Ferroelastic Twinning in Minerals: A Source of Trace Elements, Conductivity, and Unexpected Piezoelectricity
Abstract
:1. Introduction
2. Ferroelastic Twin Laws in Minerals
3. Twin Walls as Storages for Cations and Their Pinning Behaviour in Anorthoclase
4. Structural Changes and Electric Polarization inside Twin Boundaries in the Mineral Perovskite
5. Topological Changes of Twin Walls: Kinks and Surface Intersections
6. Outlook
Funding
Data Availability Statement
Conflicts of Interest
References
- Kunz, G.F. The Life and Work of Haüy. Am. Miner. 1918, 3, 59–89. [Google Scholar]
- Gruner, J.W. Structural reasons for oriented intergrowths in some minerals. Am. Miner. 1929, 14, 227–237. [Google Scholar]
- Aminoff, G.; Broomé, B. Strukturtheoretische Studien über Zwillinge. I. Z. Für Krist. Cryst. Mater. 1931, 80, 355–376. [Google Scholar] [CrossRef]
- Taylor, W.H.; Darbyshire, J.A.; Strunz, H. An X-ray investigation of the felspars. Z. Für Krist. Cryst. Mater. 1934, 87, 464–498. [Google Scholar] [CrossRef]
- Zachariasen, W.H. The Crystal Structure of Sodium Formate, NaHCO21. J. Am. Chem. Soc. 1940, 62, 1011–1013. [Google Scholar] [CrossRef]
- Friedel, G. Leçons de Cristallographie; Berger-Levrault: Paris, France, 1926. [Google Scholar]
- Goldsmith, J.R.; Laves, F. Uber die Mischkristallreihe Mikrokline-Albite. Angew. Chem. 1956, 68, 755–756. [Google Scholar]
- Bragg, W.L. Geological Magazine, London: Humphrey Milford; Oxford University Press: Oxford, UK, 1937. [Google Scholar]
- Strunz, H. Systematik und Struktur der Silikate. Z. Für Krist. Cryst. Mater. 1938, 98, 60–83. [Google Scholar] [CrossRef]
- Klockmann’s Lehrbuch der Mineralogie. Paul Ramdohr. J. Geol. 1955, 63, 99.
- Aird, A.; Salje, E.K.H. Sheet superconductivity in twin walls: Experimental evidence of. J. Phys. Condens. Matter 1998, 10, L377. [Google Scholar] [CrossRef]
- Aird, A.; Domeneghetti, M.C.; Mazzi, F.; Tazzoli, V.; Salje, E.K.H. Sheet superconductivity in WO3: Crystal structure of the tetragonal matrix. J. Phys. Condens. Matter 1998, 10, L569. [Google Scholar] [CrossRef]
- Kim, Y.; Alexe, M.; Salje, E.K.H. Nanoscale properties of thin twin walls and surface layers in piezoelectric WO3−x. Appl. Phys. Lett. 2010, 96, 032904. [Google Scholar] [CrossRef] [Green Version]
- Salje, E.K.H. Multiferroic Domain Boundaries as Active Memory Devices: Trajectories Towards Domain Boundary Engineering. ChemPhysChem 2010, 11, 940–950. [Google Scholar] [CrossRef] [PubMed]
- Salje, E.; Zhang, H. Domain boundary engineering. Phase Transit. 2009, 82, 452–469. [Google Scholar] [CrossRef]
- Nataf, G.F.; Salje, E.K.H. Avalanches in ferroelectric, ferroelastic and coelastic materials: Phase transition, domain switching and propagation. Ferroelectrics 2020, 569, 82–107. [Google Scholar] [CrossRef]
- Nataf, G.F.; Guennou, M.; Gregg, J.M.; Meier, D.; Hlinka, J.; Salje, E.K.H.; Kreisel, J. Domain-wall engineering and topological defects in ferroelectric and ferroelastic materials. Nat. Rev. Phys. 2020, 2, 634–648. [Google Scholar] [CrossRef]
- Carpenter, M.A.; Salje, E.K.H.; Graeme-Barber, A.; Wruck, B.; Dove, M.T.; Knight, K.S. Calibration of excess thermodynamic properties and elastic constant variations associated with the alpha beta phase transition in quartz. Am. Miner. 1998, 83, 2–22. [Google Scholar] [CrossRef] [Green Version]
- Salje, E.K.H.; Ridgwell, A.; Guttler, B.; Wruck, B.; Dove, M.T.; Dolino, G. On the displacive character of the phase transition in quartz: A hard-mode spectroscopy study. J. Phys. Condens. Matter 1992, 4, 571. [Google Scholar] [CrossRef]
- Calleja, M.; Dove, M.T.; Salje, E.K.H. Anisotropic ionic transport in quartz: The effect of twin boundaries. J. Phys. Condens. Matter 2001, 13, 9445–9454. [Google Scholar] [CrossRef]
- Salje, E.; Kuscholke, B.; Wruck, B.; Kroll, H. Thermodynamics of sodium feldspar II: Experimental results and numerical calculations. Phys. Chem. Miner. 1985, 12, 99–107. [Google Scholar] [CrossRef]
- Salje, E. Thermodynamics of sodium feldspar I: Order parameter treatment and strain induced coupling effects. Phys. Chem. Min. 1985, 12, 93–98. [Google Scholar] [CrossRef]
- Tsatskis, I.; Salje, E.K.H. Time evolution of pericline twin domains in alkali feldspars; a computer-simulation study. Am. Miner. 1996, 81, 800–810. [Google Scholar] [CrossRef]
- Salje, E.; Kuscholke, B.; Wruck, B. Domain wall formation in minerals: I. theory of twin boundary shapes in Na-feldspar. Phys. Chem. Miner. 1985, 12, 132–140. [Google Scholar] [CrossRef]
- Salje, E.K. Phase Transitions in Ferroelastic and Co-Elastic Crystals; Cambridge University Press: Cambridge, UK, 1993; ISBN 0521429366. [Google Scholar]
- Salje, E.K.H. Application of Landau theory for the analysis of phase transitions in minerals. Phys. Rep. 1992, 215, 49–99. [Google Scholar] [CrossRef]
- Carpenter, M.A.; Salje, E.K.H. Elastic anomalies in minerals due to structural phase transitions. Eur. J. Miner. 1998, 10, 693–812. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, M.A.; Salje, E.K.H.; Graeme-Barber, A. Spontaneous strain as a determinant of thermodynamic properties for phase transitions in minerals. Eur. J. Mineral. 1998, 10, 621–691. [Google Scholar] [CrossRef]
- Carpenter, M.A.; Salje, E. Time-dependent Landau theory for order/disorder processes in minerals. Mineral. Mag. 1989, 53, 483–504. [Google Scholar] [CrossRef]
- Sapriel, J. Domain-wall orientations in ferroelastics. Phys. Rev. B Condens. Matter 1975, 12, 5128–5140. [Google Scholar] [CrossRef]
- Yokota, H.; Matsumoto, S.; Salje, E.K.H.; Uesu, Y. Polar nature of domain boundaries in purely ferroelastic Pb3(PO4)2 investigated by second harmonic generation microscopy. Phys. Rev. B 2019, 100, 024101. [Google Scholar] [CrossRef] [Green Version]
- Bismayer, U.; Salje, E. Ferroelastic phases in Pb3(PO4)2–Pb3(AsO4)2; X-ray and optical experiments. Acta Crystallogr. Sect. A 1981, 37, 145–153. [Google Scholar] [CrossRef]
- Hayward, S.A.; Salje, E.K.H. Twin memory and twin amnesia in anorthoclase. Miner. Mag. 2000, 64, 195–200. [Google Scholar] [CrossRef]
- Hayward, S.A.; Salje, E.K.H.; Chrosch, J. Local fluctuations in feldspar frameworks. Mineral. Mag. 1998, 62, 639–645. [Google Scholar] [CrossRef]
- Salje, E.K.H.; Bismayer, U.; Hayward, S.A.; Novak, J. Twin walls and hierarchical mesoscopic structures. Miner. Mag. 2000, 64, 201–211. [Google Scholar] [CrossRef]
- Cámara, F.; Doukhan, J.C.; Salje, E.K.H. Twin walls in anorthoclase are enriched in alkali and depleted in Ca and Al. Phase Transit. 2000, 71, 227–242. [Google Scholar] [CrossRef]
- Aird, A.; Salje, E.K.H. Enhanced reactivity of domain walls in with sodium. Eur. Phys. J. B Condens. Matter Complex. Syst. 2000, 15, 205–210. [Google Scholar] [CrossRef]
- Salje, E.K.H. Fast Ionic Transport Along Twin Walls in Ferroelastic Minerals. In Properties of Complex Inorganic Solids 2; Springer: Berlin/Heidelberg, Germany, 2000; pp. 3–15. [Google Scholar]
- Yund, R.A.; Quigley, J.; Tullis, J. The effect of dislocations on bulk diffusion in feldspars during metamorphism. J. Metamorph. Geol. 1989, 7, 337–341. [Google Scholar] [CrossRef]
- Hayward, S.A.; Chrosch, J.; Salje, E.K.H.; Carpenter, M.A. Thickness of pericline twin walls in anorthoclase: An X-ray diffraction study. Eur. J. Mineral. 1997, 8, 1301–1310. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Salje, E.K.H.; Ding, X.; Sun, J. Immobile defects in ferroelastic walls: Wall nucleation at defect sites. Appl. Phys. Lett. 2018, 112, 092904. [Google Scholar] [CrossRef]
- Casals, B.; Nataf, G.F.; Salje, E.K.H. Avalanche criticality during ferroelectric/ferroelastic switching. Nat. Commun. 2021, 12, 345. [Google Scholar] [CrossRef]
- Casals, B.; Nataf, G.F.; Pesquera, D.; Salje, E.K.H. Avalanches from charged domain wall motion in BaTiO3 during ferroelectric switching. Appl. Mater. 2020, 8, 011105. [Google Scholar] [CrossRef]
- Salje, E.K.H.; Ding, X.; Zhao, Z.; Lookman, T.; Saxena, A. Thermally activated avalanches: Jamming and the progression of needle domains. Phys. Rev. B Condens. Matter 2011, 83, 104109. [Google Scholar] [CrossRef] [Green Version]
- Harrison, R.J.; Salje, E.K.H. Ferroic switching, avalanches, and the Larkin length: Needle domains in LaAlO3. Appl. Phys. Lett. 2011, 99, 151915. [Google Scholar] [CrossRef]
- Salje, E.K.H.; Dahmen, K.A. Crackling Noise in Disordered Materials. Annu. Rev. Condens. Matter Phys. 2014, 5, 233–254. [Google Scholar] [CrossRef]
- He, X.; Li, S.; Ding, X.; Sun, J.; Selbach, S.M.; Salje, E.K.H. The interaction between vacancies and twin walls, junctions, and kinks, and their mechanical properties in ferroelastic materials. Acta Mater. 2019, 178, 26–35. [Google Scholar] [CrossRef]
- Saidani, S.; Smith, A.; El Hafiane, Y.; Ben Tahar, L. Role of dopants (B, P and S) on the stabilization of β-Ca2SiO4. J. Eur. Ceram. Soc. 2021, 41, 880–891. [Google Scholar] [CrossRef]
- Qin, H.; Zhu, J.; Li, N.; Wu, H.; Guo, F.; Sun, S.; Qin, D.; Pennycook, S.J.; Zhang, Q.; Cai, W.; et al. Enhanced mechanical and thermoelectric properties enabled by hierarchical structure in medium-temperature Sb2Te3 based alloys. Nano Energy 2020, 78, 105228. [Google Scholar] [CrossRef]
- Boryakov, A.V.; Gladilin, A.A.; Il’ichev, N.N.; Kalinushkin, V.P.; Mironov, S.A.; Rezvanov, R.R.; Uvarov, O.V.; Chegnov, V.P.; Chegnova, O.I.; Chukichev, M.V.; et al. The Influence of Annealing in Zinc Vapor on the Visible and Mid-IR Luminescence of ZnSe:Fe2+. Opt. Spectrosc. 2020, 128, 1844–1850. [Google Scholar] [CrossRef]
- Padrón-Navarta, J.A.; Barou, F.; Daneu, N. Twinning in SnO2-based ceramics doped with CoO and Nb2O5: Morphology of multiple twins revealed by electron backscatter diffraction. Acta Cryst. B Struct Sci Cryst Eng. Mater. 2020, 76, 875–883. [Google Scholar] [CrossRef]
- Ji, X.; Krishnamurthy, M.N.; Lv, D.; Li, J.; Jin, C. Post-synthesis Tellurium Doping Induced Mirror Twin Boundaries in Monolayer Molybdenum Disulfide. Appl. Sci. 2020, 10, 4758. [Google Scholar] [CrossRef]
- Wang, B.; Xia, Y.; Zhang, J.; Komsa, H.-P.; Xie, M.; Peng, Y.; Jin, C. Niobium doping induced mirror twin boundaries in MBE grown WSe2 monolayers. Nano Res. 2020, 13, 1889–1896. [Google Scholar] [CrossRef] [Green Version]
- Yokota, H.; Matsumoto, S.; Hasegawa, N.; Salje, E.K.H.; Uesu, Y. Enhancement of polar nature of domain boundaries in ferroelastic Pb3(PO4)2 by doping divalent-metal ions. J. Phys. Condens. Matter 2020, 32, 345401. [Google Scholar] [CrossRef] [PubMed]
- Calleja, M.; Dove, M.T.; Salje, E.K.H. Trapping of oxygen vacancies on twin walls of CaTiO3: A computer simulation study. J. Phys. Condens. Matter 2003, 15, 2301–2307. [Google Scholar] [CrossRef]
- Goncalves-Ferreira, L.; Redfern, S.A.T.; Artacho, E.; Salje, E.; Lee, W.T. Trapping of oxygen vacancies in the twin walls of perovskite. Phys. Rev. B 2010, 81, 024109. [Google Scholar] [CrossRef]
- Wruck, B.; Salje, E.K.H.; Zhang, M.; Abraham, T.; Bismayer, U. On the thickness of ferroelastic twin walls in lead phosphate Pb3(PO4)2 an X-ray diffraction study. Phase Transit. 1994, 48, 135–148. [Google Scholar] [CrossRef]
- Locherer, K.R.; Chrosch, J.; Salje, E.K.H. Diffuse X-ray scattering in WO3. Phase Transit. 1998, 67, 51–63. [Google Scholar] [CrossRef]
- Chrosch, J.; Salje, E.K.H. Temperature dependence of the domain wall width in LaAlO3. J. Appl. Phys. 1999, 85, 722–727. [Google Scholar] [CrossRef]
- Van Aert, S.; Turner, S.; Delville, R.; Schryvers, D.; Van Tendeloo, G.; Salje, E.K.H. Direct observation of ferrielectricity at ferroelastic domain boundaries in CaTiO3 by electron microscopy. Adv. Mater. 2012, 24, 523–527. [Google Scholar] [CrossRef]
- Salje, E.K.H.; Lee, W.T. Pinning down the thickness of twin walls. Nat. Mater. 2004, 3, 425–426. [Google Scholar] [CrossRef]
- Lee, W.T.; Salje, E.K.H.; Bismayer, U. Surface relaxations at mineral surfaces. Z. Für Krist. Cryst. Mater. 2005, 220, 683–690. [Google Scholar] [CrossRef]
- Lee, W.T.; Salje, E.K.H. Chemical turnstile. Appl. Phys. Lett. 2005, 87, 143110. [Google Scholar] [CrossRef] [Green Version]
- Shilo, D.; Mendelovich, A.; Novák, V. Investigation of twin boundary thickness and energy in CuAlNi shape memory alloy. Appl. Phys. Lett. 2007, 90, 193113. [Google Scholar] [CrossRef]
- Shilo, D.; Ravichandran, G.; Bhattacharya, K. Investigation of twin-wall structure at the nanometre scale using atomic force microscopy. Nat. Mater. 2004, 3, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Houchmandzadeh, B.; Lajzerowicz, J.; Salje, E. Order parameter coupling and chirality of domain walls. J. Phys. Condens. Matter 1991, 3, 5163–5169. [Google Scholar] [CrossRef]
- Houchmanzadeh, B.; Lajzerowicz, J.; Salje, E. Interfaces and ripple states in ferroelastic crystals—A simple model. Phase Transit. 1992, 38, 77–87. [Google Scholar] [CrossRef]
- Houchmandzadeh, B.; Lajzerowicz, J.; Salje, E. Relaxations near surfaces and interfaces for first-, second- and third-neighbour interactions: Theory and applications to polytypism. J. Phys. Condens. Matter 1992, 4, 9779–9794. [Google Scholar] [CrossRef]
- Salje, E.K.H. Ferroelastic domain walls as templates for multiferroic devices. J. Appl. Phys. 2020, 128, 164104. [Google Scholar] [CrossRef]
- Salje, E.K.H.; Aktas, O.; Carpenter, M.A.; Laguta, V.V.; Scott, J.F. Domains within domains and walls within walls: Evidence for polar domains in cryogenic SrTiO3. Phys. Rev. Lett. 2013, 111, 247603. [Google Scholar] [CrossRef]
- Aktas, O.; Salje, E.K.H.; Crossley, S.; Lampronti, G.I.; Whatmore, R.W.; Mathur, N.D.; Carpenter, M.A. Ferroelectric precursor behavior in PbSc0.5Ta0.5O3detected by field-induced resonant piezoelectric spectroscopy. Phys. Rev. B 2013, 88, 174112. [Google Scholar] [CrossRef]
- Viehland, D.D.; Salje, E.K.H. Domain boundary-dominated systems: Adaptive structures and functional twin boundaries. Adv. Phys. 2014, 63, 267–326. [Google Scholar] [CrossRef]
- Lee, W.T.; Salje, E.K.H.; Goncalves-Ferreira, L.; Daraktchiev, M.; Bismayer, U. Intrinsic activation energy for twin-wall motion in the ferroelastic perovskite CaTiO3. Phys. Rev. B Condens. Matter 2006, 73, 214110. [Google Scholar] [CrossRef] [Green Version]
- Yokota, H.; Usami, H.; Haumont, R.; Hicher, P.; Kaneshiro, J.; Salje, E.K.H.; Uesu, Y. Direct evidence of polar nature of ferroelastic twin boundaries inCaTiO3 obtained by second harmonic generation microscope. Phys. Rev. B 2014, 89, 144109. [Google Scholar] [CrossRef]
- Salje, E.K.H. Hard mode Spectroscopy: Experimental studies of structural phase transitions. Phase Transit. 1992, 37, 83–110. [Google Scholar] [CrossRef]
- Nataf, G.F.; Guennou, M. Optical studies of ferroelectric and ferroelastic domain walls. J. Phys. Condens. Matter 2020, 32, 183001. [Google Scholar] [CrossRef]
- Yokota, H.; Hasegawa, N.; Glazer, M.; Salje, E.K.H.; Uesu, Y. Direct evidence of polar ferroelastic domain boundaries in semiconductor BiVO4. Appl. Phys. Lett. 2020, 116, 232901. [Google Scholar] [CrossRef]
- Bridge, P.J.; Pryce, M.W. Clinobisvanite, monoclinic BiVO4, a new mineral from Yinnietharra, Western Australia. Mineral. Mag. 1974, 39, 847–849. [Google Scholar] [CrossRef]
- Yokota, H.; Haines, C.R.S.; Matsumoto, S.; Hasegawa, N.; Carpenter, M.A.; Heo, Y.; Marin, A.; Salje, E.K.H.; Uesu, Y. Domain wall generated polarity in ferroelastics: Results from resonance piezoelectric spectroscopy, piezoelectric force microscopy, and optical second harmonic generation measurements in LaAlO3 with twin and tweed microstructures. Phys. Rev. B 2020, 102, 104117. [Google Scholar] [CrossRef]
- Salje, E.; Parlinski, K. Microstructures in high Tc superconductors. Supercond. Sci. Technol. 1991, 4, 93. [Google Scholar] [CrossRef]
- Parlinski, K.; Heine, V.; Salje, E.K.H. Origin of tweed texture in the simulation of a cuprate superconductor. J. Phys. Condens. Matter 1993, 5, 497–518. [Google Scholar] [CrossRef]
- Wang, X.; Salje, E.K.H.; Sun, J.; Ding, X. Glassy behavior and dynamic tweed in defect-free multiferroics. Appl. Phys. Lett. 2018, 112, 012901. [Google Scholar] [CrossRef] [Green Version]
- Bratkovsky, A.M.; Marais, S.C.; Heine, V.; Salje, E.K.H. The theory of fluctuations and texture embryos in structural phase transitions mediated by strain. J. Phys. Condens. Matter 1994, 6, 3679. [Google Scholar] [CrossRef]
- Putnis, A.; Salje, E. Tweed microstructures: Experimental observations and some theoretical models. Phase Transit. 1994, 48, 85–105. [Google Scholar] [CrossRef]
- Bratkovsky, A.M.; Salje, E.K.H.; Heine, V. Overview of the origin of tweed texture. Phase Transitions 1994, 52, 77–83. [Google Scholar] [CrossRef]
- Salje, E.K.H. Tweed, twins, and holes. Am. Miner. 2015, 100, 343–351. [Google Scholar] [CrossRef]
- Tribaudino, M.; Benna, P.; Bruno, E. I 1-I 2/c phase transition in alkaline-earth feldspars: Evidence from TEM observations of Sr-rich feldspar along the CaAl2Si2O8-SrAl2Si2O8 join. Am. Miner. 1995, 80, 907–915. [Google Scholar] [CrossRef]
- Janney, D.E.; Wenk, H.-R. Peristerite exsolution in metamorphic plagioclase from the Lepontine Alps: An analytical and transmission electron microscope study. Am. Miner. 1999, 84, 517–527. [Google Scholar] [CrossRef]
- McGuinn, M.D.; Redfern, S.A.T. High-temperature ferroelastic strain below the I2/c-I1 transition in Ca1−xSrxAl2Si2O8 feldspars. Eur. J. Miner. 1997, 9, 1159–1172. [Google Scholar] [CrossRef]
- Viehland, D.; Dai, X.H.; Li, J.F.; Xu, Z. Effects of quenched disorder on La-modified lead zirconate titanate: Long- and short-range ordered structurally incommensurate phases, and glassy polar clusters. J. Appl. Phys. 1998, 84, 458–471. [Google Scholar] [CrossRef]
- Lee, M.R.; Hodson, M.E.; Parsons, I. The role of intragranular microtextures and microstructures in chemical and mechanical weathering: Direct comparisons of experimentally and naturally weathered alkali feldspars. Geochim. Cosmochim. Acta 1998, 62, 2771–2788. [Google Scholar] [CrossRef]
- Lee, M.R.; Brown, D.J.; Smith, C.L.; Hodson, M.E.; MacKenzie, M.; Hellmann, R. Characterization of mineral surfaces using FIB and TEM: A case study of naturally weathered alkali feldspars. Am. Miner. 2007, 92, 1383–1394. [Google Scholar] [CrossRef]
- Carpenter, M.A.; Zhang, Z. Anelasticity maps for acoustic dissipation associated with phase transitions in minerals. Geophys. J. Int. 2011, 186, 279–295. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, M.A. Static and dynamic strain coupling behaviour of ferroic and multiferroic perovskites from resonant ultrasound spectroscopy. J. Phys. Condens. Matter 2015, 27, 263201. [Google Scholar] [CrossRef]
- Perks, N.J.; Zhang, Z.; Harrison, R.J.; Carpenter, M.A. Strain relaxation mechanisms of elastic softening and twin wall freezing associated with structural phase transitions in (Ca,Sr)TiO3 perovskites. J. Phys. Condens. Matter 2014, 26, 505402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oravova, L.; Zhang, Z.; Church, N.; Harrison, R.J.; Howard, C.J.; Carpenter, M.A. Elastic and anelastic relaxations accompanying magnetic ordering and spin-flop transitions in hematite, Fe2O3. J. Phys. Condens. Matter 2013, 25, 116006. [Google Scholar] [CrossRef]
- Zhang, Z.; Koppensteiner, J.; Schranz, W.; Carpenter, M.A. Variations in elastic and anelastic properties of Co3O4 due to magnetic and spin-state transitions. Am. Mineral. 2012, 97, 399–406. [Google Scholar] [CrossRef]
- Zhang, Z.; Schranz, W.; Carpenter, M.A. Acoustic attenuation due to transformation twins in CaCl2: Analogue behaviour for stishovite. Phys. Earth Planet. Inter. 2012, 206–207, 43–50. [Google Scholar] [CrossRef]
- Carpenter, M.A.; Salje, E.K.H.; Howard, C.J. Magnetoelastic coupling and multiferroic ferroelastic/magnetic phase transitions in the perovskite KMnF3. Phys. Rev. B Condens. Matter Mater. Phys. 2012, 85, 224430. [Google Scholar] [CrossRef]
- Salje, E.K.H.; Zhao, Z.; Ding, X.; Sun, J. Mechanical spectroscopy in twinned minerals: Simulation of resonance patterns at high frequencies. Am. Miner. 2013, 98, 1449–1458. [Google Scholar] [CrossRef]
- Zhao, Z.; Ding, X.; Lookman, T.; Sun, J.; Salje, E.K.H. Mechanical loss in multiferroic materials at high frequencies: Friction and the evolution of ferroelastic microstructures. Adv. Mater. 2013, 25, 3244–3248. [Google Scholar] [CrossRef] [PubMed]
- Salje, E.K.H.; Ding, X.; Zhao, Z.; Lookman, T. How to generate high twin densities in nano-ferroics: Thermal quench and low temperature shear. Appl. Phys. Lett. 2012, 100, 222905. [Google Scholar] [CrossRef] [Green Version]
- Kustov, S.; Liubimova, I.; Salje, E.K.H. Domain Dynamics in Quantum-Paraelectric SrTiO3. Phys. Rev. Lett. 2020, 124, 016801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kustov, S.; Liubimova, I.; Salje, E.K.H. LaAlO3: A substrate material with unusual ferroelastic properties. Appl. Phys. Lett. 2018, 112, 042902. [Google Scholar] [CrossRef]
- Salje, E.K.H.; Wang, X.; Ding, X.; Scott, J.F. Ultrafast switching in avalanche-driven ferroelectrics by supersonic kink movements. Adv. Funct. Mater. 2017, 27, 1700367. [Google Scholar] [CrossRef]
- Kälbermann, G. The sine-Gordon wobble. J. Phys. A Math. Gen. 2004, 37, 11603–11612. [Google Scholar] [CrossRef]
- Barashenkov, I.V.; Oxtoby, O.F. Wobbling kinks in Φ4 theory. Phys. Rev. E 2009, 80, 026608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aktas, O.; Carpenter, M.A.; Salje, E.K.H. Elastic softening of leucite and the lack of polar domain boundaries. Am. Miner. 2015, 100, 2159–2162. [Google Scholar] [CrossRef] [Green Version]
- Lu, G.; Li, S.; Ding, X.; Sun, J.; Salje, E.K.H. Current vortices and magnetic fields driven by moving polar twin boundaries in ferroelastic materials. NPJ Comput. Mater. 2020, 6, 1–6. [Google Scholar] [CrossRef]
- Salje, E.K.H.; Li, S.; Stengel, M.; Gumbsch, P.; Ding, X. Flexoelectricity and the polarity of complex ferroelastic twin patterns. Phys. Rev. B Condens. Matter 2016, 94, 024114. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Ding, X.; Salje, E.K.H. Flicker vortex structures in multiferroic materials. Appl. Phys. Lett. 2014, 105, 112906. [Google Scholar] [CrossRef] [Green Version]
- Novak, J.; Salje, E.K.H. Surface structure of domain walls. J. Phys. Condens. Matter 1998, 10, L359–L366. [Google Scholar] [CrossRef]
- Conti, S.; Weikard, U. Interaction between free boundaries and domain walls in ferroelastics. Eur. Phys. J. B Condens. Matter Complex. Syst. 2004, 41, 413–420. [Google Scholar] [CrossRef]
- Zhao, Z.; Barrett, N.; Wu, Q.; Martinotti, D.; Tortech, L.; Haumont, R.; Pellen, M.; Salje, E.K.H. Interaction of low-energy electrons with surface polarity near ferroelastic domain boundaries. Phys. Rev. Mater. 2019, 3, 043601. [Google Scholar] [CrossRef] [Green Version]
- Salje, E.K.H. Ferroelastic materials. Annu. Rev. Mater. Res. 2012, 42, 265–283. [Google Scholar] [CrossRef]
- Blackburn, J.F.; Salje, E.K.H. Time evolution of twin domains in cordierite: A computer simulation study. Phys. Chem. Miner. 1999, 26, 275–291. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salje, E.K.H. Ferroelastic Twinning in Minerals: A Source of Trace Elements, Conductivity, and Unexpected Piezoelectricity. Minerals 2021, 11, 478. https://doi.org/10.3390/min11050478
Salje EKH. Ferroelastic Twinning in Minerals: A Source of Trace Elements, Conductivity, and Unexpected Piezoelectricity. Minerals. 2021; 11(5):478. https://doi.org/10.3390/min11050478
Chicago/Turabian StyleSalje, Ekhard K. H. 2021. "Ferroelastic Twinning in Minerals: A Source of Trace Elements, Conductivity, and Unexpected Piezoelectricity" Minerals 11, no. 5: 478. https://doi.org/10.3390/min11050478
APA StyleSalje, E. K. H. (2021). Ferroelastic Twinning in Minerals: A Source of Trace Elements, Conductivity, and Unexpected Piezoelectricity. Minerals, 11(5), 478. https://doi.org/10.3390/min11050478