Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,083)

Search Parameters:
Keywords = W-Mo

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1527 KiB  
Article
The Effect of the Metal Impurities on the Stability, Chemical, and Sensing Properties of MoSe2 Surfaces
by Danil W. Boukhvalov, Murat K. Rakhimzhanov, Aigul Shongalova, Abay S. Serikkanov, Nikolay A. Chuchvaga and Vladimir Yu. Osipov
Surfaces 2025, 8(3), 56; https://doi.org/10.3390/surfaces8030056 - 5 Aug 2025
Abstract
In this study, we present a comprehensive theoretical analysis of modifications in the physical and chemical properties of MoSe2 upon the introduction of substitutional transition metal impurities, specifically, Ti, V, Cr, Fe, Co, Ni, Cu, W, Pd, and Pt. Wet systematically calculated [...] Read more.
In this study, we present a comprehensive theoretical analysis of modifications in the physical and chemical properties of MoSe2 upon the introduction of substitutional transition metal impurities, specifically, Ti, V, Cr, Fe, Co, Ni, Cu, W, Pd, and Pt. Wet systematically calculated the adsorption enthalpies for various representative analytes, including O2, H2, CO, CO2, H2O, NO2, formaldehyde, and ethanol, and further evaluated their free energies across a range of temperatures. By employing the formula for probabilities, we accounted for the competition among molecules for active adsorption sites during simultaneous adsorption events. Our findings underscore the importance of integrating temperature effects and competitive adsorption dynamics to predict the performance of highly selective sensors accurately. Additionally, we investigated the influence of temperature and analyte concentration on sensor performance by analyzing the saturation of active sites for specific scenarios using Langmuir sorption theory. Building on our calculated adsorption energies, we screened the catalytic potential of doped MoSe2 for CO2-to-methanol conversion reactions. This paper also examines the correlations between the electronic structure of active sites and their associated sensing and catalytic capabilities, offering insights that can inform the design of advanced materials for sensors and catalytic applications. Full article
Show Figures

Graphical abstract

20 pages, 4663 KiB  
Article
Investigation on Imbibition Recovery Characteristics in Jimusar Shale Oil and White Mineral Oil by NMR
by Dunqing Liu, Chengzhi Jia and Keji Chen
Energies 2025, 18(15), 4111; https://doi.org/10.3390/en18154111 - 2 Aug 2025
Viewed by 158
Abstract
Recovering oil by fracturing fluid imbibition has demonstrated significant potential for enhanced oil recovery (EOR) in tight oil reservoirs. White mineral oil (WMO), kerosene, or saturated alkanes with matched apparent viscosity have been widely used as “crude oil” to investigate imbibition mechanisms in [...] Read more.
Recovering oil by fracturing fluid imbibition has demonstrated significant potential for enhanced oil recovery (EOR) in tight oil reservoirs. White mineral oil (WMO), kerosene, or saturated alkanes with matched apparent viscosity have been widely used as “crude oil” to investigate imbibition mechanisms in light shale oil or tight oil. However, the representativeness of these simulated oils for low-maturity crude oils with higher viscosity and greater content of resins and asphaltenes requires further research. In this study, imbibition experiments were conducted and T2 and T1T2 nuclear magnetic resonance (NMR) spectra were adopted to investigate the oil recovery characteristics among resin–asphaltene-rich Jimusar shale oil and two WMOs. The overall imbibition recovery rates, pore scale recovery characteristics, mobility variations among oils with different occurrence states, as well as key factors influencing imbibition efficiency were analyzed. The results show the following: (1) WMO, kerosene, or alkanes with matched apparent viscosity may not comprehensively replicate the imbibition behavior of resin–asphaltene-rich crude oils. These simplified systems fail to capture the pore-scale occurrence characteristics of resins/asphaltenes, their influence on pore wettability alteration, and may consequently overestimate the intrinsic imbibition displacement efficiency in reservoir formations. (2) Surfactant optimization must holistically address the intrinsic coupling between interfacial tension reduction, wettability modification, and pore-scale crude oil mobilization mechanisms. The alteration of overall wettability exhibits higher priority over interfacial tension in governing displacement dynamics. (3) Imbibition displacement exhibits selective mobilization characteristics for oil phases in pores. Specifically, when the oil phase contains complex hydrocarbon components, lighter fractions in larger pores are preferentially mobilized; when the oil composition is homogeneous, oil in smaller pores is mobilized first. Full article
(This article belongs to the Special Issue New Progress in Unconventional Oil and Gas Development: 2nd Edition)
Show Figures

Figure 1

20 pages, 1890 KiB  
Review
Laser Surface Hardening of Carburized Steels: A Review of Process Parameters and Application in Gear Manufacturing
by Janusz Kluczyński, Katarzyna Jasik, Jakub Łuszczek and Jakub Pokropek
Materials 2025, 18(15), 3623; https://doi.org/10.3390/ma18153623 - 1 Aug 2025
Viewed by 221
Abstract
This article provides a comprehensive overview of recent studies concerning laser heat treatment (LHT) of structural and tool steels, with particular attention to the 21NiCrMo2 steel used for carburized gear wheels. Analysis includes the influence of critical laser processing conditions—including power output, motion [...] Read more.
This article provides a comprehensive overview of recent studies concerning laser heat treatment (LHT) of structural and tool steels, with particular attention to the 21NiCrMo2 steel used for carburized gear wheels. Analysis includes the influence of critical laser processing conditions—including power output, motion speed, spot size, and focusing distance—on surface microhardness, hardening depth, and microstructure development. The findings indicate that the energy density is the dominant factor that affects the outcomes of LHT. Optimal results, in the form of a high surface microhardness and a sufficient depth of hardening, were achieved within the energy density range of 80–130 J/mm2, allowing for martensitic transformation while avoiding defects such as melting or cracking. At densities below 50 J/mm2, incomplete hardening occurred with minimal microhardness improvement. On the contrary, densities exceeding 150–180 J/mm2 caused surface overheating and degradation. For carburized 21NiCrMo2 steel, the most effective parameters included 450–1050 W laser power, 1.7–2.5 mm/s scanning speed, and 2.0–2.3 mm beam diameter. The review confirms that process control through energy-based parameters allows for reliable prediction and optimization of LHT for industrial applications, particularly in components exposed to cyclic loads. Full article
(This article belongs to the Special Issue Advanced Machining and Technologies in Materials Science)
Show Figures

Figure 1

21 pages, 469 KiB  
Article
Singularities of Fuzzy Friedmann–Lemaître–Robertson–Walker Space
by Yanlin Li, Fawaz Alharbi and Abdulaziz E. El-Ahmady
Axioms 2025, 14(8), 591; https://doi.org/10.3390/axioms14080591 - 31 Jul 2025
Viewed by 203
Abstract
We obtain different categories of singularities of fuzzy retracts, fuzzy deformation retracts, and fuzzy foldings on fuzzy fundamental groups of the fuzzy Friedmann–Lemaître–Robertson–Walker Space W˜4. The fuzzy fundamental groups of fuzzy submanifolds in W˜4 are characterized combinatorially using [...] Read more.
We obtain different categories of singularities of fuzzy retracts, fuzzy deformation retracts, and fuzzy foldings on fuzzy fundamental groups of the fuzzy Friedmann–Lemaître–Robertson–Walker Space W˜4. The fuzzy fundamental groups of fuzzy submanifolds in W˜4 are characterized combinatorially using these fuzzy geometrical transformations. Also, the fuzzy fundamental groups of the fuzzy geodesics and the limit fuzzy foldings of W˜4 are described. New types of fuzzy singularity of some fuzzy geometrical transformations of W˜4 are obtained. Finally, the regularity of some other fuzzy retract singularities are discussed. Full article
Show Figures

Figure 1

11 pages, 1053 KiB  
Communication
Understanding Room-Temperature Ductility of Bcc Refractory Alloys from Their Atomistic-Level Features
by Jiayi Yan and Cheng Fu
Metals 2025, 15(8), 851; https://doi.org/10.3390/met15080851 - 30 Jul 2025
Viewed by 179
Abstract
Many bcc refractory alloys show excellent high-temperature mechanical properties, while their fabricability can be limited by brittleness near room temperature. For the purpose of predicting ductile alloys, a number of ductility metrics based on atomic structures and crystal properties, ranging from mechanistic to [...] Read more.
Many bcc refractory alloys show excellent high-temperature mechanical properties, while their fabricability can be limited by brittleness near room temperature. For the purpose of predicting ductile alloys, a number of ductility metrics based on atomic structures and crystal properties, ranging from mechanistic to empirical, have been proposed. In this work, we propose an “average bond stiffness” as a new ductility metric that is also convenient to obtain from first-principles calculations, in addition to using the average magnitude of static displacements of atoms. The usefulness of average bond stiffness is validated by comparing first-principles calculation results to experimental data on the “rhenium effect” in Mo/W-base and V/Nb/Ta-base binary alloys. The average bond stiffness also correlates well with the room-temperature ductility of refractory high-entropy alloys, with a better performance than some ductility metrics previously reported. While in reality the ductility of an alloy can be influenced by many factors, from processing and microstructure, the average magnitude of static displacements and the average bond stiffness are atomistic-level features useful for design of alloy composition towards a desired level of ductility. Full article
Show Figures

Figure 1

39 pages, 8119 KiB  
Article
Magmatic Redox Evolution and Porphyry–Skarn Transition in Multiphase Cu-Mo-W-Au Systems of the Eocene Tavşanlı Belt, NW Türkiye
by Hüseyin Kocatürk, Mustafa Kumral, Hüseyin Sendir, Mustafa Kaya, Robert A. Creaser and Amr Abdelnasser
Minerals 2025, 15(8), 792; https://doi.org/10.3390/min15080792 - 28 Jul 2025
Viewed by 324
Abstract
This study explores the magmatic and hydrothermal evolution of porphyry–skarn–transitional Cu-Mo-W-Au systems within the Nilüfer Mineralization Complex (NMC), located in the westernmost segment of the Eocene Tavşanlı Metallogenic Belt, NW Türkiye. Through integration of field data, whole-rock geochemistry, Re–Os molybdenite dating, and amphibole–biotite [...] Read more.
This study explores the magmatic and hydrothermal evolution of porphyry–skarn–transitional Cu-Mo-W-Au systems within the Nilüfer Mineralization Complex (NMC), located in the westernmost segment of the Eocene Tavşanlı Metallogenic Belt, NW Türkiye. Through integration of field data, whole-rock geochemistry, Re–Os molybdenite dating, and amphibole–biotite mineral chemistry, the petrogenetic controls on mineralization across four spatially associated mineralized regions (Kirazgedik, Güneybudaklar, Kozbudaklar, and Delice) were examined. The earliest and thermally most distinct phase is represented by the Kirazgedik porphyry system, characterized by high temperature (~930 °C), oxidized quartz monzodioritic intrusions emplaced at ~2.7 kbar. Rising fO2 and volatile enrichment during magma ascent facilitated structurally focused Cu-Mo mineralization. At Güneybudaklar, Re–Os geochronology yields an age of ~49.9 Ma, linking Mo- and W-rich mineralization to a transitional porphyry–skarn environment developed under moderately oxidized (ΔFMQ + 1.8 to +0.5) and hydrous (up to 7 wt.% H2O) magmatic conditions. Kozbudaklar represents a more reduced, volatile-poor skarn system, leading to Mo-enriched scheelite mineralization typical of late-stage W-skarns. The Delice system, developed at the contact of felsic cupolas and carbonates, records the broadest range of redox and fluid compositions. Mixed oxidized–reduced fluid signatures and intense fluid–rock interaction reflect complex, multistage fluid evolution involving both magmatic and external inputs. Geochemical and mineralogical trends—from increasing silica and Rb to decreasing Sr and V—trace a systematic evolution from mantle-derived to felsic, volatile-rich magmas. Structurally, mineralization is controlled by oblique fault zones that localize magma emplacement and hydrothermal flow. These findings support a unified genetic model in which porphyry and skarn mineralization styles evolved continuously from multiphase magmatic systems during syn-to-post-subduction processes, offering implications for exploration models in the Western Tethyan domain. Full article
Show Figures

Figure 1

14 pages, 6297 KiB  
Article
Enhancing the Elevated-Temperature Mechanical Properties of Levitation Melted NbMoTaW Refractory High-Entropy Alloys via Si Addition
by Yunzi Liu, Xiaoxiao Li, Shuaidan Lu, Jialiang Zhou, Shangkun Wu, Shengfeng Lin and Long Wang
Materials 2025, 18(15), 3465; https://doi.org/10.3390/ma18153465 - 24 Jul 2025
Viewed by 203
Abstract
To enhance the mechanical properties of NbMoTaW refractory high-entropy alloys (RHEAs), Si was added at varying concentrations (x = 0, 0.25, and 0.5) via vacuum induction levitation melting (re-melted six times for homogeneity). The microstructure and mechanical properties of NbMoTaWSix ( [...] Read more.
To enhance the mechanical properties of NbMoTaW refractory high-entropy alloys (RHEAs), Si was added at varying concentrations (x = 0, 0.25, and 0.5) via vacuum induction levitation melting (re-melted six times for homogeneity). The microstructure and mechanical properties of NbMoTaWSix (x = 0, 0.25, and 0.5) RHEAs were characterized using scanning electron microscopy (SEM), universal testing, microhardness testing, and tribological equipment. Experimental results manifested that Si addition induces the formation of the (Nb,Ta)5Si3 phase, and the volume fraction of the silicide phase increases with higher Si content, which significantly improves the alloy’s strength and hardness but deteriorates its plasticity. Enhanced wear resistance with Si addition is attributed to improved hardness and oxidation resistance. Tribological tests confirm that Si3N4 counterfaces are optimal for evaluating RHEA wear mechanisms. This work can provide guidance for the fabrication of RHEAs with excellent performance. Full article
(This article belongs to the Special Issue High-Entropy Alloys: Synthesis, Characterization, and Applications)
Show Figures

Graphical abstract

14 pages, 7306 KiB  
Article
Influence of Gear Set Loading on Surface Damage Forms for Gear Teeth with DLC Coating
by Edyta Osuch-Słomka, Remigiusz Michalczewski, Anita Mańkowska-Snopczyńska, Michał Gibała, Andrzej N. Wieczorek and Emilia Skołek
Coatings 2025, 15(7), 857; https://doi.org/10.3390/coatings15070857 - 21 Jul 2025
Viewed by 282
Abstract
An analysis of the working surfaces of cylindrical gears after scuffing shock tests allowed for the assessment of the effect of loading conditions on the form of damage to the tooth surfaces. Unlike the method of scuffing under severe conditions, where loading is [...] Read more.
An analysis of the working surfaces of cylindrical gears after scuffing shock tests allowed for the assessment of the effect of loading conditions on the form of damage to the tooth surfaces. Unlike the method of scuffing under severe conditions, where loading is applied gradually, the presented tests employed direct maximum loading—shock loading—without prior lapping of the gears under lower loads. This loading method significantly increases the vulnerability of the analyzed components to scuffing, enabling an evaluation of their limit in terms of operational properties. To identify the changes and the types of the teeth’s working surface damage, the following microscopy techniques were applied: scanning electron microscopy (FE-SEM) with EDS microanalyzer, optical interferential profilometry (WLI), atomic force microscope (AFM), and optical microscopy. The results allowed us to define the characteristic damage mechanisms and assess the efficiency of the applied DLC coatings when it comes to resistance to scuffing in shock scuffing conditions. Tribological tests were performed by means of an FZG T-12U gear test rig in a power circulating system to test cylindrical gear scuffing. The gears were made from 18CrNiMo7-6 steel and 35CrMnSiA nano-bainitic steel and coated with W-DLC/CrN. Full article
Show Figures

Figure 1

20 pages, 16432 KiB  
Article
Application of Clustering Methods in Multivariate Data-Based Prospecting Prediction
by Xiaopeng Chang, Minghua Zhang, Liang Chen, Sheng Zhang, Wei Ren and Xiang Zhang
Minerals 2025, 15(7), 760; https://doi.org/10.3390/min15070760 - 20 Jul 2025
Viewed by 236
Abstract
Mining and analyzing information from multiple sources—such as geophysics and geochemistry—is a key aspect of big data-driven mineral prediction. Clustering, which groups large datasets based on distance metrics, is an essential method in multidimensional data analysis. The Two-Step Clustering (TSC) approach offers advantages [...] Read more.
Mining and analyzing information from multiple sources—such as geophysics and geochemistry—is a key aspect of big data-driven mineral prediction. Clustering, which groups large datasets based on distance metrics, is an essential method in multidimensional data analysis. The Two-Step Clustering (TSC) approach offers advantages by handling both categorical and continuous variables and automatically determining the optimal number of clusters. In this study, we applied the TSC method to mineral prediction in the northeastern margin of the Jiaolai Basin by: (i) converting residual gravity and magnetic anomalies into categorical variables using Ward clustering; and (ii) transforming 13 stream sediment elements into independent continuous variables through factor analysis. The results showed that clustering is sensitive to categorical variables and performs better with fewer categories. When variables share similar distribution characteristics, consistency between geophysical discretization and geochemical boundaries also influences clustering results. In this study, the (3 × 4) and (4 × 4) combinations yielded optimal clustering results. Cluster 3 was identified as a favorable zone for gold deposits due to its moderate gravity, low magnetism, and the enrichment in F1 (Ni–Cu–Zn), F2 (W–Mo–Bi), and F3 (As–Sb), indicating a multi-stage, shallow, hydrothermal mineralization process. This study demonstrates the effectiveness of combining Ward clustering for variable transformation with TSC for the integrated analysis of categorical and numerical data, confirming its value in multi-source data research and its potential for further application. Full article
Show Figures

Figure 1

33 pages, 20199 KiB  
Review
Composition Optimization in Alloy Design for Nickel-Based Single Crystal Superalloy: A Review
by Yu Zhou, Xinbao Zhao, Yunpeng Fan, Quanzhao Yue, Wanshun Xia, Qinghai Pan, Yuan Cheng, Weiqi Li, Yuefeng Gu and Ze Zhang
Metals 2025, 15(7), 793; https://doi.org/10.3390/met15070793 - 13 Jul 2025
Viewed by 403
Abstract
This article presents a review of the composition optimization progress of nickel-based single crystal (SC) superalloy design in recent years in order to obtain better high-temperature performance for the development of the aviation industry. The influence of alloying elements on the creep resistance, [...] Read more.
This article presents a review of the composition optimization progress of nickel-based single crystal (SC) superalloy design in recent years in order to obtain better high-temperature performance for the development of the aviation industry. The influence of alloying elements on the creep resistance, microstructure characteristics, oxidation resistance, castability, density, and cost of superalloys is analyzed and discussed. In order to obtain better high-temperature performance, the content of refractory elements (Ta + Re + W + Mo) and Co was increased gradually. The addition of Ru was added in the fourth-generation nickel-based SC superalloy to stabilize the microstructures and suppress the precipitation of the topologically close-packed (TCP) phase. However, the content of the antioxidant element Cr significantly decreased, while the synergistic effect of Al, Cr, and Ta received more attention. Therefore, synergistic effects should also receive more attention to meet the practical needs of reducing the content of refractory elements to reduce costs and density in future single crystal alloy designs without compromising critical performance. Full article
(This article belongs to the Special Issue Advances in Lightweight Alloys, 2nd Edition)
Show Figures

Graphical abstract

17 pages, 15703 KiB  
Article
Improving of Thermoelectric Efficiency of Layered Sodium Cobaltite Through Its Doping by Different Metal Oxides
by Natalie S. Krasutskaya, Ekaterina A. Chizhova, Julia A. Zizika, Alexey V. Buka, Hongchao Wang and Andrei I. Klyndyuk
Ceramics 2025, 8(3), 86; https://doi.org/10.3390/ceramics8030086 - 5 Jul 2025
Viewed by 377
Abstract
Na0.89Co0.90Me0.10O2 (Me = Cr, Ni, Mo, W, Pb, and Bi) ceramic samples were prepared using a solid-state reaction method, and their crystal structure, microstructure, and electrical, thermal, and thermoelectric properties were investigated. The effect [...] Read more.
Na0.89Co0.90Me0.10O2 (Me = Cr, Ni, Mo, W, Pb, and Bi) ceramic samples were prepared using a solid-state reaction method, and their crystal structure, microstructure, and electrical, thermal, and thermoelectric properties were investigated. The effect of the nature of the doping metal (Me = Cr, Ni, Mo, W, and Bi) on the structure and properties of layered sodium cobaltite Na0.89CoO2 was analyzed. The largest Seebeck coefficient (616 μV/K at 1073 K) and figure-of-merit (1.74 at 1073 K) values among the samples studied were demonstrated by the Na0.89Co0.9Bi0.1O2 solid solution, which was also characterized by the lowest value of the dimensionless relative self-compatibility factor of about 8% within the 673–873 K temperature range. The obtained results demonstrate that doping of layered sodium cobaltite by transition and heavy metal oxides improves its microstructure and thermoelectric properties, which shows the prospectiveness of the used doping strategy for the development of new thermoelectric oxides with enhanced thermoelectric characteristics. It was also shown that samples with a higher sodium content (Na:Co = 0.89:1) possessed higher chemical and thermal stability than those with a lower sodium content (Na:Co = 0.55:1), which makes them more suitable for practical applications. Full article
Show Figures

Graphical abstract

14 pages, 1310 KiB  
Article
Application of Lean–Agile Hybrid Methods in Complex Construction Project Management
by Huixing Yang and Deling Wang
Buildings 2025, 15(13), 2349; https://doi.org/10.3390/buildings15132349 - 4 Jul 2025
Viewed by 535
Abstract
This study explores the application potential of a lean–Agile hybrid method in complex construction project management. By integrating Scrum iterative development, the Last Planner System, and a BIM collaboration platform, a dual-engine model is established to optimize the dynamic priority mechanism (MoSCoW 2.0) [...] Read more.
This study explores the application potential of a lean–Agile hybrid method in complex construction project management. By integrating Scrum iterative development, the Last Planner System, and a BIM collaboration platform, a dual-engine model is established to optimize the dynamic priority mechanism (MoSCoW 2.0) and interface conflict entropy algorithm (ICE model). Through a combination of theoretical and practical approaches, the study elucidates the implementation pathway of this hybrid method and evaluates its benefits in enhancing project efficiency, reducing waste, and accelerating digital transformation. The study provides a replicable management framework for the construction industry and proposes a blockchain-based decentralized knowledge management framework based on blockchain technology. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

15 pages, 2361 KiB  
Article
Synergistic Leaching of Low-Grade Tungsten–Molybdenum Ore via a Novel KMnO4-Na2CO3-NaHCO3 Composite System Guided by Process Mineralogy
by Jian Kang, Linlin Tong, Qin Zhang, Han Zhao, Xinyao Wang, Bin Xiong and Hongying Yang
Minerals 2025, 15(7), 712; https://doi.org/10.3390/min15070712 - 3 Jul 2025
Viewed by 376
Abstract
The mineral processing of a low-grade tungsten-molybdenum ore (LGTMO) was investigated to assess the potential of recovering molybdenum (Mo) and tungsten (W). Techniques such as Polarizing Microscope (PM), Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS), Mineral Liberation Analysis (MLA), and Advanced Mineral Identification and [...] Read more.
The mineral processing of a low-grade tungsten-molybdenum ore (LGTMO) was investigated to assess the potential of recovering molybdenum (Mo) and tungsten (W). Techniques such as Polarizing Microscope (PM), Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS), Mineral Liberation Analysis (MLA), and Advanced Mineral Identification and Characterization System (AMICS) were employed. The recoverable metals in the ore are Mo (0.158% ± 0.03%) and W (0.076% ± 0.02%). Mo exists in two forms: 63.30% as molybdenite and 36.7% as powellite (CaMoxW1−xO4). W is present as 75.26% scheelite and 24.74% powellite. The complete dissociation rates of molybdenite and scheelite-powellite are 27.14% and 88.87%, respectively. Particles of scheelite-powellite with a diameter less than 10 µm account for 34.61%, while molybdenite particles with a diameter below 10 µm make up 72.73%. Scheelite-powellite is mainly associated with olivine and dolomite, while molybdenite is mainly associated with pyroxene, calcite, and hornblende. Based on the process mineralogy, the mineralogical factors influencing the flotation recovery of molybdenite and scheelite-powellite were analyzed. Finally, a complete hydrometallurgical leaching test was carried out. The optimal experimental conditions are as follows: liquid-solid ratio of 6 mL/g, KMnO4 concentration of 0.015 mol/L, Na2CO3 concentration of 0.12 mol/L, NaHCO3 concentration of 0.024 mol/L, leaching time of 4 h, and leaching temperature of 85 °C. Under these conditions, the leaching efficiencies of Mo and W reach 79.23% and 41.41%, respectively. This study presents a novel approach for the recovery of refractory W and Mo resources in LGTMO while simultaneously providing a theoretical basis for the high-efficiency utilization of these resources. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

14 pages, 7774 KiB  
Article
Temperature Differences Between Rooftop and Urban Canyon Sensors: Diurnal Dynamics, Drivers, and Implications
by Lorenzo Marinelli, Andrea Cecilia, Giampietro Casasanta, Alessandro Conidi, Igor Petenko and Stefania Argentini
Sensors 2025, 25(13), 4121; https://doi.org/10.3390/s25134121 - 2 Jul 2025
Viewed by 370
Abstract
Understanding temperature variations within the complex urban canopy layer (UCL) is challenging due to limitations and discrepancies between temperature measurements taken in urban canyons and on rooftops. The key question is how much these measurements differ and what factors contribute to these differences. [...] Read more.
Understanding temperature variations within the complex urban canopy layer (UCL) is challenging due to limitations and discrepancies between temperature measurements taken in urban canyons and on rooftops. The key question is how much these measurements differ and what factors contribute to these differences. According to the guidance by the World Meteorological Organization (WMO), rooftop observations are not encouraged for urban monitoring, due to potentially anomalous microclimatic conditions, whereas measurements within urban canyons are recommended. This is particularly relevant given the increasing number of rooftop sensors deployed through citizen science, raising questions about the representativeness of such data. This study aimed to address this knowledge gap by comparing temperatures within the UCL using two sensors: one located on a rooftop, and the other positioned within the canyon. The temperature difference between these two nearby locations followed a clear diurnal cycle, peaking at over 1 °C between 12:00 and 16:00 local time, with the canyon warmer than the rooftop. This daytime warming was primarily driven by solar radiation and, to a lesser extent, by wind speed, but only under clear-sky conditions. During the rest of the day, the temperature difference remained negligible. Full article
(This article belongs to the Special Issue Sensor-Based Systems for Environmental Monitoring and Assessment)
Show Figures

Figure 1

20 pages, 7766 KiB  
Article
Mineral Exploration in the Central Xicheng Ore Field, China, Using the Tectono-Geochemistry, Staged Factor Analysis, and Fractal Model
by Qiang Wang, Zhizhong Cheng, Hongrui Li, Tao Yang, Tingjie Yan, Mingming Bing, Huixiang Yuan and Chenggui Lin
Minerals 2025, 15(7), 691; https://doi.org/10.3390/min15070691 - 28 Jun 2025
Viewed by 262
Abstract
As China’s third-largest lead–zinc ore field, the Xicheng Ore Field has significant potential for discovering concealed deposits. In this study, a tectono-geochemical survey was conducted, and 1329 composite samples (comprising 5614 subsamples) were collected from the central part of the field. The dataset [...] Read more.
As China’s third-largest lead–zinc ore field, the Xicheng Ore Field has significant potential for discovering concealed deposits. In this study, a tectono-geochemical survey was conducted, and 1329 composite samples (comprising 5614 subsamples) were collected from the central part of the field. The dataset was analyzed using staged factor analysis (SFA) and concentration–area (C–A) fractal model. Four geochemical factors were extracted from centered log-ratio (CLR)-transformed data: F2-1 (Ag–Pb–Sb–Hg), F2-2 (Mo–Sb–(Zn)), F2-3 (Au–Bi), and F2-4 (W–Sn). Known Pb–Zn deposits coincide with positive F2-1 and negative F2-2 anomalies, as identified by the C–A fractal model, suggesting these factors are reliable indicators of Pb–Zn mineralization. Five Pb–Zn exploration targets were delineated. Statistical analysis and anomaly maps for F2-3 and F2-4 also indicate the potential for Au and W mineralization. Notably, some anomalies from different factors spatially overlap, indicating the possibility of epithermal Pb–Zn mineralization at shallow depths and mesothermal to hyperthermal Au and W mineralization at great depths. Overall, the integration of tectono-geochemistry, targeted and composite sampling, SFA, and C–A fractal modeling proves to be an effective and economical approach for identifying and enhancing ore-related geochemical anomalies. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

Back to TopTop