Dolomitization Controlled by Paleogeomorphology in the Epicontinental Sea Environment: A Case Study of the 5th Sub-Member in 5 Member of the Ordovician Majiagou Formation in Daniudi Gas Field, Ordos Basin
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Cathodoluminescence
3.2. Carbon and Oxygen Isotopes
3.3. Strontium Isotope
3.4. Major and Trace Elements
3.5. X-ray Diffraction
4. Results
4.1. Petrology
4.1.1. Microscopic Features
4.1.2. X-ray Diffraction
4.2. Characteristics of Carbon, Oxygen, and Strontium
4.3. Compositions of Major and Trace Elements
5. Discussion
5.1. Dolomitization Fluid
5.2. Origin of Dolomite
5.3. Dolomitization Mechanism
5.4. The Distribution of Dolostone and Its Relationship with Paleogeomorphology
6. Conclusions
- (a)
- The 5th sub-member in the 5 Member of the Ordovician Majiagou Formation in the Daniudi Gas Field were mainly composed of microcrystalline limestone, microcrystalline dolostone, and very fine crystalline dolostone. The characteristics of microscopic and core observations showed that dolomitization occurred in the shallow-water facies. Dolomite was dark red under cathodoluminescence, and the degree of order in dolomite was between 0.63 and 0.91. The dolomitization fluid came from seawater which experienced a certain degree of evaporation. The formation of dolostone was due to the seepage–reflux of brine in the penecontemporaneous period.
- (b)
- The distribution of dolostone in the M55 of the Daniudi Gas Field was controlled by sedimentary paleogeomorphology. The strong correlation between the distribution of dolostone and paleokarst landform was attributed to the inheritance of paleokarst landform to sedimentary paleogeomorphology. During periods of frequent sea-level changes, higher terrain areas were more vulnerable to sea-level changes. Therefore, it was easier to develop multi-period cycles of limestone and dolostone, resulting in a larger cumulative thickness of dolostone. Highlands were subject to evaporation for a longer period and, thus, more easily formed very fine crystalline dolostone.
- (c)
- Under the gentle slope of the epicontinental sea, dolostone was more likely to develop extensively on a large-scale exposed surface during the regressing period. The change in sea level had a greater impact on the tidal flat environment under such geo-morphic conditions. Moreover, the distribution of dolostone had good continuity in plane. The unoriented flow and uneven effect of the seepage–reflux dolomitization fluid caused the difference in the distribution of dolostone. Overall, limestone under the evaporation environment on the highlands was widely dolomitized, and the higher terrain and slower slope contributed to the development of large-scale dolostone reservoirs.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allan, J.R.; Wiggins, W.D. Dolomite Reservoirs: Geochemical Techniques for Evaluating Origin and Distribution; American Association of Petroleum Geologists: Tulsa, OK, USA, 1993; Volume 36. [Google Scholar]
- Guo, C.; Chen, D.; Qing, H.; Zhou, X.; Ding, Y. Early dolomitization and recrystallization of the Lower-Middle Ordovician carbonates in western Tarim Basin (NW China). Mar. Pet. Geol. 2020, 111, 332–349. [Google Scholar] [CrossRef]
- Liu, D.; Cai, C.; Hu, Y.; Peng, Y.; Jiang, L. Multistage dolomitization and formation of ultra-deep Lower Cambrian Longwangmiao Formation reservoir in central Sichuan Basin, China. Mar. Pet. Geol. 2021, 123, 104752. [Google Scholar] [CrossRef]
- Zengler, D.H.; Dunham, J.; Ethington, R.L. Concepts and Models of Dolomitization; Society of Economic Paleontologists and Mineralogi: London, UK, 1980; pp. 51–67. [Google Scholar]
- Gunatilaka, A. Dolomite formation in coastal Al-Khiran, Kuwait Arabian Gulf—A re-examination of the sabkha model. Sediment. Geol. 1991, 72, 35–53. [Google Scholar] [CrossRef]
- Shen, A.; Zheng, J.; Chen, Y.; Ni, X.; Huang, L. Characteristics, origin and distribution of dolomite reservoirs in Lower-Middle Cambrian, Tarim Basin, NW China. Pet. Explor. Dev. 2016, 43, 375–385. [Google Scholar] [CrossRef]
- Kaufman, J. Numerical models of fluid flow in carbonate platforms; implications for dolomitization. J. Sediment. Res. 1994, 64, 128–139. [Google Scholar]
- Melim, L.; Scholle, P. Dolomitization of the Capitan Formation forereef facies (Permian, west Texas and New Mexico): Seepage reflux revisited. Sedimentology 2002, 49, 1207–1227. [Google Scholar] [CrossRef]
- Lu, P.; Cantrell, D. Reactive transport modelling of reflux dolomitization in the Arab-D Reservoir, Ghawar Field, Saudi Arabia. Sedimentology 2016, 63, 865–892. [Google Scholar] [CrossRef]
- Aharon, P.; Socki, R.A.; Chan, L. Dolomitization of atolls by sea water convection flow: Test of a hypothesis at Niue, South Pacific. J. Geol. 1987, 95, 187–203. [Google Scholar] [CrossRef]
- Ren, M.; Jones, B. Genesis of island dolostones. Sedimentology 2018, 65, 2003–2033. [Google Scholar] [CrossRef]
- Lu, F.; Meyers, W. Massive dolomitization of a Late Miocene carbonate platform: A case of mixed evaporative brines with meteoric water, Nijar, Spain. Sedimentology 2008, 45, 263–277. [Google Scholar] [CrossRef]
- Nader, F.; Rudy, S.; Ellam, R. Reflux stratabound dolostone and hydrothermal volcanism-associated dolostone: A two-state dolomitization model (Jurassic, Lebanon). Sedimentology 2004, 51, 339–360. [Google Scholar] [CrossRef]
- Conliffe, J.; Azmy, K.; Gleeson, S.A.; Lavoie, D. Fluids associated with hydrothermal dolomitization in St. George Group, western Newfoundland, Canada. Geofluids 2010, 10, 422–437. [Google Scholar] [CrossRef]
- Bahnan, A.E.; Carpentier, C.; Pironon, J.; Ford, M.; Ducoux, M.; Barré, G.; Mangenot, X.; Gaucher, E.C. Impact of geodynamics on fluid circulation and diagenesis of carbonate reservoirs in a foreland basin: Example of the Upper Lacq reservoir (Aquitaine basin, SW France). Mar. Pet. Geol. 2020, 111, 676–694. [Google Scholar] [CrossRef]
- Duggan, J.P.; Mountjoy, E.W.; Stasiuk, L.D. Fault-controlled dolomitization at Swan Hills Simonette oil field (Devonian), deep basin west-central Alberta, Canada. Sedimentology 2001, 48, 301–323. [Google Scholar] [CrossRef]
- Hollis, C.; Bastesen, E.; Boyce, A.; Corlett, H.; Gawthorpe, R.; Hirani, J.; Rotevatn, A.; Whitaker, F. Fault-controlled dolomitization in a rift basin. Geology 2017, 45, 219–222. [Google Scholar] [CrossRef] [Green Version]
- Koeshidayatullah, A.; Corlett, H.; Stacey, J.; Swart, P.K.; Boyce, A.; Robertson, H.; Whitaker, F.; Hollis, C. Evaluating new fault-controlled hydrothermal dolomitization models: Insights from the Cambrian Dolomite, Western Canadian Sedimentary Basin. Sedimentology 2020, 67, 2945–2973. [Google Scholar] [CrossRef]
- Kupecz, J.; Kerans, C.; Land, L.; Lee, Y.; Friedman, G. Deep-burial dolomitization in the Ordovician Ellenburger Group carbonates, West Texas and southern New Mexico; discussion and reply. J. Sediment. Res. 1988, 58, 908–913. [Google Scholar] [CrossRef]
- Jiang, L.; Cai, C.; Worden, R.; Crowley, S.; Jia, L.; Zhang, K.; Duncan, I. Multiphase dolomitization of deeply buried Cambrian petroleum reservoirs, Tarim Basin, north-west China. Sedimentology 2016, 63, 2130–2157. [Google Scholar] [CrossRef] [Green Version]
- Shi, B.; Liu, Y.; Wu, C.; Huang, Z.; Ren, J. Geological conditions for hydrocarbon accumulation in middle reservoir-source rock combination of the Ordovician Majiagou Formation on the east side of the paleo-uplift in Ordos Basin. Oil Gas Geol. 2013, 34, 610–618. [Google Scholar]
- Li, W.; Tu, J.; Zhang, J.; Zhang, B. Accumulation and potential analysis of self-sourced natural gas in the Ordovician Majiagou Formation of Ordos Basin, NW China. Pet. Explor. Dev. 2017, 44, 552–562. [Google Scholar] [CrossRef]
- Tu, J.; Dong, Y.; Zhang, B.; Nan, H.; Li, C.; Wang, X.; Fei, X.; Zhou, W. Discovery of effective scale source rocks of the Ordovician Majiagou Fm in the Ordos Basin and its geological significance. Nat. Gas Ind. B 2016, 36, 15–24. [Google Scholar] [CrossRef]
- Tang, M. Study on the Formation Characteristics of the Weathere Ma 5 Layer of Ordovician System in Daniudi Gas Field. Master’s Thesis, Southwest Petroleum University, Chengdu, China, 4 December 2017. [Google Scholar]
- Luo, X. The Research on Dolomite Genesis and the Sedimentary Evolution of Ordovician Majiagou Formation Ma 5 Submember in Daniudi Area. Master’s Thesis, Chengdu University of Technology, Chengdu, China, 13 June 2013. [Google Scholar]
- Bai, X. Origin of Dolomite and Dolomite Reservoir Development in Middle Ordovician M55 Sub-Member Platform Carbonates in the Daniudi Area, Northern Ordos Basin, Western China. Ph.D. Thesis, Southwest Petroleum University, Chengdu, China, 7 June 2016. [Google Scholar]
- Luo, Q.; Liu, B.; Jiang, W.; Yu, S.; Wang, Y.; Wei, L.; Cai, Z. Diagenesis and pore evolution of dolomite reservoir in the 5th member of the Ordovician Majiagou Formation, central Ordos Basin. Oil Gas Geol. 2020, 41, 102–115. [Google Scholar]
- Ren, J.; Yang, W.; Ding, X.; Zhao, W.; Huang, L.; Wei, L. Discussion on characteristics and origin of Majiagou Formation dolomite reservoir in Ordos Basin, China. J. Chengdu Univ. Technol. Sci. Technol. Ed. 2016, 43, 274–281. [Google Scholar]
- Li, F.; Du, L.; Zhao, J.; Li, Y.; Xiang, F.; Li, F. Dolomite genesis in Member Ma5 5 of Majiagou Formation, Sudong area, Ordos Basin. Acta Pet. Sin. 2016, 37, 328–338. [Google Scholar]
- Yu, C.; Cui, J. Geochemical Characteristics and Genesis of Dolomite in Majiagou Ma55 Submember of the Northeast Yishan Slope, Ordos Basin. Earth Sci. 2019, 44, 2761–2774. [Google Scholar]
- Zuo, Z.; Xiong, Y.; He, W.; Yang, B.; Ren, L.; Wen, H.; Liu, G.; Liu, L.; Tan, X. Diagenesis and Porosity Evolution of the Subsalt Member 5 of Majiagou Formation Reservoir in the Central Ordos Basin. Bull. Geol. Sci. Technol. 2019, 38, 155–164. [Google Scholar]
- He, M.; Huang, W.; Jiu, B. Origin and evolution of favorable reservoir of gypsum dolomite in Ordos basin. China Earth Sci. Front. 2021, in press. [Google Scholar] [CrossRef]
- Tang, M. Dolomite reservoir characteristics and distribution regularity of Ma5-5 reservoirs in Daniudi gasfield. Pet. Geol. Eng. 2017, 31, 29–32/131–132. [Google Scholar]
- Zheng, R.; Dang, R.; Zheng, C.; Wen, H.; Zhou, G.; Xu, F. Diagenetic system of carbonate reservoir in Huanglong Formation from East Sichuan to North Chongqing area. Acta Pet. Sin. 2010, 31, 237–245. [Google Scholar]
- Hu, Z.; Zheng, R.; Wen, H.; Cai, J.; Chen, S.; Hu, J.; Li, G. Dolostone genesis of Huanglong Formation of Carboniferous in Linshui of Eastern Sichuan-northern Chongqing area. Acta Petrol. Sin. 2008, 24, 1369–1378. [Google Scholar]
- Liu, S.; Hu, M.; Hu, Z.; Dai, Y. Dolomite genesis of Carboniferous Huanglong Formation in eastern Sichuan Basin. Lithol. Reserv. 2015, 27, 40–46. [Google Scholar]
- Su, Z.; Chen, H.; Ou, Y.Z.; Jin, X. Sequence-based lithofacies and paleogeography of Majiagou Formation in Ordos Basin. Geol. China 2012, 39, 623–633. [Google Scholar]
- Huang, Z.; Wu, C.; Ma, Z.; Ren, J.; Bao, H. Sedimentary Sequence of Ordovician Majiagou Formation in Central and Eastern Part of Ordos Basin and Its Control over Reservoir Development. China Pet. Explor. 2015, 20, 20–29. [Google Scholar]
- Wang, Q.; Zhang, Y.; Yang, Y.; Yang, L.; Li, J. Sequence stratigraphic and lithofacies distributions of Majiagou Formation in Ordos Basin. J. Northwest Univ. Nat. Sci. Ed. 2015, 20, 20–29. [Google Scholar]
- Wang, L.; Mei, C.; Li, Y.; Zhao, J. Sequence stratigraphic features and their control over hydrocarbon accumulation of Ordovician Majiagou formation in the Ordos Basin. J. Northeast. Pet. Univ. 2018, 42, 26–36/112/124–125. [Google Scholar]
- Jiang, S.; Jiang, Y.; Huang, W.; Xing, E.; Gui, B.; Peng, Y.; Zhao, H.; Shang, W. Geochemical characteristics of Ordovician strontium isotope in the Ordos Basin. Acta Geol. Sin. 2019, 93, 2889–2903. [Google Scholar]
- Lei, T.; Deng, H.; Wu, D.; Fu, M.; Tang, M.; Cui, L.; Ding, X.; Xia, Y.; Xie, X. Depositional model of the lower-middle Ordovician Majiagou Formation in Daniudi Gas Field, Ordos Basin. J. Palaeogeogr. Chin. Ed. 2020, 22, 523–538. [Google Scholar]
- Wu, W.; Wang, Y.; Zhao, J.; Yang, T.; Li, J.; Huang, Z. The rule of nature gas accumulation of the mid-assemblage of Ordovician Majiagou Formation in the central Ordos Basin. Nat. Gas Geosci. 2019, 30, 828–839. [Google Scholar]
- Lei, H.; Huang, W.; Yi, S.; Wang, Y. Dissolution characteristics of deep-buried dolostone in the Member 5 of Ordovician Majiagou Formation in southern Ordos Basin. J. Palaeogeogr. Chin. Ed. 2020, 22, 1041–1052. [Google Scholar]
- Fu, S.; Zhang, C.; Chen, H.; Chen, A.; Zhao, J.; Su, Z.; Yang, S.; Wang, G.; Mi, W. Characteristics, formation and evolution of pre-salt dolomite reservoirs in the fifth member of the Ordovician Majiagou Formation, mid-east Ordos Basin, NW China. Pet. Explor. Dev. 2019, 46, 1153–1164. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, T.; Lei, P.; Zhang, J.; Zhang, J.; Zhao, Z.; Yong, J. Origin and characteristics of grain dolomite of Ordovician Ma55 Member in the northwest of Ordos Basin, NW China. Pet. Explor. Dev. 2019, 46, 1115–1127. [Google Scholar] [CrossRef]
- Zuo, M.; Hu, Z.; Zhang, C.; Hu, M.; Yang, W.; Mo, W. Control of differential tectonic activities on carbonate reservoirs in craton basin: A case study of the subsalt reservoir of Majiagou Formation in Ordos Basin. Geol. China. 2021, 48, 794–806. [Google Scholar]
- Qiao, Y.; Zhang, L.; Wang, Y.; Zhang, Y.; Ma, J.; Jiang, H. Thrombolite types and seawater palaeosalinity of the 5th Member of Middle Ordovician Majiagou Formation in Sulige Gas Field, Ordos Basin. J. Palaeogeogr. Chin. Ed. 2020, 22, 97–110. [Google Scholar]
- Xie, K.; Tan, X.; Feng, M.; Wang, B.; Zhong, S.; Yang, M.; Nie, W.; Qiao, Z.; Zeng, W. Eogenetic karst and its control on reservoirs in the Ordovician Majiagou Formation, eastern Sulige gas field, Ordos Basin, NW China. Pet. Explor. Dev. 2020, 47, 1246–1261. [Google Scholar] [CrossRef]
- Yang, W.; Wang, Q.; Liu, J.; Shi, K.; Wei, W. Standardization of sequence stratigraphy in Ordovician Majiagou formation, Ordos Basin. J. Xi’an Univ. Sci. Technol. 2017, 37, 234–241. [Google Scholar]
- Popp, B.; Anderson, T.; Sandberg, P. Brachiopods as indicators of original isotopic composition in some Paleozoic limestones. Geol. Soc. Am. Bull. 1986, 97, 1262–1269. [Google Scholar] [CrossRef]
- Lohmann, K.; Walker, J. The δ18O record of Phanerozoic abiotic marine calcite cements. Geophys. Res. Lett. 1989, 16, 319–322. [Google Scholar] [CrossRef] [Green Version]
- Burke, W.H.; Denison, R.E.; Hetherington, E.A.; Koepnick, R.B.; Nelson, H.F.; Otto, J.B. Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology 1982, 10, 516–519. [Google Scholar] [CrossRef]
- Veizer, J.; Ala, D.; Azmy, K.; Bruckschen, P.; Buhl, D.; Bruhn, F.; Carden, G.A.F.; Diener, A.; Ebneth, S.; Godderis, Y.; et al. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem. Geol. 1999, 161, 59–88. [Google Scholar] [CrossRef] [Green Version]
- Shields, G.A.; Carden, G.A.F.; Veizer, J.; Meidla, T.; Rong, J.; Li, R. Sr, C, and O isotope geochemistry of Ordovician brachiopods: A major isotopic event around the Middle-Late Ordovician transition. Geochim. Cosmochim. Acta 2003, 67, 2005–2025. [Google Scholar] [CrossRef]
- McLennan, S. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. Rev. Mineral. Geochem. 1989, 21, 170–199. [Google Scholar]
- McLennan, S. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem. Geophys. Geosyst. 2001, 2, 1021. [Google Scholar] [CrossRef]
- Coryell, C.; Chase, J.; Winchester, J. A procedure for geochemical interpretation of terrestrial rare-earth abundance pattern. J. Geophys. Res. 1963, 68, 559–566. [Google Scholar] [CrossRef]
- Keith, M.L.; Anderson, G.M.; Eichler, R. Carbon and oxygen isotopic composition of mollusk shells from marine and fresh-water environments. Geochim. Cosmochim. Acta 1964, 28, 1757–1786. [Google Scholar] [CrossRef]
- Keith, M.L.; Weber, J.N. Carbon and oxygen isotopic composition of selected limestones and fossils. Geochim. Cosmochim. Acta 1964, 28, 1787–1816. [Google Scholar] [CrossRef]
- Bolhar, R.; Van Kranendonk, M. A non-marine depositional setting for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates. Precambrian Res. 2007, 155, 229–250. [Google Scholar] [CrossRef]
- Komiya, T.; Hirata, T.; Kitajima, K.; Yamamoto, S.; Shibuya, T.; Sawaki, Y.; Ishikawa, T.; Shu, D.; Li, Y.; Han, J. Evolution of the composition of seawater through geologic time, and its influence on the evolution of life. Gondwana Res. 2008, 14, 159–174. [Google Scholar] [CrossRef]
- Ling, H.; Chen, X.; Li, D.; Wang, D.; Shields-Zhou, G.A.; Zhu, M. Cerium anomaly variations in Ediacaran-earliest Cambrian carbonates from the Yangtze Gorges area, South China: Implications for oxygenation of coeval shallow seawater. Precambrian Res. 2013, 225, 110–127. [Google Scholar] [CrossRef]
- Bau, M.; Dulski, P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Res. 1996, 79, 37–55. [Google Scholar] [CrossRef]
- Alibert, C.; McCulloch, M.T. Rare earth element and neodymium isotopic compositions of the banded iron-formations and associated shales from Hamersley, western Australia. Geochim. Cosmochim. Acta 1993, 57, 187–204. [Google Scholar] [CrossRef]
- German, C.; Elderfield, H. Application of the Ce Anomaly as a Paleoredox Indicator: The Ground Rules. Paleoceanography 1990, 5, 823–833. [Google Scholar] [CrossRef]
- Michard, A.; Albarède, F. The REE content of some hydrothermal fluids. Chem. Geol. 1986, 55, 51–60. [Google Scholar] [CrossRef]
- Robbins, L.J.; Lalonde, S.V.; Planavsky, N.J.; Partin, C.A.; Reinhard, C.T.; Kendall, B.; Scott, C.; Hardisty, D.S.; Gill, B.C.; Alessi, D.S.; et al. Trace elements at the intersection of marine biological and geochemical evolution. Earth-Sci. Rev. 2016, 163, 323–348. [Google Scholar] [CrossRef]
- Adams, M. Dolomitization by Seepage Refluxion. AAPG Bull. 1960, 44, 1912–1920. [Google Scholar]
- Dravis, J.; Wanless, H. Reflux dolomitization—A Holocene example beneath a coastal salina, West Caicos Island, Turks and Caicos Islands. Marine and Petroleum. Geology 2018, 97, 311–322. [Google Scholar]
- Jiang, L.; Cai, C.; Worden, R.; Li, K.; Xiang, L. Reflux dolomitization of the Upper Permian Changxing Formation and the Lower Triassic Feixianguan Formation, NE Sichuan Basin, China. Geofluids 2013, 13, 232–245. [Google Scholar] [CrossRef]
Sample Number | Well | Depth (m) | Lithology | CL | Section | XRD | Stable Isotope | Major element | Trace Element |
---|---|---|---|---|---|---|---|---|---|
S1 | D67 | 2892.28 | Microcrystalline limestone | √ | √ | √ | √ | √ | |
S2 | D1-530 | 3097.42 | Very fine crystalline dolostone | √ | √ | √ | √ | ||
S3 | D1-530 | 3101.42 | Microcrystalline dolostone | √ | √ | √ | √ | √ | √ |
S4 | D1-530 | 3102.96 | Microcrystalline dolostone | √ | √ | ||||
S5 | D1-530 | 3102.99 | Very fine crystalline dolostone | √ | √ | ||||
S6 | D1-530 | 3105.53 | Microcrystalline dolostone | √ | √ | ||||
S7 | D1-530 | 3106.75 | Microcrystalline dolostone | √ | √ | √ | |||
S8 | D1-530 | 3108.28 | Microcrystalline dolostone | √ | √ | √ | √ | √ | |
S9 | D1-530 | 3112.78 | Microcrystalline dolostone | √ | √ | √ | √ | √ | |
S10 | D1-530 | 3115.62 | Microcrystalline dolostone | √ | √ | √ | √ | ||
S11 | D48 | 3009.32 | Microcrystalline dolostone | √ | √ | √ | √ | ||
S12 | D48 | 3013.00 | Microcrystalline dolostone | √ | √ | √ | √ | ||
S13 | D48 | 3016.00 | Microcrystalline limestone | √ | |||||
S14 | D48 | 3017.99 | Microcrystalline dolostone | √ | |||||
S15 | D48 | 3020.38 | Microcrystalline limestone | √ | √ | ||||
S16 | D48 | 3026.35 | Microcrystalline limestone | √ | √ | √ | |||
S17 | PG27 | 2979.52 | Microcrystalline dolostone | √ | √ | √ | √ | √ | √ |
S18 | PG27 | 2987.35 | Very fine crystalline dolostone | √ | √ | √ | √ | √ |
Sample Number | Well | Depth (m) | Lithology | XRD (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Qtz | Pl | Ha | Gy | Dol | Cal | Py | Calys | Degree of Orde | ||||
S1 | D67 | 2892.28 | Microcrystalline limestone | 1.1 | -- | -- | -- | -- | 98.8 | 0.1 | -- | / |
S2 | D1-530 | 3097.42 | Very fine crystalline dolostone | 1.2 | -- | -- | -- | 96.6 | 2.2 | -- | -- | 0.91 |
S3 | D1-530 | 3101.42 | Microcrystalline dolostone | 0.8 | -- | -- | -- | 89.3 | 9.9 | -- | -- | 0.88 |
S7 | D1-530 | 3106.75 | Microcrystalline dolostone | 4.7 | -- | -- | -- | 89.2 | 0.3 | 0.6 | 5.2 | 0.63 |
S8 | D1-530 | 3108.28 | Microcrystalline dolostone | 0.3 | -- | -- | -- | 96.1 | 3.5 | 0.1 | -- | 0.83 |
S9 | D1-530 | 3112.78 | Microcrystalline dolostone | 0.6 | 0.4 | -- | -- | 93.9 | 5.2 | -- | -- | 0.74 |
S10 | D1-530 | 3115.62 | Microcrystalline dolostone | 0.5 | 0.3 | -- | -- | 94.3 | 4.6 | 0.2 | -- | 0.79 |
S11 | D48 | 3009.32 | Microcrystalline dolostone | 0.3 | -- | -- | -- | 66.2 | 33.5 | -- | -- | 0.79 |
S12 | D48 | 3013.00 | Microcrystalline dolostone | 0.4 | -- | -- | -- | 59.0 | 40.6 | -- | -- | 0.80 |
S16 | D48 | 3026.35 | Microcrystalline limestone | 0.7 | -- | -- | -- | 5.60 | 93.7 | -- | -- | / |
S17 | PG27 | 2979.52 | Microcrystalline dolostone | 0.8 | 0.4 | -- | -- | 96.3 | 2.4 | -- | -- | 0.83 |
S18 | PG27 | 2987.35 | Very fine crystalline dolostone | 0.2 | 0.4 | -- | -- | 97.4 | 2.0 | -- | -- | 0.83 |
Sample Number | Well | Depth (m) | Lithology | δ13CV-PDB‰ | δ18OV-PDB‰ | 87Sr/86Sr |
---|---|---|---|---|---|---|
S1 | D67 | 2892.28 | Microcrystalline limestone | −0.5 | −9.7 | 0.709082 |
S2 | D1-530 | 3097.42 | Very fine crystalline dolostone | −0.1 | −6.8 | 0.709711 |
S3 | D1-530 | 3101.42 | Microcrystalline dolostone | −0.2 | −8.1 | 0.709783 |
S4 | D1-530 | 3102.96 | Microcrystalline dolostone | 1.4 | −7.5 | 0.709637 |
S5 | D1-530 | 3102.99 | Very fine crystalline dolostone | −0.7 | −8.9 | 0.709067 |
S6 | D1-530 | 3105.53 | Microcrystalline dolostone | −2.0 | −8.7 | 0.709055 |
S7 | D1-530 | 3106.75 | Microcrystalline dolostone | −1.5 | −7.1 | 0.710430 |
S8 | D1-530 | 3108.28 | Microcrystalline dolostone | −0.3 | −7.5 | 0.709579 |
S9 | D1-530 | 3112.78 | Microcrystalline dolostone | −0.3 | −7.4 | 0.709766 |
S10 | D1-530 | 3115.62 | Microcrystalline dolostone | −0.1 | −7.5 | 0.710010 |
S11 | D48 | 3009.32 | Microcrystalline dolostone | −0.4 | −8.2 | 0.709228 |
S12 | D48 | 3013.00 | Microcrystalline dolostone | −1.8 | −8.4 | 0.709118 |
S13 | D48 | 3016.00 | Microcrystalline limestone | −0.5 | −8.3 | 0.709056 |
S14 | D48 | 3017.99 | Microcrystalline dolostone | −1.7 | −8.8 | 0.709367 |
S15 | D48 | 3020.38 | Microcrystalline limestone | −1.9 | −11.1 | 0.708797 |
S16 | D48 | 3026.35 | Microcrystalline limestone | −0.9 | −9.6 | 0.708902 |
S17 | PG27 | 2979.52 | Microcrystalline dolostone | −0.5 | −7.0 | 0.709561 |
S18 | PG27 | 2987.35 | Very fine crystalline dolostone | −0.1 | −7.3 | 0.709358 |
Sample Number | Well | Depth (m) | Lithology | Major Element (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LOI | K2O | Na2O | CaO | MgO | Al2O3 | TFe2O3 | MnO | TiO2 | P2O5 | ||||
S1 | D67 | 2892.28 | Microcrystalline limestone | 45.216 | 0.057 | 0.056 | 52.953 | 0.250 | 0.247 | 0.103 | 0.006 | 0.026 | 0.006 |
S2 | D1-530 | 3097.42 | Very fine crystalline dolostone | 44.329 | 0.051 | 0.062 | 31.721 | 22.120 | 0.186 | 0.213 | 0.007 | 0.024 | 0.006 |
S3 | D1-530 | 3101.42 | Microcrystalline dolostone | 45.058 | 0.080 | 0.060 | 34.362 | 19.180 | 0.264 | 0.266 | 0.008 | 0.029 | 0.008 |
S7 | D1-530 | 3106.75 | Microcrystalline dolostone | 47.907 | 1.023 | 0.079 | 26.277 | 19.220 | 3.351 | 0.991 | 0.019 | 0.217 | 0.077 |
S8 | D1-530 | 3108.28 | Microcrystalline dolostone | 45.119 | 0.101 | 0.063 | 32.538 | 21.020 | 0.332 | 0.298 | 0.007 | 0.026 | 0.013 |
S9 | D1-530 | 3112.78 | Microcrystalline dolostone | 46.902 | 0.079 | 0.060 | 31.863 | 19.760 | 0.286 | 0.337 | 0.008 | 0.026 | 0.013 |
S10 | D1-530 | 3115.62 | Microcrystalline dolostone | 48.023 | 0.287 | 0.064 | 30.239 | 19.370 | 1.051 | 0.390 | 0.008 | 0.034 | 0.022 |
S11 | D48 | 3009.32 | Microcrystalline dolostone | 47.981 | 0.082 | 0.053 | 37.744 | 13.060 | 0.293 | 0.234 | 0.008 | 0.026 | 0.011 |
S12 | D48 | 3013.00 | Microcrystalline dolostone | 50.201 | 0.061 | 0.053 | 38.352 | 10.530 | 0.211 | 0.224 | 0.008 | 0.022 | 0.007 |
S16 | D48 | 3026.35 | Microcrystalline limestone | 48.007 | 0.075 | 0.048 | 49.362 | 1.606 | 0.288 | 0.110 | 0.004 | 0.023 | 0.011 |
S17 | PG27 | 2979.52 | Microcrystalline dolostone | 48.150 | 0.080 | 0.054 | 29.811 | 20.730 | 0.302 | 0.199 | 0.006 | 0.024 | 0.010 |
S18 | PG27 | 2987.35 | Very fine crystalline dolostone | 48.839 | 0.056 | 0.054 | 29.726 | 20.330 | 0.221 | 0.260 | 0.008 | 0.019 | 0.009 |
Sample Number | Well | Depth (m) | Lithology | REE (ug/g) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Y | Ho | Er | Tm | Yb | Lu | ||||
S1 | D67 | 2892.28 | Microcrystalline limestone | 1.699 | 3.208 | 0.374 | 1.275 | 0.227 | 0.048 | 0.188 | 0.029 | 0.173 | 1.005 | 0.038 | 0.097 | 0.014 | 0.12 | 0.016 |
S2 | D1-530 | 3097.42 | Very fine crystalline dolostone | 1.007 | 1.904 | 0.237 | 0.831 | 0.177 | 0.027 | 0.141 | 0.021 | 0.140 | 0.725 | 0.021 | 0.068 | 0.009 | 0.069 | 0.007 |
S3 | D1-530 | 3101.42 | Microcrystalline dolostone | 1.889 | 3.864 | 0.471 | 1.734 | 0.284 | 0.059 | 0.257 | 0.038 | 0.196 | 1.115 | 0.035 | 0.104 | 0.010 | 0.100 | 0.011 |
S8 | D1-530 | 3108.28 | Microcrystalline dolostone | 0.870 | 1.626 | 0.201 | 0.800 | 0.156 | 0.031 | 0.132 | 0.024 | 0.115 | 0.765 | 0.026 | 0.063 | 0.009 | 0.081 | 0.014 |
S9 | D1-530 | 3112.78 | Microcrystalline dolostone | 1.398 | 2.638 | 0.319 | 1.187 | 0.214 | 0.050 | 0.175 | 0.030 | 0.175 | 1.039 | 0.031 | 0.081 | 0.013 | 0.097 | 0.014 |
S10 | D1-530 | 3115.62 | Microcrystalline dolostone | 1.347 | 2.306 | 0.297 | 1.141 | 0.206 | 0.046 | 0.221 | 0.034 | 0.190 | 1.217 | 0.038 | 0.105 | 0.015 | 0.117 | 0.016 |
S11 | D48 | 3009.32 | Microcrystalline dolostone | 1.865 | 4.231 | 0.530 | 2.036 | 0.362 | 0.059 | 0.309 | 0.050 | 0.252 | 1.554 | 0.052 | 0.153 | 0.023 | 0.167 | 0.018 |
S12 | D48 | 3013.00 | Microcrystalline dolostone | 1.905 | 3.852 | 0.474 | 1.696 | 0.285 | 0.063 | 0.261 | 0.046 | 0.228 | 1.460 | 0.049 | 0.135 | 0.022 | 0.144 | 0.019 |
S17 | PG27 | 2979.52 | Microcrystalline dolostone | 0.761 | 1.505 | 0.196 | 0.794 | 0.189 | 0.037 | 0.146 | 0.027 | 0.137 | 0.780 | 0.029 | 0.097 | 0.010 | 0.101 | 0.014 |
S18 | PG27 | 2987.35 | Very fine crystalline dolostone | 0.555 | 1.197 | 0.173 | 0.663 | 0.141 | 0.025 | 0.129 | 0.020 | 0.129 | 0.679 | 0.025 | 0.074 | 0.008 | 0.083 | 0.012 |
Sample Number | Well | Depth (m) | Lithology | Salinity (Z) | δCe | δEu |
---|---|---|---|---|---|---|
S1 | D67 | 2892.28 | Microcrystalline limestone | 121.54 | 0.93 | 1.09 |
S2 | D1-530 | 3097.42 | Very fine crystalline dolostone | 123.67 | 0.90 | 0.81 |
S3 | D1-530 | 3101.42 | Microcrystalline dolostone | 122.94 | 0.94 | 1.03 |
S4 | D1-530 | 3102.96 | Microcrystalline dolostone | 126.39 | / | / |
S5 | D1-530 | 3102.99 | Very fine crystalline dolostone | 121.38 | / | / |
S6 | D1-530 | 3105.53 | Microcrystalline dolostone | 118.9 | / | / |
S7 | D1-530 | 3106.75 | Microcrystalline dolostone | 120.73 | / | / |
S8 | D1-530 | 3108.28 | Microcrystalline dolostone | 123.01 | 0.90 | 1.02 |
S9 | D1-530 | 3112.78 | Microcrystalline dolostone | 123.00 | 0.91 | 1.22 |
S10 | D1-530 | 3115.62 | Microcrystalline dolostone | 123.34 | 0.84 | 1.01 |
S11 | D48 | 3009.32 | Microcrystalline dolostone | 122.45 | 0.98 | 0.83 |
S12 | D48 | 3013.00 | Microcrystalline dolostone | 119.48 | 0.94 | 1.09 |
S13 | D48 | 3016.00 | Microcrystalline limestone | 122.13 | / | / |
S14 | D48 | 3017.99 | Microcrystalline dolostone | 119.43 | / | / |
S15 | D48 | 3020.38 | Microcrystalline limestone | 117.80 | / | / |
S16 | D48 | 3026.35 | Microcrystalline limestone | 120.73 | / | / |
S17 | PG27 | 2979.52 | Microcrystalline dolostone | 122.72 | 0.90 | 1.05 |
S18 | PG27 | 2987.35 | Very fine crystalline dolostone | 123.56 | 0.88 | 0.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Xu, W.; Fu, M.; Deng, H.; Wu, D.; He, J.; Guo, H.; Chen, P. Dolomitization Controlled by Paleogeomorphology in the Epicontinental Sea Environment: A Case Study of the 5th Sub-Member in 5 Member of the Ordovician Majiagou Formation in Daniudi Gas Field, Ordos Basin. Minerals 2021, 11, 827. https://doi.org/10.3390/min11080827
Li Y, Xu W, Fu M, Deng H, Wu D, He J, Guo H, Chen P. Dolomitization Controlled by Paleogeomorphology in the Epicontinental Sea Environment: A Case Study of the 5th Sub-Member in 5 Member of the Ordovician Majiagou Formation in Daniudi Gas Field, Ordos Basin. Minerals. 2021; 11(8):827. https://doi.org/10.3390/min11080827
Chicago/Turabian StyleLi, Yilin, Wang Xu, Meiyan Fu, Hucheng Deng, Dong Wu, Jianhua He, Hengwei Guo, and Pei Chen. 2021. "Dolomitization Controlled by Paleogeomorphology in the Epicontinental Sea Environment: A Case Study of the 5th Sub-Member in 5 Member of the Ordovician Majiagou Formation in Daniudi Gas Field, Ordos Basin" Minerals 11, no. 8: 827. https://doi.org/10.3390/min11080827