11.1 | 1.0 | 1.2 | 0.9 | 1.2 | 0.4 | 0.6 | 0.7 | 0.6 | 0.9 | 0.7 | 12.9 | 63.1 | 0.8 | 0.6 | 1.3 | 0.9 |
Ilek | silt. | 6 | 11.2 | 1.0 | 1.2 | 1.0 | 1.2 | 0.4 | 0.6 | 0.8 | 0.5 | 0.9 | 0.8 | 13.3 | 64.1 | 0.8 | 0.5 | 1.3 | 1.0 |
Ilek | calc. | 5 | 10.6 | 1.0 | 1.2 | 1.1 | 1.3 | 0.5 | 0.7 | 1.2 | 0.9 | 1.1 | 1.1 | 17.2 | 25.1 | 1.0 | 2.2 | 1.2 | 1.0 |
Ilek | sand. | 4 | 10.7 | 1.0 | 1.2 | 0.9 | 1.6 | 0.4 | 0.7 | 0.9 | 0.5 | 0.7 | 0.8 | 18.4 | 61.6 | 1.0 | 0.6 | 1.4 | 1.0 |
Ilek | silt. | 3 | 11.2 | 1.0 | 1.1 | 0.9 | 1.1 | 0.5 | 0.6 | 0.7 | 0.5 | 1.0 | 0.8 | 10.8 | 62.3 | 1.0 | 1.1 | 1.3 | 0.9 |
Ilek | ir.-b. | 2 | 10.7 | 1.0 | 1.1 | 1.0 | 0.9 | 0.6 | 0.5 | 0.9 | 0.5 | 1.5 | 0.8 | 6.7 | 54.1 | 1.6 | 1.9 | 1.2 | 0.8 |
Ilek | sand. | 1 | 10.9 | 1.0 | 1.3 | 0.9 | 1.5 | 0.5 | 0.6 | 0.7 | 0.5 | 0.6 | 1.0 | 24.9 | 64.3 | 1.1 | 0.6 | 1.5 | 1.1 |
Ironstones | Ironstones of the Chulym-Yenisei Depression | Bakchar Iron Ore Deposit of the West Siberian Basin |
---|---|---|
Main Features | ||
Stratigraphy, formations | Early and Late Cretaceous, Ilek and Kiya Formations | Late Cretaceous and Early Paleogene, Ipatovo, Slavgorod, Gan’kino, and Lyulinvor Formations |
Facies, environment | Facies: Fluvial channel and floodplain–lacustrine–boggy facies Environment: river system | Facies: coastal and shallow marine facies Environment: epicontinental sea |
Morphology of ironstone bodies | Layers and lenses with thickness 0.5–1.5 m | Horizons and seems with thickness of 2–20 m |
Structure of ironstones | Fine laminated and non-laminated | Ooidal and peloidal |
Mineral composition: | ||
Authigenic minerals | Main: siderite, calcite, chlorite group Minor: goethite, pyrite, dolomite Rare: barite | Main: goethite, berthierine, siderite, chamosite, glauconite Minor: pyrite, monazite, lepidocrocite Rare: wurtzite, galena, barite, pyrrhotite, greigite, etc. |
Detrital minerals | Main: quartz, feldspars Minor: zircon, monazite, ilmenite Rare: rutile, magnetite, hematite, silver | Main: quartz Minor: feldspars, epidote, zircon, monazite, ilmenite Rare: rutile, magnetite, titanomagnetite, hornblende |
Geochemical specifics: | ||
Enrichment | Ba, Sb, Cd, As, Ag, Zn, positive Eu* | As, Zn, Pb, Bi, Sb, Ag, Co, Cr, Th, U, W, Cd, REY, positive Ce* |
Depletion | Cr, Ni, Ga, Ge, Zr, Mo, Sn, Cs, Hf, Ta, W, Tl, Pb, Bi, Th, U, REY | Ni, Cu, Ga, Ge, Sr, Zr, Cs, Ba, Hf, Tl |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rudmin, M.; Banerjee, S.; Dauletova, A.; Ruban, A. Depositional Conditions of Cretaceous Ironstones Deposit in the Chulym-Yenisey Basin (Western Siberia). Minerals 2021, 11, 1008. https://doi.org/10.3390/min11091008
Rudmin M, Banerjee S, Dauletova A, Ruban A. Depositional Conditions of Cretaceous Ironstones Deposit in the Chulym-Yenisey Basin (Western Siberia). Minerals. 2021; 11(9):1008. https://doi.org/10.3390/min11091008
Chicago/Turabian StyleRudmin, Maxim, Santanu Banerjee, Aigerim Dauletova, and Aleksey Ruban. 2021. "Depositional Conditions of Cretaceous Ironstones Deposit in the Chulym-Yenisey Basin (Western Siberia)" Minerals 11, no. 9: 1008. https://doi.org/10.3390/min11091008
APA StyleRudmin, M., Banerjee, S., Dauletova, A., & Ruban, A. (2021). Depositional Conditions of Cretaceous Ironstones Deposit in the Chulym-Yenisey Basin (Western Siberia). Minerals, 11(9), 1008. https://doi.org/10.3390/min11091008