Ancient Roman Mortars from Villa del Capo di Sorrento: A Multi-Analytical Approach to Define Microstructural and Compositional Features
Abstract
:1. Introduction
2. Geological Context
3. The Roman Villa del Capo
4. Materials and Methods
5. Experimental Results and Discussion
5.1. Texture and Optical Microscopy
Mortars | Group A | Group B | Group C (BG1) | Group C (BG9) |
---|---|---|---|---|
Constituents (Vol.%) | ||||
Feldspar (Sa, Pl) | 3.7 | 3.6 | 4.5 | 5.3 |
Mafic Minerals (Cpx, Am, Bt) | 1.5 | 2.2 | 1.4 | 2.9 |
Garnet | - | 0.1 | 1.8 | - |
Volcanic fragments | 5.2 | 2.8 | - | 2.1 |
Scoriae | 1.7 | 2.1 | 6.2 | 2.9 |
Leucite-bearing scoriae | - | 0.1 | 1.5 | - |
Pumice | 12.0 | 4.8 | - | 10.1 |
Ceramic fragments | - | 21.5 | 14.1 | 10.3 |
Carbonatic fragments | - | 0.5 | 1.9 | - |
Sparite | 0.4 | 0.4 | 0.1 | - |
Lime lumps | 5.5 | 6.3 | 3.9 | 1.4 |
Micritic matrix | 22.0 | 18.9 | 31.3 | 22.0 |
Cryptocrystalline matrix | 36.8 | 31.4 | 27.5 | 38.0 |
Voids | 11.1 | 2.4 | 4.7 | 4.7 |
Others | 0.1 | 2.9 | 1.0 | 0.3 |
Total points % | 100 | 100 | 100 | 100 |
Total Binder % | 64.6 | 57.1 | 62.9 | 61.4 |
Total Aggregate% | 24.1 | 37.6 | 31.4 | 33.7 |
Binder/Aggregate ratio | 2.7 | 1.5 | 2.0 | 1.8 |
5.2. Mineralogy
5.3. Micro-Morphology and Chemical Analysis (SEM-EDS)
5.3.1. Binder and Lime Lumps
5.3.2. Volcanic Aggregates
5.3.3. Ceramic Aggregates
5.4. Differential Thermal and Thermogravimetric Analysis
5.5. Porosity
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- D’Arms, J.H. Romans on the Bay of Naples. A Social and Cultural Study of the Villas and their Owners from 150 B.C. to A.D. 400. In Romans on the Bay of Naples and Other Essays on Roman Campania; Zevi, F., Ed.; Edipuglia: Bari, Italy, 2003; pp. 1–226. [Google Scholar]
- Filser, W.; Fritsch, B.; Kennedy, W.; Klose, C.; Perrella, R. Surrounded by the Sea: Re-Investigating the Villa Maritima Del Capo Di Sorrento. J. Roman Archaeol. 2017, 30. [Google Scholar] [CrossRef]
- Rispoli, C.; de Bonis, A.; Esposito, R.; Graziano, S.F.; Langella, A.; Mercurio, M.; Morra, V.; Cappelletti, P. Unveiling the Secrets of Roman Craftsmanship: Mortars from Piscina Mirabilis (Campi Flegrei, Italy). Archaeol. Anthropol. Sci. 2020, 12. [Google Scholar] [CrossRef]
- Graziano, S.F.; Rispoli, C.; Guarino, V.; Balassone, G.; di Maio, G.; Pappalardo, L.; Cappelletti, P.; Damato, G.; de Bonis, A.; di Benedetto, C.; et al. The roman villa of positano (Campania region, Southern Italy): Plasters, tiles and geoarchaeological reconstruction. Int. J. Conserv. Sci. 2020, 11, 319–344. [Google Scholar]
- Izzo, F.; Arizzi, A.; Cappelletti, P.; Cultrone, G.; de Bonis, A.; Germinario, C.; Graziano, S.F.; Grifa, C.; Guarino, V.; Mercurio, M.; et al. The Art of Building in the Roman Period (89 B.C.-79 A.D.): Mortars, Plasters and Mosaic Floors from Ancient Stabiae (Naples, Italy). Constr. Build. Mater. 2016, 117, 129–143. [Google Scholar] [CrossRef]
- De Bonis, A.; Grifa, C.; Langella, A.; Mercurio, M.; Luisa Perrone, M.; Morra, V. Archaeometric Study of Roman Pottery from Caudium Area (Southern Italy). Period. Mineral. 2011, 79, 73–89. [Google Scholar]
- Guarino, V.; de Bonis, A.; Grifa, C.; Langella, A.; Morra, V.; Pedroni, L. Archaeometric Study on Terra Sigillata from Cales (Italy). Period. Mineral. 2011, 80, 455–470. [Google Scholar] [CrossRef]
- Rispoli, C. Ancient Roman Mortars: Mix Design, Mineralogical Composition and Minerogenetic Secondary Processes. Ph.D. Thesis, Federico II University of Naples, Naples, Italy, 2017. [Google Scholar]
- Cinque, A.; Robustelli, G. Alluvial and Coastal Hazards Caused by Long-Range Effects of Plinian Eruptions: The Case of the Lattari Mts. After the AD 79 Eruption of Vesuvius. Geol. Soc. Spec. Publ. 2009, 322, 155–171. [Google Scholar] [CrossRef]
- Aucelli, P.; Cinque, A.; Mattei, G.; Pappone, G. Historical Sea Level Changes and Effects on the Coasts of Sorrento Peninsula (Gulf of Naples): New Constrains from Recent Geoarchaeological Investigations. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 463, 112–125. [Google Scholar] [CrossRef]
- Brancaccio, L.; Cinque, A.; Romano, P.; Rosskopf, C.; Russo, F.; Santo, A.; Santangelo, N. Geomorphology and Neotectonic Evolution of a Sector of the Tyrrhenian Flank of the Southern Apennines, (Region of Naples, Italy). Z. Geomorphol. 1991, 82, 47–58. [Google Scholar]
- Iannace, A.; Merola, D.; Perrone, V.; Amato, A.; Cinque, A.; Santacroce, R.; Sbrana, A.; Sulpizio, R.; Budillon, F.; Conforti, A.; et al. Note Illustrative Della Carta Geologica d’Italia Alla Scala 1: 50.000 Fogli 466–485 Sorrento-Termini; Servizio Geologico d’Italia: Ispra, Italy, 2015. [Google Scholar]
- Santacroce, R.; Cioni, R.; Marianelli, P.; Sbrana, A.; Sulpizio, R.; Zanchetta, G.; Donahue, D.J.; Joron, J.L. Age and Whole Rock-Glass Compositions of Proximal Pyroclastics from the Major Explosive Eruptions of Somma-Vesuvius: A Review as a Tool for Distal Tephrostratigraphy. J. Volcanol. Geotherm. Res. 2008, 177, 1–18. [Google Scholar] [CrossRef]
- Vitale, S.; Tramparulo, F.D.; Ciarcia, S.; Amore, F.O.; Prinzi, E.P.; Laiena, F. The Northward Tectonic Transport in the Southern Apennines: Examples from the Capri Island and Western Sorrento Peninsula (Italy). Int. J. Earth Sci. 2017, 106, 97–113. [Google Scholar] [CrossRef]
- Mingazzini, P. Forma Italiae: Latium et Campania; De Luca Ed: Surrentum, Italy, 1946. [Google Scholar]
- Budetta, T.; de Martino, R.; Franchino, R.; Frettoloso, C. The System of Environmental Networks for the Use of Archaeological Sites in Areas of Natural Beauty. J. Sustain. Archit. Civ. Eng. 2013, 3. [Google Scholar] [CrossRef] [Green Version]
- Howarth, J. Improved Estimators of Uncertainty in Proportions, Point-Counting, and Pass-Fail Test Results. Am. J. Sci. 1998, 298, 594–607. [Google Scholar] [CrossRef]
- Pouchou, J.L.; Pichoir, F. A simplified version of the PAP model for matrix corrections in EPMA. In Microbeam Analysis; San Francisco Press: San Francisco, CA, USA, 1988. [Google Scholar]
- Rispoli, C.; De Bonis, A.; Guarino, V.; Graziano, S.F.; di Benedetto, C.; Esposito, R.; Morra, V.; Cappelletti, P. The Ancient Pozzolanic Mortars of the Thermal Complex of Baia (Campi Flegrei, Italy). J. Cult. Herit. 2019, 40. [Google Scholar] [CrossRef]
- ASTM D4404–10. Standard Test Method for Determination of Pore Volume and Pore Volume Distribution of Soil and Rock by Mercury Intrusion Porosimetry; STM International: West Conshohocken, PA, USA, 2010. [Google Scholar]
- Wentworth, C.K. A Scale of Grade and Class Terms for Clastic Sediments. J. Geol. 1922, 30, 377–392. [Google Scholar] [CrossRef]
- Addis, A.; Secco, M.; Marzaioli, F.; Artioli, G.; Chavarría Arnau, A.; Passariello, I.; Terrasi, F.; Brogiolo, G.P. Selecting the Most Reliable 14C Dating Material inside Mortars: The Origin of the Padua Cathedral. Radiocarbon 2019, 61, 375–393. [Google Scholar] [CrossRef]
- Ricca, M.; Galli, G.; Ruffolo, S.A.; Sacco, A.; Aquino, M.; la Russa, M.F. An Archaeometric Approach of Historical Mortars Taken from Foligno City (Umbria, Italy): News Insight of Roman Empire in Italy. Archaeol. Anthropol. Sci. 2019, 11, 2649–2657. [Google Scholar] [CrossRef]
- Moropoulou, A.; Bakolas, A.; Anagnostopoulou, S. Composite Materials in Ancient Structures. Cement Concr. Compos. 2005, 27, 295–300. [Google Scholar] [CrossRef]
- Colella, A.; Di Benedetto, C.; Calcaterra, D.; Cappelletti, P.; D’Amore, M.; Di Martire, D.; Graziano, S.F.; Papa, L.; de Gennaro, M.; Langella, A. The Neapolitan Yellow Tuff: An Outstanding Example of Heterogeneity. Constr. Build. Mater. 2017, 136, 361–373. [Google Scholar] [CrossRef]
- Collepardi, M.; Collepardi, S.; Troli, R. Il Nuovo Calcestruzzo, 5th ed.; Tintoretto: Treviso, Italy, 2009. [Google Scholar]
- Whitney, D.L.; Evans, B.W. Abbreviations for Names of Rock-Forming Minerals. Am. Miner. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- UNI-EN 11305:2009. Norme tecniche per i Beni Culturali. Malte Storiche: Linee Guida per La Caratterizzazione Mineralogico Petrografica, Fisica e Chimica Delle Malte; CNR-ICR: Roma, Italy, 2009. [Google Scholar]
- De Gennaro, M.; Colella, C.; Pansini, M. Hydrothermal Conversion of Trachytic Glass into Zeolite. II Reactions with High-Salinity Waters. Neues Jahrb. Mineral. Mon. 1993, 3, 97–110. [Google Scholar]
- Tian, J.; Guo, Q. Thermal Decomposition of Hydrocalumite over a Temperature Range of 400–1500 °C and Its Structure Reconstruction in Water. J. Chem. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Wei, G.; Germinario, C.; Grifa, C.; Ma, X. Characterization of Ancient Building Lime Mortars of Anhui Province, China: A Multi-Analytical Approach. Archaeometry 2020, 62, 888–903. [Google Scholar] [CrossRef]
- Kalinichev, A.G.; Kirkpatrick, R.J.; Cygan, R.T. Molecular Modeling of the Structure and Dynamics of the Interlayer and Surface Species of Mixed-Metal Layered Hydroxides: Chloride and Water in Hydrocalumite (Friedel’s Salt). Am. Mineral. 2000, 85. [Google Scholar] [CrossRef] [Green Version]
- De Gennaro, M.; Incoronato, A.; Mastrolorenzo, G.; Adabbo, M.; Spina, G. Depositional Mechanisms and Alteration Processes in Different Types of Pyroclastic Deposits from Campi Flegrei Volcanic Field (Southern Italy). J. Volcanol. Geotherm. Res. 1999, 91, 303–320. [Google Scholar] [CrossRef]
- Langella, A.; Bish, D.L.; Cappelletti, P.; Cerri, G.; Colella, A.; de Gennaro, R.; Graziano, S.F.; Perrotta, A.; Scarpati, C.; de Gennaro, M. New Insights into the Mineralogical Facies Distribution of Campanian Ignimbrite, a Relevant Italian Industrial Material. Appl. Clay Sci. 2013, 72, 55–73. [Google Scholar] [CrossRef]
- Moropoulou, A.; Cakmak, A.; Labropoulos, K.C.; van Grieken, R.; Torfs, K. Accelerated Microstructural Evolution of a Calcium-Silicate-Hydrate (C-S-H) Phase in Pozzolanic Pastes Using Fine Siliceous Sources: Comparison with Historic Pozzolanic Mortars. Cem. Concr. Res. 2004, 34, 1–6. [Google Scholar] [CrossRef]
- Jackson, M.D.; Mulcahy, S.R.; Chen, H.; Li, Y.; Li, Q.; Cappelletti, P.; Wenk, H.R. Phillipsite and Al-Tobermorite Mineral Cements Produced through Low-Temperature Water-Rock Reactions in Roman Marine Concrete. Am. Mineral. 2017, 102, 1435–1450. [Google Scholar] [CrossRef] [Green Version]
- Boynton, R.S. Chemistry and Technology of Lime and Limestone; Sons, J.W., Ed.; Interscience: New York, NY, USA, 1996. [Google Scholar]
- De Luca, R.; Miriello, D.; Pecci, A.; Domínguez-Bella, S.; Bernal-Casasola, D.; Cottica, D.; Bloise, A.; Crisci, G.M. Archaeometric Study of Mortars from the Garum Shop at Pompeii, Campania, Italy. Geoarchaeology 2015, 30, 330–351. [Google Scholar] [CrossRef]
- Columbu, S.; Sitzia, F.; Ennas, G. The Ancient Pozzolanic Mortars and Concretes of Heliocaminus Baths in Hadrian’s Villa (Tivoli, Italy). Archaeol. Anthropol. Sci. 2017, 9, 523–553. [Google Scholar] [CrossRef]
- Le Bas, M.J.; Le Maitre, R.W.; Streckeisen, A.; Zanettin, B. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. J. Petrol. 1986, 27, 745–750. [Google Scholar] [CrossRef]
- Locock, A.J. An Excel Spreadsheet to Recast Analyses of Garnet into End-Member Components, and a Synopsis of the Crystal Chemistry of Natural Silicate Garnets. Comput. Geosci. 2008, 34, 1769–1780. [Google Scholar] [CrossRef]
- Scheibner, B.; Wörner, G.; Civetta, L.; Stosch, H.G.; Simon, K.; Kronz, A. Rare Earth Element Fractionation in Magmatic Ca-Rich Garnets. Contrib. Mineral. Petrol. 2007, 154, 55–74. [Google Scholar] [CrossRef]
- Morra, V.; Calcaterra, D.; Cappelletti, P.; Colella, A.; Fedele, L.; de Gennaro, R.; Langella, A.; Mercurio, M.; de Gennaro, M. Urban Geology: Relationships between Geological Setting and Architectural Heritage of the Neapolitan Area. J. Virtual Explor. 2010, 36. [Google Scholar] [CrossRef]
- Maniatis, M.S.; Tite, Y. Technological Examination of Neolithic-Bronze Age Pottery from Central and Southeast Europe and from the Near East. J. Archaeol. Sci. 1981, 8, 59–76. [Google Scholar] [CrossRef]
- De Bonis, A.; Cultrone, G.; Grifa, C.; Langella, A.; Morra, V. Clays from the Bay of Naples (Italy): New Insight on Ancient and Traditional Ceramics. J. Eur. Ceram. Soc. 2014, 34, 3229–3244. [Google Scholar] [CrossRef]
- Genestar, C.; Pons, C.; Más, A. Analytical characterisation of ancient mortars from the archaeological Roman city of pollentia (Balearic Islands, Spain). Anal. Chim. Acta 2006, 557, 373–379. [Google Scholar] [CrossRef]
- Izzo, F.; Grifa, C.; Germinario, C.; Mercurio, M.; de Bonis, A.; Tomay, L.; Langella, A. Production Technology of Mortar-Based Building Materials from the Arch of Trajan and the Roman Theatre in Benevento, Italy. Eur. Phys. J. Plus 2018, 133. [Google Scholar] [CrossRef]
- Borsoi, G.; Santos Silva, A.; Menezes, P.; Candeias, A.; Mirão, J. Analytical Characterization of Ancient Mortars from the Archaeological Roman Site of Pisões (Beja, Portugal). Constr. Build. Mater. 2019, 204, 597–608. [Google Scholar] [CrossRef] [Green Version]
- Moropoulou, A.; Bakolas, A.; Aggelakopoulou, E. Evaluation of Pozzolanic Activity of Natural and Artificial Pozzolans by Thermal Analysis. Thermochim. Acta 2004, 420, 135–140. [Google Scholar] [CrossRef]
- Mehta, K.P.; Monteiro, P.J.M. Concrete: Microstructure, Properties, and Materials, 4th ed.; McGraw-Hill Education: London, UK, 2014. [Google Scholar]
- Gotti, E.; Oleson, J.P.; Bottalico, L.; Brandon, C.; Cucitore, R.; Hohlfelder, R.L. A Comparison of the Chemical and Engineering Characteristics of Ancient Roman Hydraulic Concrete with a Modern Reproduction of Vitruvian Hydraulic Concrete. Archaeometry 2008, 50, 576–590. [Google Scholar] [CrossRef]
- Brandon, C.J.; Hohlfelder, R.L.; Jackson, M.D.; Oleson, J.P. Building for eternity. In The History and Technology of Roman Concrete Engineering in the Sea; Oxbow Books: Oxford, UK, 2014; Volume 53, ISBN 9788578110796. [Google Scholar]
Sample | Group | Typology | Location |
---|---|---|---|
BG1 | C | floor mortar | external landing platform |
BG2 | A | bedding mortar | noble residential area |
BG3 | A | bedding mortar | noble residential area |
BG4 | B | coating mortar | bridge and input structures of sea bath |
BG5 | B | coating mortar | bridge and input structures of sea bath |
BG6 | A | bedding mortar | quadriportico of sea Villa |
BG7 | B | coating mortar | cistern of sea Villa |
BG8 | B | coating mortar | cistern of sea Villa |
BG9 | C | floor mortar | warehouses |
BG10 | A | bedding mortar | warehouses |
BG11 | A | bedding mortar | warehouses |
BG12 | A | bedding mortar | breakwater |
BG13 | A | bedding mortar | breakwater |
BG14 | A | bedding mortar | breakwater |
BG15 | A | bedding mortar | bridge and input structures of sea bath |
BG16 | A | bedding mortar | bridge and input structures of sea bath |
BG17 | B | coating mortar | cistern |
BG18 | B | coating mortar | cistern |
BG19 | B | coating mortar | cistern |
BG20 | B | coating mortar | cistern |
Group | Typology | Binder Color | Aggregate Size | Compactness | Photographic Representation |
---|---|---|---|---|---|
A (BG15 sample) | Bedding mortars | light grey color | Up to 10 mm | ++ | |
B (BG18 sample) | Coating mortars | Light yellow to reddish | Up to 1.5 cm | +++ | |
C (BG9 sample) | Floor mortars | pale brown to greyish | Up to 10 mm | +++ | |
Samples | Group | Main Binder Phases | Main Aggregates Phase |
---|---|---|---|
BG1 | C | Cal, Hyc | Anl, Sa, Pl, Cpx, Mca, Cal |
BG2 | A | Cal, Gp, Hl | Anl, Sa, Pl, Mca, Hl, Cal |
BG3 | A | Cal, Hl | Phi, Anl, Sa, Pl, Cpx, Mca, Hl, Cal |
BG4 | B | Cal, Hl | Phi, Anl, Sa, Pl, Cpx, Mca, Cal |
BG5 | B | Cal | Phi, Anl, Sa, Pl, Cpx, Mca, Cal |
BG6 | A | Cal, Hyc, Hl | Phi, Pl, Cpx, Mca, Hl, Cal |
BG7 | B | Cal, Hyc, Hl | Anl, Pl, Qz, Cpx, Mca, Lct, Hl, Cal |
BG8 | B | Cal, Gp, Hyc, Hl | Anl, Sa, Pl, Qtz, Cpx, Lct, Mca, Hl, Cal |
BG9 | C | Cal | Phi, Cbz, Anl, Sa, Pl, Qtz, Cpx, Mca, Hl, Cal |
BG10 | A | Cal, Hyc, Hl | Phi, Cbz, Anl, Sa, Pl, Cpx, Mca, Hl, Cal |
BG11 | A | Cal, Hl | Phi, Anl, Sa, Pl, Mca, Hl, Cal |
BG12 | A | Cal, Gp, Hyc, Hl | Phi, Cbz, Anl, Sa, Pl, Cpx, Mca, Hl, Cal |
BG13 | A | Cal, Gp, Hyc, Hl | Phi, Cbz, Anl, San, Pl, Cpx. Mca, Hl, Cal |
BG14 | A | Cal, Hyc, Hl | Phi, Anl, Sa, Pl, Cpx, Mca, Hl, Cal |
BG15 | A | Cal, Hl | Phi, Anl, Sa, Pl, Cpx, Mca, Hl, Cal |
BG16 | A | Cal, Hyc, Hl | Phi, Anl, Sa, Pl, Cpx, Mca, Hl, Cal |
BG17 | B | Cal, Gp | Phi, Anl, Sa, Pl, Cpx, Qz, Mca, Cal |
BG18 | B | Cal | Phi, Cbz, Anl, Sa, Cpx, Pl, Mca, Cal |
BG19 | B | Cal | Phi, Cbz, Anl, Sa, Pl, Cpx, Mca, Cal |
BG20 | B | Cal, Gp | Phi, Anl, Sa, Pl, Cpx, Qz, Mca, Cal |
Group | A | A | A | A | A | A | A | A | A | A | B | B | B | B | B | B | B | B | C | C |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
wt% | BG2 L | BG3 L | BG6 L | BG10 L | BG11 L | BG12 L | BG13 L | BG14 L | BG15 L | BG16 L | BG4 L | BG5 L | BG7 L | BG8 L | BG17 L | BG18 L | BG19 L | BG20 L | BG1 L | BG9 L |
SiO2 | 1.95 | 1.55 | 1.34 | 2.87 | 1.91 | 1.79 | 2.34 | 2.46 | 1.52 | 2.14 | 3.73 | 1.25 | 0.52 | 1.92 | 1.72 | 2.88 | 1.93 | 2.83 | 2.34 | 2.21 |
TiO2 | 0.12 | - | - | - | - | - | 0.02 | 0.13 | - | - | 0.88 | - | - | - | 0.34 | - | 0.24 | 0.06 | - | 0.37 |
Al2O3 | 2.02 | 1.16 | 1.32 | 0.86 | 0.99 | 1.03 | 1.19 | 0.39 | 1.43 | 1.54 | 0.82 | 2.13 | 2.43 | 1.83 | 2.10 | 1.08 | 2.06 | 1.08 | 1.32 | 1.21 |
Fe2O3 | 0.09 | 0.20 | - | 0.37 | 0.38 | 0.31 | - | 0.34 | 0.50 | 0.10 | - | 0.37 | 0.50 | 0.44 | - | 0.41 | - | 0.21 | - | - |
MnO | - | - | - | - | - | 0.12 | - | 0.09 | 0.42 | 0.06 | 0.15 | 0.22 | 0.42 | 0.32 | 0.41 | 0.20 | 0.42 | 0.11 | - | 0.19 |
MgO | 0.56 | 1.14 | 1.87 | 2.48 | 2.45 | 0.56 | 1.87 | 2.80 | 0.55 | 1.73 | 1.28 | 0.60 | 0.55 | 0.46 | 2.13 | 0.26 | 1.12 | 0.36 | 1.87 | 2.19 |
CaO | 92.78 | 94.80 | 94.68 | 91.12 | 93.04 | 94.28 | 93.80 | 91.89 | 93.11 | 93.61 | 91.09 | 94.23 | 93.11 | 93.47 | 92.07 | 93.36 | 93.79 | 93.70 | 93.68 | 88.38 |
Na2O | 0.42 | 0.32 | 0.16 | 0.45 | 0.27 | 0.27 | 0.16 | 0.19 | 0.42 | 0.17 | 0.90 | 0.32 | 0.42 | 0.23 | 0.18 | 0.59 | 0.13 | 0.72 | 0.16 | 0.69 |
K2O | 0.16 | - | - | - | - | - | - | - | - | 0.18 | 0.13 | 0.09 | - | - | 0.09 | 0.55 | 0.08 | 0.51 | - | 0.03 |
P2O5 | 0.05 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.48 |
BaO | 0.49 | - | 0.49 | - | - | 0.09 | 0.49 | 0.05 | - | 0.09 | 0.00 | - | - | - | - | - | 0.06 | - | 0.49 | - |
SO3 | 0.12 | 0.19 | 0.13 | 0.99 | 0.10 | 1.13 | 0.13 | 0.62 | 1.16 | 0.23 | 0.29 | 0.44 | 0.40 | 0.10 | 0.02 | 0.24 | - | 0.29 | 0.13 | 0.30 |
Cl- | 0.89 | 0.65 | - | 0.87 | 0.87 | 0.23 | - | 0.87 | 0.40 | 0.15 | 0.30 | 0.16 | 1.16 | 1.04 | 0.20 | 0.43 | - | 0.14 | - | 3.70 |
F- | 0.34 | - | - | - | - | 0.18 | - | 0.16 | 0.47 | 0.00 | 0.42 | 0.18 | 0.47 | 0.18 | 0.75 | - | 0.17 | - | - | 0.25 |
Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
SiO2 + Al2O3 + Fe2O3 | 4.07 | 2.90 | 2.67 | 4.09 | 3.28 | 3.13 | 3.53 | 3.19 | 3.46 | 3.78 | 4.54 | 3.76 | 3.46 | 4.20 | 3.82 | 4.37 | 3.99 | 4.12 | 3.67 | 3.42 |
CaO + MgO | 93.34 | 95.94 | 96.56 | 93.60 | 95.49 | 94.84 | 95.68 | 94.69 | 93.66 | 95.34 | 92.37 | 94.83 | 93.66 | 93.93 | 94.20 | 93.62 | 94.91 | 94.06 | 95.56 | 90.56 |
HI | 0.04 | 0.03 | 0.03 | 0.04 | 0.03 | 0.03 | 0.04 | 0.03 | 0.04 | 0.04 | 0.05 | 0.04 | 0.04 | 0.04 | 0.04 | 0.05 | 0.04 | 0.04 | 0.04 | 0.04 |
Group | A | A | A | A | A | A | A | A | A | A | B | B | B | B | B | B | B | B | C | C |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
wt% | BG2 B | BG3 B | BG6 B | BG10 B | BG11 B | BG12 B | BG13 B | BG14 B | BG15 B | BG16 B | BG4 B | BG5 B | BG7 B | BG8 B | BG17 B | BG18 B | BG19 B | BG20 B | BG1 B | BG9 B |
SiO2 | 8.03 | 8.24 | 7.76 | 8.04 | 8.89 | 8.34 | 9.03 | 9.52 | 6.79 | 8.73 | 9.82 | 10.76 | 9.76 | 10.27 | 14.11 | 12.90 | 13.99 | 14.32 | 7.94 | 8.85 |
TiO2 | 0.19 | 0.22 | - | 0.33 | 0.13 | - | 0.05 | 0.21 | - | - | - | - | - | - | 0.26 | 0.24 | 0.28 | 0.14 | - | 0.40 |
Al2O3 | 2.69 | 2.41 | 3.07 | 2.34 | 2.15 | 3.76 | 3.13 | 2.03 | 3.77 | 2.92 | 3.19 | 3.27 | 3.07 | 2.82 | 3.70 | 3.82 | 3.17 | 3.59 | 2.24 | 2.65 |
Fe2O3 | 0.17 | 0.25 | 0.28 | 0.18 | 0.11 | 0.12 | 0.15 | 0.02 | 0.19 | 0.21 | 0.70 | 0.78 | 0.28 | 0.20 | 0.90 | 1.27 | 0.35 | 0.87 | 0.21 | 0.00 |
MnO | - | 0.07 | 0.15 | 0.17 | 0.07 | - | 0.06 | 0.11 | - | 0.14 | 0.09 | 0.15 | 0.15 | 0.10 | 0.32 | 0.00 | 0.44 | 0.06 | 0.24 | 0.48 |
MgO | 0.24 | 3.92 | 3.34 | 4.04 | 2.94 | 1.41 | 2.33 | 3.67 | 1.42 | 3.11 | 5.19 | 2.34 | 3.34 | 2.73 | 0.67 | 7.78 | 0.80 | 5.64 | 0.71 | 0.74 |
CaO | 85.72 | 83.18 | 82.56 | 83.02 | 83.83 | 83.62 | 82.54 | 83.02 | 84.83 | 82.61 | 78.61 | 80.47 | 80.56 | 82.06 | 77.64 | 71.74 | 78.62 | 72.96 | 85.67 | 83.58 |
Na2O | 0.82 | 0.68 | 0.91 | 0.71 | 0.45 | 0.81 | 0.97 | 0.71 | 0.89 | 0.39 | 0.86 | 0.52 | 0.91 | 0.72 | 1.07 | 0.53 | 1.06 | 0.63 | 1.20 | 1.37 |
K2O | 0.20 | 0.15 | 0.22 | 0.19 | 0.09 | 0.24 | 0.14 | 0.14 | 0.43 | 0.22 | 0.13 | 0.22 | 0.22 | 0.13 | 0.74 | 0.30 | 0.58 | 0.40 | 0.35 | 0.94 |
P2O5 | - | 0.04 | - | 0.04 | 0.04 | - | - | - | - | - | 0.09 | - | - | - | - | - | - | - | 0.30 | 0.30 |
BaO | 0.70 | 0.07 | 0.22 | 0.08 | 0.06 | 1.06 | 0.22 | 0.08 | 1.01 | 0.30 | 0.00 | 0.22 | 0.22 | 0.08 | 0.10 | - | 0.19 | 0.00 | 0.27 | 0.20 |
SO3 | 0.53 | 0.23 | 0.62 | 0.28 | 0.56 | 0.10 | 0.83 | 0.21 | 0.10 | 0.58 | 0.52 | 0.70 | 0.62 | 0.42 | 0.26 | 0.83 | 0.26 | 0.74 | 0.61 | 0.50 |
Cl- | 0.21 | 0.53 | 0.24 | 0.58 | 0.68 | 0.53 | 0.15 | 0.28 | 0.56 | 0.19 | 0.80 | 0.24 | 0.24 | 0.13 | 0.23 | 0.60 | 0.25 | 0.66 | 0.26 | - |
F- | 0.48 | - | 0.63 | - | - | - | 0.40 | - | - | 0.59 | - | 0.33 | 0.63 | 0.34 | - | - | - | - | - | - |
Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
SiO2 + Al2O3 + Fe2O3 | 10.89 | 10.91 | 11.11 | 10.57 | 11.15 | 12.22 | 12.31 | 11.58 | 10.76 | 11.87 | 13.71 | 14.81 | 13.11 | 13.29 | 18.71 | 17.99 | 17.51 | 18.77 | 10.39 | 11.49 |
CaO + MgO | 85.96 | 87.11 | 85.89 | 87.06 | 86.77 | 85.03 | 84.87 | 86.69 | 86.25 | 85.72 | 83.80 | 82.81 | 83.89 | 84.79 | 78.31 | 79.52 | 79.42 | 78.60 | 86.38 | 84.32 |
HI | 0.13 | 0.13 | 0.13 | 0.12 | 0.13 | 0.14 | 0.14 | 0.13 | 0.12 | 0.14 | 0.16 | 0.18 | 0.16 | 0.16 | 0.24 | 0.23 | 0.22 | 0.24 | 0.12 | 0.14 |
wt% | BG1a | BG4a | BG4b | BG7a | BG7b | BG7c | BG8a | BG8b | BG8c | BG9 | BG12 | BG17a | BG17b | BG17c | BG18a | BG18b | BG20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | 57.68 | 54.18 | 51.00 | 50.00 | 56.07 | 54.07 | 55.58 | 53.90 | 53.84 | 51.36 | 50.94 | 54.31 | 57.63 | 54.94 | 60.57 | 52.53 | 58.77 |
TiO2 | 0.99 | 0.34 | 0.34 | 1.23 | 1.90 | 0.90 | 0.47 | 0.64 | 0.67 | 0.55 | 0.57 | 1.10 | 0.53 | 0.87 | 1.14 | 0.56 | 0.69 |
Al2O3 | 17.77 | 13.72 | 15.13 | 13.88 | 18.23 | 17.23 | 15.47 | 18.70 | 15.27 | 14.56 | 21.72 | 32.37 | 18.42 | 21.41 | 15.98 | 17.64 | 19.54 |
Fe2O3 | 7.31 | 4.51 | 4.90 | - | 7.11 | 6.11 | 4.64 | 4.79 | 4.43 | 5.11 | 6.09 | 7.08 | 3.90 | 7.57 | 6.32 | 4.29 | 5.49 |
MnO | - | - | 0.18 | - | 0.29 | 0.29 | 0.22 | - | 0.10 | 0.11 | 0.20 | 0.17 | 0.58 | 0.03 | - | 0.30 | 0.30 |
MgO | 5.25 | 5.13 | 3.21 | 2.73 | 5.51 | 3.51 | 2.55 | 2.23 | 2.59 | 3.17 | 10.32 | 5.73 | 2.45 | 4.12 | 3.29 | 3.23 | 2.05 |
* CaO | 5.27 | 17.43 | 19.08 | 19.04 | 5.83 | 12.83 | 11.78 | 4.98 | 16.96 | 17.47 | 2.87 | 4.04 | 9.98 | 5.65 | 4.30 | 13.46 | 3.93 |
Na2O | 0.18 | 0.45 | 0.66 | 0.12 | - | - | 0.14 | - | - | - | - | 0.07 | 0.14 | - | - | 0.09 | 0.23 |
K2O | 2.79 | 1.04 | 1.65 | 1.91 | 1.22 | 1.22 | 1.95 | 3.06 | 1.58 | 1.80 | 1.32 | 1.23 | 2.76 | 1.21 | 2.00 | 3.50 | 3.50 |
P2O5 | 2.17 | 2.48 | 2.95 | 3.43 | 2.18 | 2.18 | 3.72 | 2.95 | 2.46 | 2.52 | 2.62 | 2.54 | 3.42 | 3.58 | 4.55 | 3.20 | 4.42 |
V2O3 | 0.13 | 0.05 | 0.73 | 0.82 | 1.26 | 1.26 | 0.75 | 0.42 | 0.76 | 0.35 | 0.19 | 0.02 | - | 0.11 | 0.63 | 0.66 | 0.95 |
BaO | - | 0.29 | - | 0.11 | 0.39 | 0.39 | 0.20 | 0.61 | 0.20 | 0.16 | - | 0.33 | - | 0.41 | 0.11 | 0.38 | 0.13 |
SO3 | - | - | - | 2.96 | - | - | 2.55 | 2.74 | 1.14 | 2.84 | 3.10 | - | - | - | 0.97 | - | - |
Cl-- | 0.45 | 0.38 | 0.16 | 3.62 | - | - | - | - | - | - | 0.07 | - | 0.19 | 0.11 | 0.15 | 0.16 | - |
Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Sample | Group | SBW% 200–600 °C | CO2% 600–800 °C | LOI% |
---|---|---|---|---|
BG1 | C | 6.30 | 8.43 | 25.89 |
BG3 | A | 5.72 | 6.15 | 27.83 |
BG4 | B | 8.60 | 1.023 | 23.69 |
BG6 | A | 8.42 | 13.38 | 37.68 |
BG7 | B | 5.21 | 9.08 | 31.00 |
BG8 | B | 7.81 | 9.78 | 37.03 |
BG9 | C | 10.13 | 10.12 | 29.33 |
BG10 | A | 4.92 | 8.15 | 17.51 |
BG12 | A | 5.70 | 7.97 | 22.68 |
BG13 | A | 4.57 | 8.21 | 23.45 |
BG15 | A | 4.75 | 5.64 | 22.06 |
BG18 | B | 4.62 | 8.06 | 20.67 |
BG19 | B | 4.50 | 8.49 | 18.27 |
Sample | BG5 (Group B) | BG13 (Group A) | BG17 (Group B) |
---|---|---|---|
Cumulative volume (mm3/g) | 300.25 | 254.53 | 296.64 |
Bulk density (g/cm3) | 1.51 | 1.38 | 1.57 |
Open porosity (Vol. %) | 40.03 | 38.25 | 42.27 |
Specific Surface (m2/g) | 32.27 | 30.08 | 34.21 |
Apparent Density (g/cm3) | 2.71 | 2.57 | 2.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rispoli, C.; Esposito, R.; Guerriero, L.; Cappelletti, P. Ancient Roman Mortars from Villa del Capo di Sorrento: A Multi-Analytical Approach to Define Microstructural and Compositional Features. Minerals 2021, 11, 469. https://doi.org/10.3390/min11050469
Rispoli C, Esposito R, Guerriero L, Cappelletti P. Ancient Roman Mortars from Villa del Capo di Sorrento: A Multi-Analytical Approach to Define Microstructural and Compositional Features. Minerals. 2021; 11(5):469. https://doi.org/10.3390/min11050469
Chicago/Turabian StyleRispoli, Concetta, Renata Esposito, Luigi Guerriero, and Piergiulio Cappelletti. 2021. "Ancient Roman Mortars from Villa del Capo di Sorrento: A Multi-Analytical Approach to Define Microstructural and Compositional Features" Minerals 11, no. 5: 469. https://doi.org/10.3390/min11050469
APA StyleRispoli, C., Esposito, R., Guerriero, L., & Cappelletti, P. (2021). Ancient Roman Mortars from Villa del Capo di Sorrento: A Multi-Analytical Approach to Define Microstructural and Compositional Features. Minerals, 11(5), 469. https://doi.org/10.3390/min11050469