Periodically Released Magmatic Fluids Create a Texture of Unidirectional Solidification (UST) in Ore-Forming Granite: A Fluid and Melt Inclusion Study of W-Mo Forming Sannae-Eonyang Granite, Korea
Abstract
:1. Introduction
2. Geological Background
2.1. Gyeongsang Basin and Cretaceous Granitoids
2.2. Sannae-Eonyang Granite
2.3. Sannae Deposit
2.4. Miarolitic Cavities and Eonyang Amethyst
3. Samples and Inclusion Petrography
3.1. UST Rock Texture
3.2. Melt and Fluid Inclusions in Quartz Phenocryst and UST Quartz
4. Methods
4.1. Microthermometry
4.2. Laser Raman Spectroscopy
4.3. LA-ICP-MS
5. Results
5.1. Microthermometry
5.2. Raman Spectroscopy
5.3. LA-ICP-MS of Fluid and Melt Inclusions and Hosting Quartz
6. Discussion
6.1. Pressure Conditions and Emplacement Depths
6.2. Melt Inclusion and Magma Fractionation
6.3. Formation of UST
6.4. Magmatic Fluid Exsolution and P-T Evolution during the Eonyang UST Formation
6.5. Geochemical Evolution of Magmatic-Hydrothermal Fluids
6.6. Implications for an Economic W-Mo Ore in the Area
7. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heinrich, C.A. Fluid-Fluid Interactions in Magmatic-Hydrothermal Ore Formation. Rev. Miner. Geochem. 2007, 65, 363–387. [Google Scholar] [CrossRef]
- Rusk, B.G.; Reed, M.H.; Dilles, J.H. Fluid Inclusion Evidence for Magmatic-Hydrothermal Fluid Evolution in the Porphyry Copper-Molybdenum Deposit at Butte, Montana. Econ. Geol. 2008, 103, 307–334. [Google Scholar] [CrossRef]
- Audétat, A. The Metal Content of Magmatic-Hydrothermal Fluids and Its Relationship to Mineralization Potential. Econ. Geol. 2019, 114, 1033–1056. [Google Scholar] [CrossRef]
- Audetat, A.; Pettke, T.; Heinrich, C.; Bodnar, R.J. Special Paper: The Composition of Magmatic-Hydrothermal Fluids in Barren and Mineralized Intrusions. Econ. Geol. 2008, 103, 877–908. [Google Scholar] [CrossRef]
- Kirkham, R.V.; Sinclair, W.D. Comb quartz layers in felsic intrusions and their relationship to porphyry deposits. Recent Adv. Geol. Granite-Relat. Miner. Deposits Canad. Inst. Mining Metal. 1988, 39, 50–71. [Google Scholar]
- Shannon, J.R.; Walker, B.M.; Carten, R.B.; Geraghty, E.P. Unidirectional solidification textures and their significance in determining relative ages of intrusions at the Henderson Mine, Colorado. Geology 1982, 10, 293–297. [Google Scholar] [CrossRef]
- Erdenebayar, J.; Ogata, T.; Imai, A.; Sereenen, J. Textural and Chemical Evolution of Unidirectional Solidification Textures in Highly Differentiated Granitic Rocks at Kharaatyagaan, Central Mongolia. Resour. Geol. 2014, 64, 283–300. [Google Scholar] [CrossRef] [Green Version]
- London, D.; Morgan, G.B. Experimental Crystallization of the Macusani Obsidian, with Applications to Lithium-rich Granitic Pegmatites. J. Petrol. 2017, 58, 1005–1030. [Google Scholar] [CrossRef] [Green Version]
- Breiter, K.; Muller, A.; Leichmann, J.; Gabasova, A. Textural and chemical evolution of a fractionated granitic system: The Podlesi stock, Czech Republic. Lithos 2005, 80, 323–345. [Google Scholar] [CrossRef]
- Huang, K.; Zhu, M.; Zhang, L.; Bai, Y.; Cai, Y. Geological and mineralogical constraints on the genesis of the Bilihe gold deposit in Inner Mongolia, China. Ore Geol. Rev. 2020, 124, 103607. [Google Scholar] [CrossRef]
- Lickfold, V.; Cooke, D.R.; Smith, S.G.; Ullrich, T.D. Endeavour copper-gold porphyry deposits, Northparkes, New South Wales: Intrusive history and fluid evolution. Econ. Geol. 2003, 98, 1607–1636. [Google Scholar] [CrossRef]
- Shafaroudi, A.M.; Karimpour, M.; Stern, C. The Khopik porphyry copper prospect, Lut Block, Eastern Iran: Geology, alteration and mineralization, fluid inclusion, and oxygen isotope studies. Ore Geol. Rev. 2015, 65, 522–544. [Google Scholar] [CrossRef]
- Braxton, D.P.; Cooke, D.R.; Ignacio, A.M.; Waters, P.J. Geology of the Boyongan and Bayugo Porphyry Cu-Au Deposits: An Emerging Porphyry District in Northeast Mindanao, Philippines. Econ. Geol. 2018, 113, 83–131. [Google Scholar] [CrossRef] [Green Version]
- Dressel, B.C.; Chauvet, A.; Trzaskos, B.; Biondi, J.C.; Bruguier, O.; Monié, P.; Villanova, S.N.; Newton, J.B. The Passa Três lode gold deposit (Paraná State, Brazil): An example of structurally-controlled mineralisation formed during magmatic-hydrothermal transition and hosted within granite. Ore Geol. Rev. 2018, 102, 701–727. [Google Scholar] [CrossRef]
- Lickfold, V.; Cooke, D.R.; Crawford, A.J.; Fanning, C.M. Shoshonitic magmatism and the formation of the Northparkes porphyry Cu—Au deposits, New South Wales. Aust. J. Earth Sci. 2007, 54, 417–444. [Google Scholar] [CrossRef]
- Qu, H.C.; Sun, M.Y.; Dong, P. The O-18 of UST quartz in two porphyry deposits, China. Resour. Geol. 2017, 67, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Huang, Z.; Li, W.; Ye, L.; Zhou, J.-X. Geochronological, isotopic and mineral geochemical constraints on the genesis of the Diyanqinamu Mo deposit, Inner Mongolia, China. Ore Geol. Rev. 2015, 65, 70–83. [Google Scholar] [CrossRef]
- Zhou, T.; Zeng, Q.; Gao, S.; Chu, S.; Yang, J. Geochronology, geochemistry and fluid inclusions of the Yechangping giant porphyry-skarn Mo-W deposit, East Qinling, China. Ore Geol. Rev. 2020, 127, 103823. [Google Scholar] [CrossRef]
- Hong, W.; Fox, N.; Cooke, D.; Zhang, L.; Fayek, M. B- and O-isotopic compositions of tourmaline constrain late-stage magmatic volatile exsolution in Tasmanian tin-related granite systems. Miner. Deposita 2019, 55, 63–78. [Google Scholar] [CrossRef]
- Hong, W.; Cooke, D.R.; Zhang, L.; Fox, N.; Thompson, J. Cathodoluminescence features, trace elements, and oxygen isotopes of quartz in unidirectional solidification textures from the Sn-mineralized Heemskirk Granite, western Tasmania. Am. Miner. 2019, 104, 100–117. [Google Scholar] [CrossRef]
- Lowenstern, J.B.; Sinclair, W.D.; Brown, M.; Candela, P.A.; Peck, D.L.; Stephens, W.E.; Walker, R.J.; Zen, E. Exsolved magmatic fluid and its role in the formation of comb-layered quartz at the Cretaceous Logtung W-Mo deposit, Yukon Territory, Canada. In The Third Hutton Symposium on the Origin of Granites and Related Rocks; Geological Society of America: Boulder, CO, USA, 1996; Volume 315, pp. 291–303. [Google Scholar]
- Pistone, M.; Blundy, J.D.; Brooker, R. Textural and chemical consequences of interaction between hydrous mafic and felsic magmas: An experimental study. Contrib. Miner. Petrol. 2015, 171, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Audétat, A.; Pettke, T. The magmatic-hydrothermal evolution of two barren granites: A melt and fluid inclusion study of the Rito del Medio and Cañada Pinabete plutons in northern New Mexico (USA). Geochim. Cosmochim. Acta 2003, 67, 97–121. [Google Scholar] [CrossRef]
- Hwang, B.-H. Timing of granitic magma mixing in the southeastern Gyeongsang Basin, Korea: SHRIMP-RG zircon data. Int. Geol. Rev. 2010, 53, 1150–1162. [Google Scholar] [CrossRef]
- Hwang, B.H. Petrogenesis of the Eonyang granitoids, SE Korea: New SHRIMP-RG zircon U-Pb age and whole-rock geochemical data. Int. Geol. Rev. 2012, 54, 51–66. [Google Scholar] [CrossRef]
- Yang, K.; Lee, J.D. The Sannae-Eonyang granitic rocks and hydrothermal system, Southeastern Kyongsang basin. Econ. Environ. Geol. 2000, 33, 19–30. [Google Scholar]
- Shelton, K.L.; So, C.S.; Rye, D.M.; Park, M.E. Geologic, sulfur isotope, and fluids inclusion studies of the Sannae W-Mo mine, Republic of Korea—Comparison of sulfur isotope systematics in Korean W-deposits. Econ. Geol. 1986, 81, 430–446. [Google Scholar] [CrossRef]
- Yang, K.; Lee, J.D. A fluid inclusion study of the Sannae granite and the associated Sannae W-Mo deposit, Southeastern Kyongsang basin. J. Petrol. Soc. Korea 1999, 8, 46–55. [Google Scholar]
- Park, H.I.; Moon, S.H.; Hur, S.D.; Woo, Y.K. Fluid inclusion and stable isotope studies of Eonyang Rock Crystal Deposits. J. Geol. Soc. Korea 1999, 35, 117–136. [Google Scholar]
- Yang, K. The use of fluid inclusions to constrain P-T-X conditions of formation of Eonyang amethyst. J. Petrol. Soc. Korea 1996, 5, 1–9. [Google Scholar]
- Yang, K.H.; Yun, S.H.; Lee, J.D. A fluid inclusion study of an amethyst deposit in the Cretaceous Kyongsang Basin, South Korea. Miner. Mag. 2001, 65, 477–487. [Google Scholar] [CrossRef]
- Kim, W.-S.; Shin, H.-S.; Lee, S.-S. Characterization of inclusions in amethysts from Eonyang, Korea. J. Mineral. Soc. Korea 1988, 1, 83–93. [Google Scholar]
- Kim, S.W.; Kwon, S.; Park, S.-I.; Lee, C.; Cho, D.-L.; Lee, H.-J.; Ko, K.; Kim, S.J. SHRIMP U–Pb dating and geochemistry of the Cretaceous plutonic rocks in the Korean Peninsula: A new tectonic model of the Cretaceous Korean Peninsula. Lithos 2016, 262, 88–106. [Google Scholar] [CrossRef]
- Cheong, A.C.-S.; Jo, H.J. Crustal evolution in the Gyeongsang Arc, southeastern Korea: Geochronological, geochemical and Sr-Nd-Hf isotopic constraints from granitoid rocks. Am. J. Sci. 2017, 317, 369–410. [Google Scholar] [CrossRef]
- Cheon, Y.; Cho, H.; Ha, S.; Kang, H.-C.; Kim, J.-S.; Son, M. Tectonically controlled multiple stages of deformation along the Yangsan Fault Zone, SE Korea, since Late Cretaceous. J. Asian Earth Sci. 2018, 170, 188–207. [Google Scholar] [CrossRef]
- Koo, K.L. Petrology and Geochemistry of the Eonyang Granites. Ph.D. Thesis, Seoul National University, Seoul, Korea, 2003. [Google Scholar]
- Lim, H.S. Geochemistry of the granitic rocks in Sannae-Eonyang area. Ph.D. Thesis, Korea National University of Education, Cheongju, Korea, 2004. [Google Scholar]
- Lee, S. A Study on the Genesis of Eonyang Amethyst Deposits; Chonnam National University: Gwangju, Korea, 1994. [Google Scholar]
- Goldstein, R.H.; Samson, I.; Anderson, A.; Marshall, D. Petrographic analysis of fluid inclusions. Fluid Incl. Anal. Interpret. 2003, 32, 9–53. [Google Scholar]
- Goldstein, R.H.; Reynolds, T.J. Systematics of Fluid Inclusions in Diagenetic Minerals; SEPM Society for Sedimentary Geology: Tusla, OK, USA, 1994. [Google Scholar]
- Jochum, K.P.; Weis, U.; Stoll, B.; Kuzmin, D.; Yang, Q.; Raczek, I.; Jacob, D.; Stracke, A.; Birbaum, K.; Frick, D.A.; et al. Determination of Reference Values for NIST SRM 610-617 Glasses Following ISO Guidelines. Geostand. Geoanalytical Res. 2011, 35, 397–429. [Google Scholar] [CrossRef]
- Guillong, M.; Latkoczy, C.; Seo, J.H.; Günther, D.; Heinrich, C. Determination of sulfur in fluid inclusions by laser ablation ICP-MS. J. Anal. Spectrom. 2008, 23, 1581–1589. [Google Scholar] [CrossRef]
- Seo, J.H.; Guillong, M.; Aerts, M.; Zajacz, Z.; Heinrich, C.A. Microanalysis of S, Cl, and Br in fluid inclusions by LA–ICP-MS. Chem. Geol. 2011, 284, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Heinrich, C.; Pettke, T.; Halter, W.; Aigner-Torres, M.; Audétat, A.; Günther, D.; Hattendorf, B.; Bleiner, D.; Guillong, M.; Horn, I. Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry. Geochim. Cosmochim. Acta 2003, 67, 3473–3497. [Google Scholar] [CrossRef]
- Guillong, M.; Meier, D.L.; Allan, M.M.; Heinrich, C.A.; Yardley, B.W.D. SILLS: A MATLAB-based program for the reduction of laser ablation ICP-MS data of homogeneous materials and inclusions. Mineral. Assoc. Can. Short Course 2008, 40, 328–333. [Google Scholar]
- Bodnar, R.J.; Vityk, M.O. Interpretation of microthermometric data for H2O-NaCl fluid inclusions. In Fluid Inclusions in Minerals: Methods and Applications; VirginiaTech: Blacksburg, VA, USA, 1994; pp. 117–130. [Google Scholar]
- Driesner, T.; Heinrich, C.A. The system H2O–NaCl. Part I: Correlation formulae for phase relations in temperature–pressure–composition space from 0 to 1000 °C, 0 to 5000 bar, and 0 to 1 XNaCl. Geochim. Cosmochim. Acta 2007, 71, 4880–4901. [Google Scholar] [CrossRef]
- Bodnar, R. Synthetic fluid inclusions: XII. The system H2O-NaCl. Experimental determination of the halite liquidus and isochores for a 40 wt% NaCl solution. Geochim. Cosmochim. Acta 1994, 58, 1053–1063. [Google Scholar] [CrossRef]
- Audétat, A.; Zhang, D. Abundances of S, Ga, Ge, Cd, In, Tl and 32 other major to trace elements in high-temperature (350–700 °C) magmatic-hydrothermal fluids. Ore Geol. Rev. 2019, 109, 630–642. [Google Scholar] [CrossRef]
- Preston, J.; Hartley, A.; Hole, M.; Buck, S.; Bond, J.; Mange, M.; Still, J. Integrated whole-rock trace element geochemistry and heavy mineral chemistry studies; aids to the correlation of continental red-bed reservoirs in the Beryl Field, UK North Sea. Pet. Geosci. 1998, 4, 7–16. [Google Scholar] [CrossRef]
- Del Real, I.; Thompson, J.F.; Carriedo, J. Lithological and structural controls on the genesis of the Candelaria-Punta del Cobre Iron Oxide Copper Gold district, Northern Chile. Ore Geol. Rev. 2018, 102, 106–153. [Google Scholar] [CrossRef]
- Longerich, H.P.; Jackson, S.E.; Günther, D. Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J. Anal. At. Spectrom. 1996, 11, 899–904. [Google Scholar] [CrossRef]
- Cross, W.; Iddings, J.P.; Pirsson, L.V.; Washington, H.S. Modifications of the “Quantitative System of Classification of Igneous Rocks”. J. Geol. 1912, 20, 550–561. [Google Scholar] [CrossRef]
- Luth, W.C.; Jahns, R.H.; Tuttle, O.F. The granite system at pressures of 4 to 10 kilobars. J. Geophys. Res. Space Phys. 1964, 69, 759–773. [Google Scholar] [CrossRef]
- Tuttle, O.F.; Bowen, N.L. Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O. Geol. Soc. Am. Mem. 1958, 74, 153. [Google Scholar]
- Pichavant, M.; Holtz, F.; McMillan, P.F. Phase relations and compositional dependence of H2O solubility in quartz-feldspar melts. Chem. Geol. 1992, 96, 303–319. [Google Scholar] [CrossRef]
- Cline, J.S.; Bodnar, R.J. Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt? J. Geophys. Res. Solid Earth 1991, 96, 8113–8126. [Google Scholar] [CrossRef]
- Audétat, A.; Edmonds, M. Magmatic-Hydrothermal Fluids. Elements 2020, 16, 401–406. [Google Scholar] [CrossRef]
- Dolejš, D.; Zajacz, Z. Halogens in Silicic Magmas and Their Hydrothermal Systems. In The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes: Surface, Crust, and Mantle; Harlov, D.E., Aranovich, L., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 431–543. [Google Scholar]
- Tosdal, R.M.; Dilles, J.H. Creation of permeability in the porphyry Cu environment. In Reviews in Economic Geology; Society of Economic Geologists: Littleton, CO, USA, 2020; pp. 173–204. [Google Scholar]
- Dilles, J.H. Petrology of the Yerington Batholith, Nevada; evidence for evolution of porphyry copper ore fluids. Econ. Geol. 1987, 82, 1750–1789. [Google Scholar] [CrossRef]
- Jahns, R.H.; Burnham, C.W. Experimental studies of pegmatite genesis; l, A model for the derivation and crystallization of granitic pegmatites. Econ. Geol. 1969, 64, 843–864. [Google Scholar] [CrossRef]
- Tailby, N.D.; Cherniak, D.J.; Watson, E.B. Al diffusion in quartz. Am. Mineral. 2018, 103, 839–847. [Google Scholar] [CrossRef]
- Rusk, B.G.; Lowers, H.A.; Reed, M.H. Trace elements in hydrothermal quartz: Relationships to cathodoluminescent textures and insights into vein formation. Geology 2008, 36, 547. [Google Scholar] [CrossRef]
- Walker, B.A.; Klemetti, E.; Grunder, A.L.; Dilles, J.H.; Tepley, F.J.; Giles, D. Crystal reaming during the assembly, maturation, and waning of an eleven-million-year crustal magma cycle: Thermobarometry of the Aucanquilcha Volcanic Cluster. Contrib. Miner. Pet. 2012, 165, 663–682. [Google Scholar] [CrossRef]
- Huang, R.; Audétat, A. The titanium-in-quartz (TitaniQ) thermobarometer: A critical examination and re-calibration. Geochim. Cosmochim. Acta 2012, 84, 75–89. [Google Scholar] [CrossRef]
- Götze, J.; Plötze, M.; Tichomirowa, M.; Fuchs, H.; Pilot, J. Aluminium in quartz as an indicator of the temperature of formation of agate. Miner. Mag. 2001, 65, 407–413. [Google Scholar] [CrossRef]
- Was, E.; Thomas, J.B.; Nachlas, W.O. Aluminum solubility mechanisms in quartz: Implications for Al-in-quartz thermobarometry. In AGU Fall Meeting Abstracts; Syracuse University Press: Syracuse, NY, USA, 2017. [Google Scholar]
- Müller, A.; Koch-Müller, M. Hydrogen speciation and trace element contents of igneous, hydrothermal and metamorphic quartz from Norway. Miner. Mag. 2009, 73, 569–583. [Google Scholar] [CrossRef]
- Müller, A.; Kronz, A.; Breiter, K. Trace elements and growth patterns in quartz: A fingerprint of the evolution of the subvolcanic Podlesi Granite System (Krusne hory Mts., Czech Republic). Bull. Geosci. 2002, 77, 135–145. [Google Scholar]
- Cernuschi, F.; Dilles, J.H.; Grocke, S.B.; Valley, J.W.; Kitajima, K.; Tepley, F.J. Rapid formation of porphyry copper deposits evidenced by diffusion of oxygen and titanium in quartz. Geology 2018, 46, 611–614. [Google Scholar] [CrossRef]
- Johannes, W.; Holtz, F. Petrogenesis and Experimental Petrology of Granitic Rocks; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1996. [Google Scholar] [CrossRef]
- Ackerson, M.R.; Mysen, B.O.; Tailby, N.D.; Watson, E.B. Low-temperature crystallization of granites and the implications for crustal magmatism. Nat. Cell Biol. 2018, 559, 94–97. [Google Scholar] [CrossRef] [PubMed]
- Nabelek, P.I.; Whittington, A.; Sirbescu, M.-L.C. The role of H2O in rapid emplacement and crystallization of granite pegmatites: Resolving the paradox of large crystals in highly undercooled melts. Contrib. Miner. Petrol. 2009, 160, 313–325. [Google Scholar] [CrossRef]
- Rusiecka, M.K.; Baker, D.R. Growth and textural evolution during crystallization of quartz and feldspar in hydrous, rhyolitic melt. Contrib. Miner. Pet. 2021, 176, 1–15. [Google Scholar] [CrossRef]
- Sirbescu, M.-L.C.; Schmidt, C.; Veksler, I.V.; Whittington, A.G.; Wilke, M. Experimental Crystallization of Undercooled Felsic Liquids: Generation of Pegmatitic Texture. J. Pet. 2017, 58, 539–568. [Google Scholar] [CrossRef]
- Boctor, N.Z. Rhodonite solubility and thermodynamic properties of aqueous MnCl2 in the system MnO-SiO2-HCl-H2O. Geochim. Cosmochim. Acta 1985, 49, 565–575. [Google Scholar] [CrossRef]
- Seo, J.H.; Guillong, M.; Heinrich, C.A. Separation of Molybdenum and Copper in Porphyry Deposits: The Roles of Sulfur, Redox, and pH in Ore Mineral Deposition at Bingham Canyon. Econ. Geol. 2012, 107, 333–356. [Google Scholar] [CrossRef]
- Li, W.; Audétat, A.; Zhang, J. The role of evaporites in the formation of magnetite–apatite deposits along the Middle and Lower Yangtze River, China: Evidence from LA-ICP-MS analysis of fluid inclusions. Ore Geol. Rev. 2015, 67, 264–278. [Google Scholar] [CrossRef]
- Hong, W.; Cooke, D.; Zhang, L.; Fox, N.; Thompson, J. Tourmaline-rich features in the Heemskirk and Pieman Heads granites from western Tasmania, Australia: Characteristics, origins, and implications for tin mineralization. Am. Miner. 2017, 102, 876–899. [Google Scholar] [CrossRef]
- Seo, J.H.; Yoo, B.C.; Villa, I.M.; Lee, J.H.; Lee, T.; Kim, C.; Moon, K.J. Magmatic–hydrothermal processes in Sangdong W–Mo deposit, Korea: Study of fluid inclusions and 39Ar–40Ar geochronology. Ore Geol. Rev. 2017, 91, 316–334. [Google Scholar] [CrossRef]
- Seo, J.H.; Yoo, B.C.; Yang, Y.-S.; Lee, J.H.; Jang, J.; Shin, D. Scheelite geochemistry of the Sangdong W-Mo deposit and W prospects in the southern Taebaeksan metallogenic region, Korea. Geosci. J. 2020, 24, 701–721. [Google Scholar] [CrossRef]
- Wood, S.A.; Samson, I.M. The Hydrothermal Geochemistry of Tungsten in Granitoid Environments: I. Relative Solubilities of Ferberite and Scheelite as a Function of T, P, pH, and mNaCl. Econ. Geol. 2000, 95, 143–182. [Google Scholar] [CrossRef] [Green Version]
- Youn, S.-T.; Park, H.-I. A study on the genesis of Eonyang amethyst deposits. Econ. Environ. Geol. 1994, 27, 335–343. [Google Scholar]
- Hemley, J.J.; Hunt, J.P. Hydrothermal ore-forming processes in the light of studies in rock-buffered systems; II, Some general geologic applications. Econ. Geol. 1992, 87, 23–43. [Google Scholar] [CrossRef]
- Minubayeva, Z.; Seward, T.M. Molybdic acid ionisation under hydrothermal conditions to 300 °C. Geochim. Cosmochim. Acta 2010, 74, 4365–4374. [Google Scholar] [CrossRef]
- Rempel, K.; Migdisov, A.; Williams-Jones, A. The solubility and speciation of molybdenum in water vapour at elevated temperatures and pressures: Implications for ore genesis. Geochim. Cosmochim. Acta 2006, 70, 687–696. [Google Scholar] [CrossRef] [Green Version]
- Rempel, K.; Williams-Jones, A.; Migdisov, A. The solubility of molybdenum dioxide and trioxide in HCl-bearing water vapour at 350 °C and pressures up to 160 bars. Geochim. Cosmochim. Acta 2008, 72, 3074–3083. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, J.H.; Kim, Y.; Lee, T.; Guillong, M. Periodically Released Magmatic Fluids Create a Texture of Unidirectional Solidification (UST) in Ore-Forming Granite: A Fluid and Melt Inclusion Study of W-Mo Forming Sannae-Eonyang Granite, Korea. Minerals 2021, 11, 888. https://doi.org/10.3390/min11080888
Seo JH, Kim Y, Lee T, Guillong M. Periodically Released Magmatic Fluids Create a Texture of Unidirectional Solidification (UST) in Ore-Forming Granite: A Fluid and Melt Inclusion Study of W-Mo Forming Sannae-Eonyang Granite, Korea. Minerals. 2021; 11(8):888. https://doi.org/10.3390/min11080888
Chicago/Turabian StyleSeo, Jung Hun, Yevgeniya Kim, Tongha Lee, and Marcel Guillong. 2021. "Periodically Released Magmatic Fluids Create a Texture of Unidirectional Solidification (UST) in Ore-Forming Granite: A Fluid and Melt Inclusion Study of W-Mo Forming Sannae-Eonyang Granite, Korea" Minerals 11, no. 8: 888. https://doi.org/10.3390/min11080888
APA StyleSeo, J. H., Kim, Y., Lee, T., & Guillong, M. (2021). Periodically Released Magmatic Fluids Create a Texture of Unidirectional Solidification (UST) in Ore-Forming Granite: A Fluid and Melt Inclusion Study of W-Mo Forming Sannae-Eonyang Granite, Korea. Minerals, 11(8), 888. https://doi.org/10.3390/min11080888