# Disseminated Gold–Sulfide Mineralization in Metasomatites of the Khangalas Deposit, Yana–Kolyma Metallogenic Belt (Northeast Russia): Analysis of the Texture, Geochemistry, and S Isotopic Composition of Pyrite and Arsenopyrite

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

^{+}prevails, isomorphically entering the crystal lattice or its defects. Isotope characteristics of hydrothermal sulfides (δ

^{34}S = −2.0 to −0.6‰) indicate that mantle/magmatic sulfur was involved in the formation of the deposit, though the participation of sulfur from the host rocks of the Verkhoyansk clastic complex cannot be ruled out. The Khangalas deposit has much in common with other gold deposits of the Yana–Kolyma metallogenic belt, and from this point of view, the results obtained will help to better reveal their gold potential and understand their origin.

## 1. Introduction

## 2. Regional Geology and Mineralization

#### 2.1. Regional Tectonic Framework

_{3}–K

_{1}). Also present are mafic (162 ± 4 Ma, whole rock, Rb–Sr [34]), intermediate, and felsic dikes of the Nera–Bohapcha complex (151–145 Ma, U–Pb SHRIMP-II, zircons [23]). According to Parfenov et al. [35] and Parfenov and Kuzmin [33], the emplacement of the Late Jurassic granitoids was related to collision events. More recent data indicate that subduction processes were involved in their formation [36,37]. Tectonic structures, magmatism, and ore deposits of the YKMB were closely related to the Late Jurassic to earliest Early Cretaceous subduction, accretionary events at the eastern active continental margin of the Siberian craton [33]. The Upper Indigirka sector of the YKMB includes, from northeast to southwest, the Inyali–Debin, Olchan–Nera, Adycha–Taryn, and Adycha metallogenic zones. The Olchan–Nera zone hosts the Khangalas orogenic gold deposit.

#### 2.2. Geology of the Khangalas Deposit

#### 2.2.1. Structures and Host Rocks

_{3}) deposits. In the lower part of the section, with a thickness of more than 350 m, these are mainly massive brownish-gray and gray sandstones with thin siltstone interbeds. The upper part is dominated by a more than 450 m thick sequence of dark gray to black siltstones with included pebbles of sedimentary, igneous, and metamorphic rocks. The limbs of the anticline are made of Lower Triassic (T

_{1}) deposits (mainly dark gray shales, mudstones, and siltstones with rare interlayers of light gray sandstones with a thickness of 680–750 m) and Middle Triassic (T

_{2}a) sediments of the Anisian stage (alternating sandstones and siltstones with a thickness of 700–800 m). The Ladinian strata (T

_{2}l) consist of interbedded siltstones and sandstones with a total thickness of 850–950 m. The main ore-controlling tectonic structure is the Khangalas fault with a NW strike. This is represented at the Khangalas deposit by five extensive (up to 1400 m) mineralized ore zones (Severnaya, Promezhutochnaya, Centralnaya, Yuzhnaya, Zimnyaya) with low-sulfidation Au-type mineralization localized in the Dvoinaya anticline crest (Figure 1 and Figure 2A). The ore zones are up to 32 m thick and dip to the SW, S, and SE at 30°–50° to 70°–80° [25]. No evidence of magmatic activity is observed within the Khangalas deposit. Geophysical data suggest the presence of a granitoid pluton at depth [38]. The mineralization formed as a result of progressive fold-and-thrust deformations in the Verkhoyansk–Kolyma fold belt. These were initiated by orogenic processes in late Late Jurassic–early Early Cretaceous [25].

#### 2.2.2. Mineralization

## 3. Materials and Methods

_{2}for Fe and S, FeAsS for As, Fe-Ni-Co alloy for Co, Ni, Au-Ag alloy of fineness for Au and Ag, CuSbS

_{2}for Sb, and PbS for Pb. The detection limits 0.01%. Trace elements in pyrite were studied on 9 grains of pyrite-3 and arsenopyrite-1 using a New Wave Research UP-213 laser ablation system (USA) coupled with an Agilent 7700x quadrupole mass spectrometer (Agilent Technologies, Santa Clara, CA, USA) (analyst D.A. Artemiev, Institute of Mineralogy, Ural Branch of the Russian Academy of Sciences, Miass). The measurements were carried out using a 213 nm Nd:YAG UV laser with fluence set at 1.8–5.5 J/cm

^{2}(1.8–3.0 J/cm

^{2}for pyrite, 3.0–4.5 J/cm

^{2}arsenopyrite) and a rate of flow of He carrier gas at 0.5–0.65 L/min. Mass spectrometer settings were: RF power 1550 W, carrier gas Ar, flow rate 0.85–0.95 L/min, plasma-forming gas (Ar) flow rate 15 L/min, and auxiliary gas (Ar) flow rate 0.9 L/min. Data were acquired by singe spot and line analyses using a laser spot diameter of 25 to 80 µm and a frequency of 5–10 Hz. The analysis time for each sample was 90 s, comprising a 30 s measurement of background (laser off) and a 60 s analysis with laser on. Pre-ablation was performed for 3–4 s before each analysis. Between the analyses, and between analysis and pre-ablation, blowing with gas was done for 60–90 s.

^{232}Th

^{16}O/

^{232}Th) was kept below 0.2%. The

^{238}U/

^{232}Th ratio, when adjusted according to NIST SRM-612, was 1:1. External calibration standards USGS MASS-1 [43] and UQAC FeS-1 were used to analyze every 7–13 spots to account for drifting of the laser and mass spectrometer. Mass contents of elements for NIST SRM-612 and USGS MASS-1 were taken from the GeoReM database. Data processing and calculation were carried out using the Iolite software package [44]. As internal standard (IS) for pyrite, we used

^{57}Fe measured by SEM-EMF. In some cases, normalization to 100% of the total components was performed according to standard techniques [45].

_{2}. The

^{34}S/

^{32}S isotope ratios were measured on a MAT-253 mass spectrometer (Thermo Scientific, Waltham, MA, USA) in continuous He flux mode. The measurements were performed against a standard laboratory gas SО

_{2}calibrated according to international standards IAEA-S-1, IAEA-S-2, IAEA-S-3, and NBS-127. The results of δ

^{34}S measurements are given in reference to the international VCDT standard.

## 4. Results

#### 4.1. Pyrite and Arsenopyrite Types and Textures

#### 4.1.1. Diagenetic Pyrite (Py1)

#### 4.1.2. Metamorphic Pyrite (Py2)

#### 4.1.3. Metasomatic Pyrite (Py3) and Arsenopyrite (Apy1)

#### 4.1.4. Vein Pyrite (Py4) and Arsenopyrite (Apy2)

#### 4.2. Composition of Pyrite and Arsenopyrite

#### 4.2.1. EPMA Results: Major and Minor Elements CAPS

_{Co}> C

_{Ni}, which are characterized by a strong correlation (r = 0.74). Copper constitutes 5–6% of the total amount of trace elements in Py1 and Py2 (0.02–0.11 wt.% Cu), and its content is variable, even within the same crystal. Another constant but quantitatively insignificant minor element in Py1 and Py2 is Sb (0.03–0.1 wt.% Sb). Correlation analysis revealed a Co–Ni–Pb geochemical association in Py1. The empirical formula of sedimentary and metamorphic pyrite is Fe

_{0.96–1.04}Ni

_{0.0–0.01}S

_{2.00}(Ni is present in 18% of the analyzed grains).

_{0.98–1.08}Ni

_{0.0–0.01}Co

_{0.0–0.01}S

_{1.95–2.00}As

_{0.01–0.05}.

_{0.98–1.07}S

_{1.96–1.99}As

_{0.01–0.04}.

_{0.93–1.04}As

_{0.86–1.01}S

_{0.99–1.14}.

#### 4.2.2. Gold and Trace Element Concentrations in Py3 and Apy1 According to LA-IСP-MS Data

#### 4.3. Gold Content of Sulfides from Proximal Metasomatites and in Veins

#### 4.4. Sulfur Isotopic Composition of Sulfides

^{34}S values close to 0 (−2.0 to 0.6‰) (Table 4), for gold-bearing Py3 it is δ

^{34}S = −0.6‰ (21.4 ppm Au, K-9-17), for Apy1 it is δ

^{34}S = −1.2‰ (12.3 ppm Au, K-4-17), and for Apy2 it is δ

^{34}S = −2.0 ‰ (KG-35-19).

## 5. Discussion

#### 5.1. Pyrite and Arsenopyrite Types and Textures

#### 5.2. Composition of Pyrite and Arsenopyrite

^{3−}or [Sb–Sb]

^{4−}dumbbells [62]. The negative correlation (r = 0.3–0.6) between antimony and iron indicates the possibility of isomorphic Fe → Sb substitution.

#### 5.3. Invisible Gold and Its Relationship with Other Elements in Py3 and Apy1 According to LA-ICP-MS Data

#### 5.3.1. Invisible Gold in Py3

^{2+}ionic radius r = 0.80 Å) and gold (atomic mass 196.96; Au

^{3+}ionic radius r = 0.85 Å; Au

^{+}r = 1.37 Å) also confirms the possibility of isomorphic incorporation of Au into pyrite [73,74]. Chouinard et al. [75] proposed a conjugate substitution mechanism of Au

^{3+}+ Cu

^{+}↔ 2Fe

^{2+}or Au

^{+}+ Cu

^{+}+ Co

^{2+}+ Ni

^{2+}↔ 3Fe

^{2+}types (Figure 13B,C). According to Wang et al. [61], the marked negative relationship between (Au + As) and Fe in Py3 (Figure 12D) suggests that Au and As entered the lattice through isomorphic substitution for Fe under conditions of high oxygen fugacity (fO

_{2}).

_{1.00}(S

_{1.98}As

_{0.02})

_{2.00}) to form, in some cases, arsenian pyrite (As > 1.7 %), which is typical for reducing conditions (see [60,77], etc.). Reich et al. [60] noted for epithermal and Carlin-type deposits increased Au solubility in the pyrite structure with increasing As content: C

_{Au}= 0.02 · C

_{As}+ 4 × 10

^{−5}.

^{+}is the dominant form of gold in the arsenian pyrite of the studied deposits. Analytical data [60] indicate that the Au solubility limit in arsenian pyrite of epithermal deposits is defined by an Au/As ratio of ~0.02. The solubility limit of Au in pyrite of orogenic deposits is lower (~0.004) [71].

^{+}). These results are confirmed by the rather low Au content in the analyzed Py3: in most samples, Au does not exceed 2.5 ppm (Table 2). Earlier, Tauson et al. [76] showed that the content of the Au

^{+}structural form in the studied pyrite samples from deposits of different genetic types in Russia (large Natalka and Degdekan orogenic gold-quartz deposits, Dukat volcanogenic-plutonogenic Au–Ag deposit, Dalnee and Oroch volcanic Au–Ag deposits, Sukhoi Log giant deposit with a debated genesis, Pokrovskoye epithermal Au–Ag deposit, Amur Dikes deposit with an unconventional type of mineralization, and Zun–Kholbinskoye deposit with a controversial genesis) and Uzbekistan (Kochbulak and Kyzylalmasay epithermal Au–Ag deposits) does not exceed ~5 ppm. Similar results were obtained by Deditius et al. [71] for pyrite from orogenic gold deposits, which, according to their data, contains less than 100 ppm Au. The higher Au content is mainly due to the presence of nano- and microparticles of native gold [78]. The occurrence of native superficially bound Au

^{0}in sulfides of metasomatites is reported from deposits of various genetic types [60,68,76,79].

#### 5.3.2. Invisible Gold in Apy1

^{+}structurally bound form in Apy1. This is confirmed by the low Au content (<6.1 ppm) in Apy1. At the same time, the results of atomic absorption analysis revealed high Au content in the bulk samples of Apy1 (Table 2), which indicates the presence of nano- and microparticles of native gold.

^{+}in the Py3 and Apy1 crystal lattices.

#### 5.4. Gold Content of Proximal Metasomatites and Their Sulfides

#### 5.5. Sources of Metals

#### 5.5.1. Pyrite Genesis as Evidenced by Co/Ni Ratio

_{Co}> C

_{Ni}(Co/Ni > 1.0). Increased Ni content (Co/Ni = 0.2–0.8) is characteristic of Py1 and Py2, and is recorded in the central part of zoned Py3 crystals. Variable correlations are observed between Co and Ni: a strong positive correlation (r = 0.64–0.73) in Py1 and Py2, a negative correlation (r = −0.6) in grains with elevated Ni content, and no correlation between Co and Ni in vein Py4 and Apy2. High concentrations of Ni in sulfides suggest, according to Lee et al. [58], that mafic and ultramafic components introduced into hydrothermal fluids were involved in the precipitation of sulfides (maximum 2230 ppm for Apy1, 1620 ppm for Apy2, 4830 ppm for Py3). Negative correlations between Co and Fe (r = −0.6) (Figure 15B) and Ni and Fe (r = −0.1, Figure 15C) in Py3 indicate the presence of Ni and Co in the crystal lattice through isomorphic substitution for Fe [61].

#### 5.5.2. Origin of Hydrothermal Sulfides According to Stable Sulfur Isotopes

^{34}S values for sulfide minerals from orogenic gold deposits range from −20‰ to + 25‰ [92]. As sulfur is an important complexing agent for gold, understanding the S source may be critical in identifying the source areas of gold. A number of researchers came to the conclusion that the δ

^{34}S composition in Phanerozoic deposits changes depending on the age of the host rock [92,95,96]. The sulfur isotopic composition of sulfides from the Khangalas deposit is in good agreement with these results (Figure 15B).

^{34}S ~ 0, it was determined that the ore-forming fluid had a felsic magmatic or mantle-level source of sulfur [98]. The sulfur isotopic composition (δ

^{34}S = 0.0 to −3.3‰) in a number of gold–sulfide deposits in Kazakhstan indicates that the ore matter had a mantle-level source of sulfur with some contribution from the crust [99,100].

^{34}S of accessory sulfides of host rocks with the δ

^{34}S of sulfides of gold deposits in the Upper Kolyma gold-bearing region, and suggested the involvement of sulfur mobilized from clastic strata in the hydrothermal process. It is believed that the most probable source of sulfur in sulfides (δ

^{34}S −6.3 to + 2.6) from the Natalka orogenic deposit, the largest in the region, is the host rocks of the Verkhoyansk clastic complex [101,102]. Sulfur and arsenic were mobilized as a result of phase transformations of iron sulfides from clastic strata during the transformation of pyrite to pyrrhotite in the course of metamorphism.

^{34}S values is established: from −2.1‰ to +2.4‰ (Apy), from −6.6 to +5.4‰ (Py), and from −6.1‰ to +4.2‰ (antimonite) (Figure 16) [8]. For example, the δ

^{34}S values in sulfides are close to zero: −0.2‰ to +2.4‰ for Malo-Tarynskoe, −2.9‰ to −1.5‰ for Avgustovskoe, −3.6‰ to 1.3‰ for Kinyas, −1.7‰ to −1.2‰ for Pil, and −4.4‰ to −0.7‰ for Elginskoe and other gold deposits. These data are interpreted by the authors as indicating a magmatic source of sulfur with some contribution from the host rocks of the Verkhoyansk clastic complex.

^{34}S values from −2.0‰ to −0.6‰ (Figure 16, Table 4). Similar sulfur isotopic compositions of arsenopyrite and pyrite of ore veins and disseminated mineralization of ore-hosting strata indicate their formation during a single hydrothermal event. The δ

^{34}S values of sulfides from the Khangalas deposit are close to those of the well-studied orogenic gold-sulfide deposits: Natalka (Upper Kolyma region) [103]; Suzdalskoe, Zhaima, Bolshevik, and Zherek (Kazakhstan) [99,100]; and deposits of the Adycha-Taryn metallogenic zone [8] (Figure 16A). For the large Nezhdaninskoe orogenic gold deposit in the Allakh–Yun metallogenic zone, deep magma chambers (−5‰ to +1‰ for vein ores) and sulfides of host rocks (Figure 16A) are considered as sulfur sources [104]. At the same time, the conclusions about the genesis of the fluid components here are ambiguous, as in the case of the Muruntau deposit [105]. Thus, mantle/magmatic sulfur was involved in the formation of the Khangalas deposit, but the participation of sulfur from the host rocks of the Verkhoyansk clastic complex cannot be ruled out. The small volume of the conducted isotope studies does not make it possible to represent the entire range of δ

^{34}S values for the Khangalas deposit. To obtain more information about the sources of ore matter, a comprehensive analysis of all generations of pyrite and arsenopyrite as well as thermobarometric and microelemental analysis of fluid inclusions are required.

## 6. Conclusions

^{+}. A low Au content in sulfides (Py3, avg. 1.5 ppm; Apy2, avg. 7.6 ppm) is interpreted by some researchers [76] as an indicator of the structurally bound form of Au. In addition, the negative correlation between Au and Fe established for Py3 and Apy1 indicates isomorphic Au ↔ Fe substitution [52,55,58]. The close correlation between Au and As indicates that they have a common genesis. Their distribution patterns relative to the line limiting the transition of the solid solution Au

^{+}to Au

^{0}[57,71] also indicate the development of Au

^{+}in Apy1 and Py3 from proximal metasomatites (Figure 13F,H). At the same time, a higher Au content was found in sulfides and proximal metasomatites (Py3: 39.32 ppm Au by atomic absorption; Apy1: 39.0 ppm by LA-ICP-MS). This may indicate the presence of micro- and nanoinclusions of native gold in sulfides, which is confirmed by the detection, with the use of a scanning electron microscope, of an Au

^{0}microinclusion in the Py3 and Apy1 intergrowth in 1 out of about 200 grains studied. Indirect evidence of the presence of native gold inclusions in sulfides may be the large number of dense phases detected by computed microtomography. Isotope characteristics of hydrothermal sulfides (δ

^{34}S = −2.0‰ to −0.6‰) indicate that mantle/magmatic sulfur was involved in the formation of the deposit, but the participation of sulfur from the host rocks of the Verkhoyansk clastic complex cannot be ruled out.

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Goryachev, N.A.; Pirajno, F. Gold deposit and gold metallogeny of Far East Russia. Ore Geol. Rev.
**2014**, 59, 123–151. [Google Scholar] [CrossRef] - Mikhailov, B.K.; Struzhkov, S.F.; Aristov, V.V.; Natalenko, M.V.; Tsymbalyuk, N.V.; Tyamisov, N.E.; Uzyunkoyan, А.А. Gold potensial of the Yana–Kolyma province. Ore Met.
**2007**, 5, 4–17. (In Russian) [Google Scholar] - Kerrich, R.; Goldfarb, R.; Groves, D.; Garwin, S.; Jia, Y. The characteristics, origins, and geodynamic settings of supergiant gold metallogenic provinces. Sci. China Ser. D Earth Sci.
**2000**, 43, 68. [Google Scholar] [CrossRef] - Goryachev, N.A. Geology of Mesozoic Gold–Quartz Vein Belts of Northeast Asia; NEISRI FEB RAS: Magadan, Russia, 1998. (In Russian) [Google Scholar]
- Gamyanin, G.N. Mineralogical and Genetic Aspects of Gold Mineralization of the Verkhoyansk–Kolyma Mesozoids; GEOS: Moscow, Russia, 2001. (In Russian) [Google Scholar]
- Fridovsky, V.Y. Structures of gold ore fields and deposits of Yana–Kolyma ore belt. In Metallogeny of Collisional Geodynamic Settings; Mezhelovsky, N.V., Gusev, G.S., Eds.; GEOS: Moscow, Russia, 2002; Volume 1, pp. 6–241. (In Russian) [Google Scholar]
- Amuzinsky, V.A. Metallogenic Epochs and Content of Ore Complexes of the Verkhoyansk Folded System; YSU Publishing House: Yakutsk, Russia, 2005. (In Russian) [Google Scholar]
- Gamyanin, G.N.; Fridovsky, V.Y.; Vikent’eva, O.V. Noble-metal mineralization of the Adycha–Taryn metallogenic zone: Geochemistry of stable isotopes, fluid regime, and ore formation conditions. Russ. Geol. Geophys.
**2018**, 59, 1271–1287. [Google Scholar] [CrossRef] - Fridovsky, V.Y. Structural control of orogenic gold deposits of the Verkhoyansk–Kolyma folded region, northeast Russia. Ore Geol. Rev.
**2018**, 103, 38–55. [Google Scholar] [CrossRef] - Goryachev, N.A.; Vikentyeva, O.V.; Bortnikov, N.S.; Prokofiev, V.Y.; Alpatov, V.A.; Golub, V.V. World-class Natalka gold deposit: REE distribution, fluid inclusions, stable oxygen isotopes and ore formation conditions (North-East of Russia). Gеol. Rudn. Mеst.
**2008**, 50, 414–444. (In Russian) [Google Scholar] - Goryachev, N.A.; Sotskaya, O.T.; Mikhalitsyna, T.I.; Goryacheva, E.M.; Manshin, A.P. Estimation of Au-Pt-Pd-Ni in ores of typical deposits (Natalka, Degdekan) in the black shale strata of the Yana-Kolyma gold belt. Vestnik ONZ RAS
**2012**, 325–336. (In Russian) [Google Scholar] - Goryachev, N.A.; Sotskaya, O.T.; Ignatiev, A.V.; Velivetskaya, T.I.; Goryacheva, E.M.; Semyshev, F.I.; Berdnikov, N.V.; Malinovsky, M.A.; Alshevsky, A.V. About sulfide mineralization of the zones of large faults of the Yana-Kolyma orogenic belt. Bull. Northeast Sci. Center FEB RAS
**2020**, 1, 11–29. (In Russian) [Google Scholar] [CrossRef] - Sotskaya, O.T.; Goryachev, N.A. Micromineral forms of gold and silver in disseminated sulfide “black shale” ores (North-East of Russia). Geology and mineral resources of the North-East of Russia. In Proceedings of the All-Russian Conference, Yakutsk, Russia, 29–30 March 2012. (In Russian). [Google Scholar]
- Voroshin, S.V.; Tyukova, E.E.; Newberry, R.J.; Layer, P.W. Orogenic gold and rare metal deposits of the Upper Kolyma District, Northeastern Russia: Relation to igneous rocks, timing, and metal assemblages. Ore Geol. Rev.
**2014**, 62, 1–24. [Google Scholar] [CrossRef] - Sidorova, N.V.; Aristov, V.V.; Grigorieva, A.V.; Sidorov, A.A. “Invisible” gold in pyrite and arsenopyrite from the Pavlik deposit (North-East of Russia). Dokl. Earth Sci.
**2020**, 495, 821–826. [Google Scholar] [CrossRef] - Palyanova, G.A. Minerals of gold and silver in sulfide ores. Geol. Ore Depos.
**2020**, 62, 426–449. [Google Scholar] [CrossRef] - Volkov, A.V.; Sidorov, A.A. Invisible gold. Bull. RAS
**2017**, 87, 40–49. (In Russian) [Google Scholar] [CrossRef] - Tyukova, E.E.; Voroshin, S.V. Composition and Paragenesis of Arsenopyrite in Deposits and Host Rocks of the Upper Kolyma Region (to the Interpretation of the Genesis of Sulfide Associations); NEISRI FEB RAS: Magadan, Russia, 2007. (In Russian) [Google Scholar]
- Tyukova, E.E.; Voroshin, S.V. Isotopic composition of sulfur in sulfides from ores and host rocks of the Upper Kolyma region (Magadan region). Russ. J. Pac. Geol.
**2008**, 27, 29–43. (In Russian) [Google Scholar] - Babkin, P.V.; Gelman, M.L.; Veldyaksov, F.F.; Pavlyuchenko, L.A. Prospects for identifying gold mineralization in sulfidization zones in the black shale strata of the North-East USSR. Kolyma
**2001**, 2, 14–22. (In Russian) [Google Scholar] - Izmailov, L.I. Pyrrhotite Mineralization of Metal-Bearing Zones of the Kolyma River Basin; Science: Novosibirsk, Russia, 1976. (In Russian) [Google Scholar]
- Volkov, A.V.; Sidorov, A.A.; Goncharov, V.I.; Sidorov, V.A. Disseminated gold-sulfide deposits in the Russian Northeast. Geol. Ore Dep.
**2002**, 44, 159–174. [Google Scholar] - Fridovsky, V.Y.; Yakovleva, K.Y.; Vernikovskaya, A.E.; Vernikovsky, V.A.; Matushkin, N.Y.; Kadilnikov, P.I.; Rodionov, N.V. Geodynamic Emplacement Setting of Late Jurassic Dikes of the Yana–Kolyma Gold Belt, NE Folded Framing of the Siberian Craton: Geochemical, Petrologic, and U–Pb Zircon Data. Minerals
**2020**, 10, 1000. [Google Scholar] [CrossRef] - Fridovsky, V.Y.; Kudrin, M.V. Deformation structures of the Khangalassky ore cluster. Geology and mineral resources of the North-East of Russia. In Proceedings of the All-Russian scientific-practical Conference, Yakutsk, Russia, 31 March–2 April 2015; pp. 537–540. (In Russian). [Google Scholar]
- Fridovsky, V.Y.; Kudrin, M.V.; Polufuntikova, L.I. Multi-stage deformation of the Khangalas ore cluster (Verkhoyansk–Kolyma folded region, northeast Russia): Ore-controlling reverse thrust faults and post-mineral strike-slip faults. Minerals
**2018**, 8, 270. [Google Scholar] [CrossRef][Green Version] - Rozhkov, I.S.; Grinberg, G.A.; Gamyanin, G.A.; Kukhtinskiy, Y.G.; Solovyev, V.I. Late Mesozoic Magmatism and Gold Mineralization of the Upper Indigirsky Region; Science: Moscow, Russia, 1971. (In Russian) [Google Scholar]
- Amuzinsky, V.A.; Anisimova, G.S.; Zhdanov, Y.Y. Native Gold of Yakutia, Upper Indigirsky District; VO Nauka: Novosibirsk, Russia, 1992. (In Russian) [Google Scholar]
- Nesterov, N.V. Supergene Enrichment of Gold Deposits in Northeast Asia; Nauka: Novosibirsk, Russia, 1985. (In Russian) [Google Scholar]
- Kudrin, M.V.; Zayakina, N.V.; Vasilieva, T.I. Minerals of the oxidation zone of the Khangalas gold deposit (Eastern Yakutia). Geology and mineral resources of the North-East of Russia. In Proceedings of the VIII All-Russian Scientific-Practical Conference, Yakutsk, Russia, 18–20 April 2018; pp. 77–80. (In Russian). [Google Scholar]
- Kudrin, M.V.; Vasilieva, T.I.; Fridovsky, V.Y.; Zayakina, N.V.; Polufuntikova, L.I. Minerals of the weathering crust of the Khangalassky ore cluster (North-East of Russia). Geology and mineral resources of the North-East of Russia. In Proceedings of the IX All-Russian Scientific and Practical Conference, Yakutsk, Russia, 10–12 April 2019; pp. 53–56. (In Russian). [Google Scholar]
- Skryabin, A.I. Reconstruction of the Lateral Zoning of Gold Mineralization (Yano-Kolyma Belt); YSC SB RAS: Yakutsk, Russia, 2010. (In Russian) [Google Scholar]
- GeoInfoComLLC. Available online: http://mestor.geoinfocom.ru/publ/1-1-0-55 (accessed on 15 January 2021).
- Parfenov, L.M.; Kuzmin, M.I. Tectonics, Geodynamics and Metallogeny of the Territory of the Republic of Sakha (Yakutia); Parfenov, L.M., Kuzmin, M.I., Eds.; MAIK Nauka/Interperiodika: Moscow, Russia, 2001. (In Russian) [Google Scholar]
- Zaitsev, A.I.; Fridovsky, V.Y.; Vernikovskaya, A.E.; Kudrin, M.V.; Yakovleva, K.Y.; Kadilnikov, P.I. Rb–Sr isotopic study of basites of the dyke complex of the Taryn ore-magmatic system (Northeast Russia). Russ. J. Domes. Geol.
**2018**, 5, 50–61. (In Russian) [Google Scholar] - Parfenov, L.M.; Berzin, N.A.; Khanchuk, A.I.; Badarch, G.; Belochenko, V.G.; Bulgatov, A.I.; Dril, C.I.; Kirillova, G.L.; Kuzmin, M.I.; Nokleberg, W.J.; et al. Model of orogenic belt formation in Central and Northeast Asia. Russ. J. Pac. Geol.
**2003**, 22, 7–41. (In Russian) [Google Scholar] - Akinin, V.V.; Prokopiev, A.V.; Toro, J.; Miller, E.L.; Wooden, J.; Goryachev, N.A.; Alshevsky, A.V.; Bakharev, A.G.; Trunilina, V.A. U–PB SHRIMP ages of granitoids from the Main batholith belt (North East Asia). Dokl. Acad. Sci.
**2009**, 426, 216–221. [Google Scholar] - Akinin, V.V.; Miller, E.L.; Toro, J.; Prokopiev, A.V.; Gottlieb, E.S.; Pearcey, S.; Trunilina, V.A. Episodicity and the dance of late mesozoic magmatism and deformation along the northern circum-pacific margin: NE Russia to the Сordillera. Earth-Sci. Rev.
**2020**, 208, 103272. [Google Scholar] [CrossRef] - Akimov, G.Y. New age data on gold–quartz mineralization in the Verkhnyaya Indigirka area, Yakutia. Dokl. Acad. Sci.
**2004**, 398, 80–83. (In Russian) [Google Scholar] - Whitney, D.L.; Ewans, B.W. Abbreviations of names of rock forming minerals. Am. Miner.
**2010**, 95, 185–187. [Google Scholar] [CrossRef] - Kudrin, M.V.; Zayakina, N.V.; Fridovsky, V.Y.; Galenchikova, L.T. Hydrous ferric sulfate–Fe(SO
_{4})(OH)·2H_{2}O from the supergene zone of the Khangalas gold deposit, Eastern Yakutia, Russia. Notes Rus. Min. Soc.**2020**, 149, 126–141. [Google Scholar] - Zayakina, N.V.; Kudrin, M.V.; Fridovsky, V.Y. Unknown sulfate-arsenate-phosphate Al and Fe from the Khangalas deposit (Eastern Yakutia). Geology and Mineral Resources of the North-East of Russia. In Proceedings of the X All-Russian Scientific-Practical Conference with International Participation, Yakutsk, Russia, 8–10 April 2020; pp. 210–214. (In Russian). [Google Scholar]
- Nesterov, N.V. Secondary zoning of gold ore deposits in Yakutia. In Bulletin of the Tomsk Polytechnic University; TPU: Tomsk, Russia, 1970; pp. 242–247. (In Russian) [Google Scholar]
- Wilson, S.A.; Ridley, W.I.; Koenig, A.E. Development of sulphide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique. J. Anal. At. Spectrom.
**2002**, 17, 406–409. [Google Scholar] [CrossRef] - Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. Atomic Spectrom.
**2011**, 26, 2508–2518. [Google Scholar] [CrossRef] - Longerich, H.P.; Jackson, S.E.; Günther, D. Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J. Anal. Atomic Spectrom.
**1996**, 11, 899–904. [Google Scholar] [CrossRef] - Nadeev, A.; Mikhailov, D.; Chuvilin, E.; Koroteev, D.; Shako, V. Visualization of clay and frozen substances inside porous rocks using X-ray micro-computed tomography. J. Microsc. Anal.–Tomogr. Suppl.
**2013**, 27, 8–11. [Google Scholar] - Mayorova, T.P.; Statsenko, E.O.; Trifonov, A.A.; Nesterenko, G.V. X-ray microtomography and field emission electron microscopy – new possibilities for studying highly dispersed gold ores. Bull. Inst. Geol. KSC UB RAS.
**2013**, 11, 34–38. (In Russian) [Google Scholar] - Krupskaya, V.V.; Zakusin, S.V.; Zhukhlistov, A.P.; Dorzhieva, O.V.; Sudin, V.V.; Kryuchkova, L.Y.; Zubkov, A.A. Newly formed smectite as an indicator of transformations of the geological environment under the influence of highly reactive solutions accompanying liquid radioactive waste. J. Geoecol. Engin. Geol. Hydrogeol. Geocr.
**2016**, 5, 412–421. [Google Scholar] - Jarzyna, J.A.; Krakowska, P.I.; Puskarczyk, E.; Wawrzyniak-Guz, K.; Bielecki, J.; Tkocz, K.; Tarasiuk, J.; Wro’nski, S.; Dohnalik, M. X-ray computed microtomography—A useful tool for petrophysical properties determination. Comput. Geosc.
**2016**, 20, 1155–1167. [Google Scholar] [CrossRef][Green Version] - Voitenko, V.N. Form of crystallization of native gold in arsenopyrite ores of the Bazovskoye deposit (according to X-ray microtomography data). In Practical Microtomography, Proceedings of the III All-Russian Scientific Conference; SPBGU: St. Petersburg, Russia, 2014; pp. 26–28. (In Russian) [Google Scholar]
- Naumov, E.A.; Kovalev, K.R.; Kalinin, Y.A.; Palyanova, G.A.; Voitenko, V.N. The use of high-resolution X-ray tomography methods in mineralogical research. In Scientific and Methodological Foundations of Forecasting, Prospecting, Evaluation of Diamond, Precious and Non-Ferrous Metal Deposits; TSINIGRI: Moscow, Russia, 2019; pp. 126–127. (In Russian) [Google Scholar]
- Korost, D.V.; Kalmykov, G.A.; Yapaskurt, V.O.; Ivanov, M.K. Application of computer microtomography to study the structure of terrigenous reservoirs. Geol. Oil Gas.
**2010**, 2, 36–42. (In Russian) [Google Scholar] - Korost, D.V.; Ariskin, A.A.; Pshenitsyn, I.V.; Khomyak, A.N. X-ray computed tomography as a method for reconstructing the 3d characteristics of dispersed sulfides and spinel in plagiodunites of the Yoko-Dovyren intrusion. Petrol
**2019**, 27, 401–419. (In Russian) [Google Scholar] [CrossRef] - Vorobiev, A.E.; Kozyrev, E.N.; Honore, C. Communication nanorelief Pyrite and Arsenopyrite with the values of adsorption of gold. In Science, Education, Culture and Information and Educational Activities-the Basis of Sustainable Development of Mountain Territories, Proceedings of the VIII International Scientific-Practical Conference; SKGMI: Vladikavkaz, Russia, 2015; pp. 264–272. (In Russian) [Google Scholar]
- Kovalchuk, E.V.; Tagirov, B.R.; Vikentyev, I.V.; Chareev, D.A.; Tyukova, E.E.; Nikolsky, M.S.; Bortnikov, N.S. “Invisible” Gold in Synthetic and Natural Arsenopyrite Crystals, Vorontsovka Deposit, Northern Urals. Geol. Ore Dep.
**2019**, 61, 447–468. [Google Scholar] [CrossRef] - Sharp, Z.D.; Essene, E.J.; Kelly, W.C. A re-examination of the arsenopyrite geothermometer; pressure considerations and applications to natural assemblages. Can. Mineral.
**1985**, 23, 517–534. [Google Scholar] - Lentz, D.R. Sphalerite and arsenopyrite at the Brunswick No. 12 massive sulfide deposit, Bathurst camp, New Brunswick: Constraints on P-T evolution. Can. Mineral.
**2002**, 40, 19–31. [Google Scholar] [CrossRef][Green Version] - Lee, M.; Shin, D.; Yoo, B.; Im, H.; Pak, S.; Choi, S. LA-ICP-MS trace element analysis of arsenopyrite from the Samgwang gold deposit, South Korea, and its genetic implications. Ore Geol. Rev.
**2019**, 114, 103147. [Google Scholar] [CrossRef] - Fleet, M.E.; Mumin, A.H. Gold-bearing arsenian pyrite and marcasite and arsenopyrite from Carlin Trend gold deposits and laboratory synthesis. Am. Mineral.
**1997**, 82, 182–193. [Google Scholar] [CrossRef] - Reich, M.; Kesler, S.E.; Utsunomiya, S.; Palenik, C.S.; Chryssoulis, S.L.; Ewing, R.C. Solubility of gold in arsenian pyrite. Geochim. Cosmochim. Acta.
**2005**, 69, 2781–2796. [Google Scholar] [CrossRef] - Wang, C.; Shao, Y.; Huang, K.; Zhou, H.; Zhang, J.; Liu, Z.; Liu, Q. Ore-Forming Processes at the Xiajinbao Gold Deposit in Eastern Hebei Province: Constraints from EPMA and LA-ICPMS Analysis. Minerals
**2018**, 8, 388. [Google Scholar] - Pshenichkin, A.Y. On the form of finding trace elements in pyrite. Expl. Prot. Min. Resour.
**2010**, 11, 46–49. (In Russian) [Google Scholar] - Large, R.R.; Bull, S.W.; Maslennikov, V.V. A carbonaceous sedimentary source rock model for Carlin-type and orogenic gold deposits. Econ. Geol.
**2011**, 106, 331–358. [Google Scholar] [CrossRef] - Maslennikov, V.V.; Large, R.R.; Maslennikova, S.P.; Arkhireeva, N.S. Typochemism of pyrite and pyrrhotite as a reflection of the evolution of gold-bearing carbonaceous deposits in marginal oceanic structures. Metall. Anc. Mod. Oceans
**2013**, 19, 32–35. [Google Scholar] - Samusikov, V.P. Regularities of the concentration of isomorphic-impurity elements in minerals during hydrothermal ore formation. Russ. Geol. Geoph.
**2010**, 51, 338–352. [Google Scholar] - Bortnikov, N.S.; Gamyanin, G.N.; Vikentieva, O.V.; Prokofiev, V.Y.; Alpatov, V.A.; Bakharev, A.G. Composition and origin of fluids in the hydrothermal system of the Nezhdaninsky gold ore deposit (Sakha-Yakutia, Russia). Geol. Ore Depos.
**2007**, 49, 99–145. [Google Scholar] [CrossRef] - Aristov, V.V.; Kryazhev, S.G.; Ryzhov, O.B.; Volfson, A.A.; Prokofiev, V.Y.; Sidorova, N.V.; Sidorov, A.A. Sources of fluids and ore matter of gold and antimony mineralization of the Adychansk ore region (Eastern Yakutia). Pap. Acad. Sci.
**2017**, 476, 174–180. [Google Scholar] - Large, R.R.; Maslennikov, V.V. Invisible Gold Paragenesis and Geochemistry in Pyrite from Orogenic and Sediment-Hosted Gold Deposits. Minerals
**2020**, 10, 339. [Google Scholar] [CrossRef][Green Version] - Maslennikov, V.V.; Maslennikova, S.P.; Large, R.R.; Danyushevsky, L.V. Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasay volcanic-hosted massive sulfide deposit (southern Urals, Russia) using laser ablation–inductively coupled plasma mass spectrometry (LA-ICPMS). Econ. Geol.
**2009**, 104, 1111–1141. [Google Scholar] [CrossRef] - Keith, M.; Smith, D.J.; Jenkin, G.R.; Holwell, D.A.; Dye, M.D. A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits: Insights into ore-forming processes. Ore Geol. Rev.
**2018**, 96, 269–282. [Google Scholar] [CrossRef] - Deditius, A.P.; Reich, M.; Kesler, S.E.; Utsunomiya, S.; Chryssoulis, S.L.; Walshe, J.; Ewing, R.C. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits. Geochim. Cosmochim. Acta
**2014**, 140, 644–670. [Google Scholar] [CrossRef][Green Version] - Vikentiev, I.V. Invisible and microscopic gold in pyrite: Research methods and new data for pyrite ores of the Urals. Geol. Ore Depos.
**2015**, 57, 267–298. [Google Scholar] - Voitkevich, G.V.; Miroshnikov, A.E.; Povarenykh, A.S.; Prokhorov, V.G. A Short Guide to Geochem., 2nd ed.; Nedra: Moscow, Russia, 1977. (In Russian) [Google Scholar]
- Belikova, G.I.; Salikhov, D.N.; Berdnikov, P.G. On the question of gold isomorphism in pyrite. Geol. Collect. GI USC RAS
**2002**, 3, 190–193. (In Russian) [Google Scholar] - Chouinard, A.; Paquette, J.; Williams-Jones, A.E. Crystallographic controls on trace-element incorporation in auriferous pyrite from the Pascua epithermal high-sulfidation deposit, Chile-Argentina. Can. Miner.
**2005**, 43, 951–963. [Google Scholar] [CrossRef][Green Version] - Tauson, V.L.; Kravtsova, R.G.; Smagunov, N.V.; Spiridonov, A.M.; Grebenshchikova, V.I.; Budyak, A.E. Structurally and superficially bound gold in pyrite from deposits of different genetic types. Russ. Geol. Geophys.
**2014**, 55, 273–289. [Google Scholar] [CrossRef] - Gao, F.; Du, Y.; Pang, Z.; Du, Y.; Xin, F.; Xie, J. LA-ICP-MS Trace-Element Analysis of Pyrite from the Huanxiangwa Gold Deposit, Xiong’ershan District, China: Implications for Ore Genesis. Minerals
**2019**, 9, 157. [Google Scholar] [CrossRef][Green Version] - Vaughan, J.P.; Kyin, A. Refractory gold ores in Archaean greenstones, Western Australia: Mineralogy, gold paragenesis, metallurgical characterization and classification. Miner. Magaz.
**2004**, 68, 255–277. [Google Scholar] [CrossRef] - Moskvitina, L.V.; Moskvitin, S.G.; Anisimova, G.S. Research of Nanoscale Gold by Methods of Tunneling and Atomic-Powered Microscopy with Chemical and Ion-Plasma Etching in the Kuchus Deposit (Republic Sakha (Yakutia). In International Science and Technology Conference “Earth Science”-Section One, Proceedings of the Iop Conference Series: Earth and Environmental Science, Russky Island, Russia, 4–6 March 2019; IOP Publishing Ltd.: Bristol, UK, 2019; Volume 272, pp. 1–7. [Google Scholar]
- Gregory, D.D.; Large, R.R.; Halpin, J.A.; Baturina, E.L.; Lyons, T.W.; Wu, S.; Danyushevsky, L.; Sack, P.J.; Chappaz, A.; Maslennikov, V.V.; et al. Trace element content of sedimentary pyrite in black shales. Econ. Geol.
**2015**, 110, 1389–1410. [Google Scholar] [CrossRef] - Tomkins, A.G.; Mavrogenes, J.A. Redistribution of gold within arsenopyrite and lollingite during pro-and retrograde metamorphism: Application to timing of mineralization. Econ. Geol.
**2001**, 96, 525–534. [Google Scholar] [CrossRef] - Morey, A.A.; Tomkins, A.G.; Bierlein, F.P.; Weinberg, R.F.; Davidson, G.J. Bimodal distribution of gold in pyrite and arsenopyrite: Examples from the Archean Boorara and Bardoc shear systems, Yilgarn craton, Western Australia. Econ. Geol.
**2008**, 103, 599–614. [Google Scholar] [CrossRef] - Sung, Y.H.; Brugger, J.; Ciobanu, C.L.; Pring, A.; Skinner, W.; Nugus, M. Invisible gold in arsenian pyrite and arsenopyrite from a multistage Archaean gold deposit: Sunrise Dam, Eastern Goldfields Province, Western Australia. Miner. Dep.
**2009**, 44, 765. [Google Scholar] [CrossRef] - Zaitsev, A.I.; Fridovsky, V.Y.; Yakovleva, K.Y.; Kudrin, M.V.; Vernikovskaya, A.E. Composition and age of the basitic dikes of the Nastenka site of the Malo–Tarynskoe orogenic gold deposit (Verkhoyansk–Kolyma folded region, Northeast Russia). In Proceedings of the 19th International Multidisciplinary Scientific GeoConference-SGEM, Albena, Bulgaria, 30 June–6 July 2019; pp. 99–108. [Google Scholar]
- Bortnikov, N.S.; Gamyanin, G.N.; Vikent’eva, O.V.; Prokof’ev, V.Y.; Prokop’ev, A.V. The Sarylakh and Sentachan gold–antimony deposits, Sakha-Yakutia: A case of combined mesothermal gold–quartz and epithermal stibnite ores. Geol. Ore Dep.
**2010**, 52, 339–372. (In Russian) [Google Scholar] [CrossRef] - Aristov, V.V.; Prokofiev, V.Y.; Imamendinov, B.N.; Kryazhev, S.G.; Alekseev, V.Y.; Sidorov, A.A. Features of ore formation at the Drazhnoe gold-quartz deposit (Eastern Yakutia, Russia). Dokl. Earth Sci.
**2015**, 464, 879–884. [Google Scholar] [CrossRef] - GV GOLD. Available online: https://www.gvgold.ru/ru/our-assets/taryn-business-unit/ (accessed on 25 January 2021).
- Bralia, A.; Sabatini, G.; Troja, F. A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems. Miner. Depos.
**1979**, 14, 353–374. [Google Scholar] [CrossRef] - Cook, N.J.; Ciobanu, C.L.; Mao, J.W. Textural control on gold distribution in As-free pyrite from the Dongping, Huangtuliang and Hougou gold deposits, North China craton (Hebei Province, China). Chem. Geol.
**2009**, 264, 101–121. [Google Scholar] [CrossRef] - Azovskova, O.B.; Utochkina, N.V.; Zubova, T.P. Geochemical features of pyrite and marcasite from weathering crusts and “ancient” loose deposits of the Aktai area (Northern Urals). In EZHEGODNIK-2013, Tr. IGG UrO RAN; URO RAN: Ufa, Russia, 2014; Volume 161, pp. 238–245. (In Russian) [Google Scholar]
- Shanks, W. Stable Isotope Geochemistry of Mineral Deposits; Elsevier Ltd.: Amsterdam, The Nederland, 2014. [Google Scholar]
- Goldfarb, R.J.; Groves, D.I. Orogenic gold: Common or evolving fluid and metal sources through time. Lithos
**2015**, 233, 2–26. [Google Scholar] [CrossRef] - LaFlamme, C.; Sugiono, D.; Thébaud, N.; Caruso, S.; Fiorentini, M.L.; Selvaraja, V.; Jeon, H.; Voute, F.; Martin, L. Multiple sulfur isotopes monitor fluid evolution of an orogenic gold deposit. Geoch. Cosmoch. Acta
**2018**, 222, 436–446. [Google Scholar] [CrossRef] - Kryazhev, S.G. Isotope-geochemical and genetic models of gold deposits in carbonaceous-terrigenous strata. Domest. Geol.
**2017**, 1, 28–38. (In Russian) [Google Scholar] - Chang, Z.; Large, R.; Maslennikov, V. Sulfur isotopes in sediment-hosted orogenic gold deposits: Evidence for an early timing and a seawater sulfur source. Geology
**2008**, 36, 971–974. [Google Scholar] [CrossRef][Green Version] - Goldfarb, R.J.; Miller, L.D.; Leach, D.L.; Snee, L.W. Gold deposits in metamorphic rocks of Alaska. Econ. Geol.
**1997**, 9, 151–190. [Google Scholar] - Goldfarb, R.J.; Leach, D.L.; Rose, S.C.; Landis, G.P. Fluid inclusion geochemistry of gold-bearing quartz veins of the Juneau Gold Belt, southeastern Alaska-implications for ore genesis. Econ. Geol.
**1989**, 6, 363–375. [Google Scholar] - Xue, Y.; Campbell, I.H.; Ireland, T.R.; Holden, P.; Armstrong, R. No mass-independent sulfur isotope fractionation in auriferous fluids supports a magmatic origin for Archean gold deposits. Geology
**2013**, 41, 791–794. [Google Scholar] [CrossRef] - Kovalev, K.R.; Kalinin, Y.A.; Naumov, E.A.; Kolesnikova, M.K.; Korolyuk, V.N. Gold content of arsenopyrite of gold-sulfide deposits of East Kazakhstan. Geol. Geoph.
**2011**, 52, 225–242. [Google Scholar] - Kovalev, K.R.; Kuzmina, O.N.; Dyachkov, B.A.; Vladimirov, A.G.; Kalinin, Y.A.; Naumov, E.A.; Kirillov, M.V.; Annikova, I.Y. Gold-sulfide disseminated mineralization of the Zhaima deposit (East Kazakhstan). Geol. Ore Dep.
**2016**, 58, 116–133. [Google Scholar] [CrossRef] - Mikhalitsyna, T.I.; Sotskaya, O.T. The role of black-shales in the formation of gold-ore deposits Natalka and Pavlik (Yano-Kolymsky orogene belt). Russ. Geol. Geoph.
**2020**, 61, 1648–1671. [Google Scholar] - Eremin, R.A.; Voroshin, S.V.; Sidorov, V.A.; Shakhtyrov, V.G.; Pristavko, V.A.; Gashtold, V.V. Geology and genesis of the Natalka gold deposit, Northeast Russia. Inter. Geol. Rev.
**1994**, 36, 1113–1138. [Google Scholar] [CrossRef] - Stepanov, V.A. Zoning of Gold-Quartz Mineralization in Central Kolyma (Magadan Region, Russia); Dalnauka: Vladivostok, Russia, 2001. (In Russian) [Google Scholar]
- Gamyanin, G.N.; Bortnikov, N.C.; Alpatov, V.V. The Nezhdaninskoe Gold Ore Deposit is A Unique Deposit in the North-East of Russia; GEOS: Moscow, Russia, 2000. (In Russian) [Google Scholar]
- Seltmann, R.; Goldfarb, R.; Zu, B.; Creaser, R.; Dolgopolova, A.; Shatov, V. Muruntau, Uzbekistan: The World’s Largest Epigenetic Gold Deposit. Soc. Econ. Geol.
**2020**, 23, 497–521. [Google Scholar] - Zairi, N.M. Isotope-Geochemical Models of the Formation of Deposits of Gold-Carbon Formation. Ph.D. Thesis, TSINIGRI, Moscow, Russia, 1992. (In Russian). [Google Scholar]
- Rye, D.M.; Rye, R.O. Homestake Gold Mine, South Dakota: I. Stable Isotope Studies. Econ. Geol.
**1974**, 69, 293–317. [Google Scholar] [CrossRef] - Kryazhev, S.G.; Glukhov, A.P.; Rusinova, O.V.; Kuznetsova, S.V. Isotope-geochemical regime of the formation of the gold-quartz deposit Sovetskoe. In Applied Geochemistry (Analytical Research), 4th ed.; IMGRE: Moscow, Russia, 2003; pp. 154–164. (In Russian) [Google Scholar]
- Ohmoto, H. Stable isotope geochemistry of ore deposits. In High Temperature Geological Processes (Review in Mineralogy); Mineralogical Society of America: Washington, DC, USA, 1986; pp. 491–559. [Google Scholar]
- Claypool, G.E.; Holser, W.T.; Kaplan, I.R.; Sakai, H.; Zak, I. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem. Geol.
**1980**, 28, 199–260. [Google Scholar] [CrossRef]

**Figure 1.**(

**A**,

**C**,

**D**) Regional location, (

**B**) geological structure, and (

**E**) cross-section of Khangalas deposit. Inset map: VFTB, Verkhoyansk fold-and-thrust belt; PDT, Polousny–Debin terrane; C-I, Charky–Indigirka fault; C-Y, Chai–Yureya failt; A-T, Adycha–Taryn fault. Mineralized crushed zones: S, Severnaya; P, Promezhutochnaya; C, Centralnaya; Yu, Yuzhnaya; Z, Zimnyaya.

**Figure 2.**(

**A**–

**C**) Mineral composition of vein-type ores, and (

**D**) morphology of native gold of Khangalas deposit. (

**A**) Banded quartz with inclusions of native gold (Au), galena (Gn), sphalerite (Sp), and arsenopyrite (Apy); (

**B**,

**C**) intergrowths of native gold (Au), galena (Gn), sphalerite (Sp), and chalcopyrite (Cсp) of the Au–polysulfide vein association and anhedral arsenopyrite (Apy) of quartz–pyrite–arsenopyrite vein association: (

**B**) in reflected light, (

**C**) in backscattered electrons. Hereafter, abbreviations for minerals are from [39].

**Figure 3.**Ore bodies of the Khangalas deposit: (

**A**) Yuzhnaya oxidized mineralized fault zone; (

**B**) quartz–carbonate vein. Photographs taken in underground mine workings: (

**C**) vein-type Au–quartz mineralization with native gold, Centralnaya zone, alt. 920 m a.s.l.; (

**D**) disseminated type of mineralization with invisible gold in quartz–sericite–carbonate metasomatites, Centralnaya zone, alt. 920 m a.s.l.; (

**E**) pyrite and quartz veinlets in sandstones, Centralnaya zone, alt. 920 m a.s.l.; (

**F**) oxidized pyrite in sandstones, alt. 945 m a.s.l.

**Figure 5.**(

**A**) Photo and (

**B**) photomicrographs of Py1 and Py2 of Khangalas deposit in reflected light

**,**and (

**C,D**) backscattered electrons: (

**A**) Py2 veinlets and Py1 bedding-plane dissemination in siltstone; (

**B**,

**C**) diagenetic Py1 and metamorphic Py2; (

**D**) metamorphic Py2.

**Figure 6.**(

**A**,

**B**) Photos and (

**C,D**) photomicrographs of Py3 and Apy1 of Khangalas deposit in reflected light and (

**E**–

**H**) backscattered electrons: (

**A**) disseminations of metasomatic Py3 in sandstone; (

**B**) vein-disseminated quartz-Py3-Apy1 mineralization; (

**C**) Py3 veinlets and bedded-plane Py1 dissemination in siltstone; (

**D**) euhedral Apy1; (

**E**) Apy1 aggregate; (

**F**) intergrowths of Py1, Py3, and Apy1 with galena inclusions (Gn); (

**G**) inclusions of native gold (Au) and galena (Gn) in Py3 and Apy1. (

**H**) inclusions of sulfides of gold–polysulfide association (Gn, galena; Ccp, chalcopyrite; Sp, sphalerite) in Py3. Insets: (

**A**, inset a) cubic Py3; (

**A**, inset b) pyritohedra Py3; (

**D**, inset) short prismatic Apy1; (

**E**, inset) pseudo-pyramidal Apy1.

**Figure 7.**Three-dimensional visualization of Py3 and Apy1 of Khangalas deposit. (

**A**) Apy1 grains with inclusions of dense minerals (galena, gold); (

**B**) Apy1 without inclusions of x-ray contrasting phases; (

**C**,

**D**) Py3 aggregate with included dense minerals (galena, gold).

**Figure 8.**(

**A**–

**C**) Photographs and (

**D**) photomicrograph of Py4 and Apy2 of Khangalas deposit (in backscattered electrons): (

**A**) nest-like clusters and individual idiomorphic Apy2 crystals in quartz; (

**B**) idiomorphic Py4 grains in quartz; (

**C**) gold–polysulfide association with Py4, Apy2 in banded quartz; (

**D**) Py4-Apy2 intergrowths with scattered galena (Gn) in quartz.

**Figure 9.**Trace element contents by EPMA: (

**A**) Py1; (

**B**) Py2; (

**C**) Py3; (

**D**) Py4; (

**E**) Apy1; (

**F**) Apy2. Box boundaries are first and third quartiles, and line in middle of box is median. Lower border of line shows minimum value, upper shows maximum value, cross shows average value.

**Figure 11.**Variations in total content of Co, Ni, Sb, Cu, and Pb (wt.%) in sulfides of different generations, Khangalas deposit. Box boundaries are first and third quartiles, and line in middle of box is median. Lower border of line shows minimum value, upper shows maximum value, cross shows average value.

**Figure 12.**Binary correlation diagrams for Ру3: (

**A**) Fe vs. Au; (

**B**) Fe vs. Au + Cu; (

**C**) Fe vs. Au + Cu + Co + Ni; (

**D**) Fe vs. Au + As; (

**E**) As vs. Au; (

**F**) Ag vs. Au, field of orogenic gold deposits (OGDs) and sedimentary Py after Large and Maslennikov [68]; (

**G**) As vs. Te; (

**H**) S vs. Te + As.

**Figure 14.**Correlation diagrams for Apy1: (

**A**) Au vs. Ag; (

**B**) Au vs. Pb; (

**C**) Au vs. Cu; (

**D**) Au vs. Ni; (

**E**) Au vs. Co; (

**F**) Au vs. Bi; (

**G**) Au vs. Sb; (

**H**) Au vs. Te; (

**I**) Ag vs. Pb. Distribution of some elements (

**K**) inside Apy1 grain (sample K-14-17) (

**J**).

**Figure 16.**(

**A**) S isotope composition of sulfides of Khangalas deposit [106,107,108]. Range of values of sulfur sources after Ohmoto [109] and Kryazhev [94]. (

**B**) Variation in δ

^{34}S values of sulfides in global sediment-hosted orogenic gold deposits after Goldfarb et al. [96]. Heavy line and blue error envelope indicate seawater sulfate evolution curve from Claypool et al. [110].

**Table 1.**Chemical composition of pyrites and arsenopyrites determined by EPMA (all values in wt.%.; nd, not detected).

No | Sample | Fe | S | As | Co | Ni | Cu | Sb | Pb |
---|---|---|---|---|---|---|---|---|---|

Diagenetic Py1 | |||||||||

1 | K-40-14; n = 11 | $\frac{47.48-45.99}{46.79}$ * | $\frac{55.82-51.78}{54.37}$ | $\frac{0.31-0.03}{0.15}$ | $\frac{0.13-0.05}{0.09}$ | $\frac{0.17-0.02}{0.06}$ | $\frac{0.06-0.01}{0.03}$ | $\frac{0.05-0.01}{0.03}$ | nd |

2 | K-55-14; n = 10 | $\frac{46.63-46.93}{46.45}$ | $\frac{53.89-52.77}{53.27}$ | $\frac{0.31-0.06}{0.22}$ | $\frac{0.18-0.06}{0.08}$ | $\frac{0.19-0.01}{0.07}$ | $\frac{0.06-0.01}{0.03}$ | $\frac{0.05-0.07}{0.03}$ | nd |

3 | K-61-14; n = 5 | $\frac{46.99-45.78}{46.66}$ | $\frac{54.44-52.93}{53.84}$ | $\frac{0.30-0.08}{0.18}$ | $\frac{0.11-0.05}{0.07}$ | $\frac{0.05-0.01}{0.02}$ | $\frac{0.02-0.01}{0.02}$ | $\frac{0.06-0.03}{0.04}$ | nd |

4 | K-23-14; n = 5 | $\frac{45.69-44.54}{45.04}$ | $\frac{52.41-51.17}{52.00}$ | $\frac{0.23-0.01}{0.07}$ | $\frac{0.07-0.05}{0.06}$ | $\frac{0.33-0.13}{0.03}$ | $\frac{0.03-0.01}{0.02}$ | $\frac{0.06-0.03}{0.05}$ | $\frac{0.10-0.05}{0.08}$ |

5 | Kpr2-4-14; n = 4 | $\frac{46.61-46.30}{46.44}$ | $\frac{51.76-50.96}{51.45}$ | $\frac{0.12-0.01}{0.06}$ | $\frac{0.05-0.03}{0.04}$ | 0.01 | nd | $\frac{0.04-0.02}{0.03}$ | $\frac{0.05-0.02}{0.04}$ |

6 | K-4-14; n = 6 | $\frac{46.51-45.73}{46.17}$ | $\frac{54.62-52.13}{53.18}$ | $\frac{0.23-0.09}{0.16}$ | $\frac{0.19-0.07}{0.10}$ | $\frac{0.03-0.01}{0.02}$ | 0.03 | $\frac{0.07-0.01}{0.03}$ | nd |

7 | K-7-17; n = 19 | $\frac{47.40-45.06}{46.04}$ | $\frac{53.89-51.41}{52.74}$ | $\frac{0.28-0.02}{0.17}$ | $\frac{0.20-0.02}{0.11}$ | $\frac{0.14-0.01}{0.07}$ | $\frac{0.04-0.01}{0.01}$ | $\frac{0.11-0.01}{0.05}$ | nd |

8 | KG-32-19, n = 1 | 46.80 | 53.66 | 0.18 | nd | 0.02 | nd | 0.06 | nd |

9 | KG-7-19, n = 1 | 46.50 | 52.31 | 0.01 | nd | 0.01 | nd | 0.05 | nd |

Metamorphic Py2 | |||||||||

10 | K-40-14; n = 4 | $\frac{46.97-45.91}{46.65}$ | $\frac{54.89-50.60}{53.73}$ | $\frac{0.15-0.09}{0.13}$ | $\frac{0.15-0.08}{0.10}$ | $\frac{0.06-0.03}{0.05}$ | $\frac{0.04-0.02}{0.03}$ | $\frac{0.03-0.01}{0.02}$ | nd |

11 | K-55-14; n = 3 | $\frac{46.74-45.53}{46.60}$ | $\frac{52.97-52.67}{52.67}$ | $\frac{0.27-0.20}{0.24}$ | $\frac{0.09-0.07}{0.09}$ | $\frac{0.32-0.01}{0.13}$ | $\frac{0.03-0.01}{0.02}$ | $\frac{0.05-0.03}{0.04}$ | nd |

12 | K-4-14; n = 4 | $\frac{46.70-46.13}{46.50}$ | $\frac{52.88-51.71}{52.14}$ | $\frac{0.25-0.03}{0.16}$ | $\frac{0.07-0.05}{0.06}$ | $\frac{0.02-0.01}{0.01}$ | $\frac{0.03-0.01}{0.02}$ | $\frac{0.03-0.02}{0.03}$ | nd |

13 | K-23-14; n = 7 | $\frac{45.93-45.31}{45.67}$ | $\frac{53.14-51.35}{51.88}$ | $\frac{0.23-0.02}{0.08}$ | $\frac{0.10-0.06}{0.08}$ | $\frac{0.23-0.04}{0.15}$ | $\frac{0.12-0.01}{0.04}$ | $\frac{0.06-0.01}{0.03}$ | $\frac{0.13-0.03}{0.08}$ |

14 | KG-29-19; n = 4 | $\frac{46.98-46.48}{46.74}$ | $\frac{53.95-52.66}{53.32}$ | $\frac{0.14-0.01}{0.06}$ | $\frac{0.05-0.03}{0.04}$ | $0.01$ | $\frac{0.06-0.01}{0.03}$ | $\frac{0.03-0.01}{0.02}$ | $\frac{0.11-0.02}{0.07}$ |

Hydrothermal-metasomatic Py3 | |||||||||

15 | K-32-14; n = 16 | $\frac{46.17-45.14}{45.50}$ | $\frac{51.95-50.37}{50.94}$ | $\frac{2.14-1.01}{1.57}$ | $\frac{0.08-0.04}{0.05}$ | $\frac{0.07-0.01}{0.02}$ | $\frac{0.02-0.01}{0.01}$ | $\frac{0.05-0.01}{0.02}$ | nd |

16 | K-51-14; n = 27 | $\frac{46.91-44.91}{46.00}$ | $\frac{53.59-50.25}{51.84}$ | $\frac{2.22-0.56}{1.31}$ | $\frac{0.17-0.05}{0.09}$ | $\frac{0.25-0.01}{0.04}$ | $\frac{0.05-0.01}{0.03}$ | $\frac{0.04-0.01}{0.02}$ | nd |

17 | K-52-14; n = 24 | $\frac{47.01-45.98}{46.59}$ | $\frac{55.10-50.93}{53.71}$ | $\frac{2.49-0.97}{1.58}$ | $\frac{0.11-0.03}{0.05}$ | $\frac{0.14-0.01}{0.03}$ | $\frac{0.03-0.01}{0.01}$ | $\frac{0.04-0.01}{0.02}$ | nd |

18 | K-55-14; n = 6 | $\frac{46.59-46.02}{46.36}$ | $\frac{53.32-51.30}{52.24}$ | $\frac{1.03-0.31}{0.67}$ | $\frac{0.21-0.07}{0.12}$ | $\frac{0.10-0.01}{0.06}$ | $\frac{0.04-0.01}{0.03}$ | $\frac{0.06-0.02}{0.04}$ | nd |

19 | K-61-14; n = 17 | $\frac{47.15-45.24}{46.45}$ | $\frac{55.48-50.89}{52.63}$ | $\frac{1.86-0.34}{0.98}$ | $\frac{0.08-0.05}{0.06}$ | $\frac{0.07-0.01}{0.02}$ | $\frac{0.12-0.01}{0.03}$ | $\frac{0.12-0.02}{0.05}$ | nd |

20 | K-9-17/1; n = 18 | $\frac{46.63-44.87}{45.98}$ | $\frac{54.16-51.04}{52.81}$ | $\frac{1.71-0.31}{0.95}$ | $\frac{0.12-0.06}{0.08}$ | $\frac{0.11-0.01}{0.03}$ | $\frac{0.06-0.01}{0.03}$ | $\frac{0.10-0.01}{0.03}$ | nd |

21 | K-4-17; n = 13 | $\frac{46.53-45.58}{46.15}$ | $\frac{52.60-50.76}{51.98}$ | $\frac{1.28-0.40}{0.77}$ | $\frac{0.13-0.04}{0.06}$ | $\frac{0.38-0.01}{0.16}$ | $\frac{0.03-0.01}{0.02}$ | $\frac{0.08-0.01}{0.02}$ | nd |

22 | K-14-17; n = 19 | $\frac{46.85-45.36}{46.22}$ | $\frac{54.28-52.82}{53.63}$ | $\frac{1.59-0.38}{0.81}$ | $\frac{0.50-0.05}{0.11}$ | $\frac{0.48-0.01}{0.16}$ | $\frac{0.03-0.01}{0.01}$ | $\frac{0.04-0.01}{0.02}$ | $0.01$ |

23 | K-35-17; n = 24 | $\frac{46.98-45.59}{46.43}$ | $\frac{53.39-50.31}{51.56}$ | $\frac{1.81-0.45}{1.03}$ | $\frac{0.13-0.04}{0.06}$ | $\frac{0.24-0.01}{0.06}$ | $\frac{0.06-0.01}{0.02}$ | $\frac{0.06-0.01}{0.03}$ | $\frac{0.13-0.01}{0.07}$ |

24 | KG-12-19; n = 25 | $\frac{47.39-45.33}{46.60}$ | $\frac{55.27-52.25}{53.93}$ | $\frac{1.45-0.32}{0.82}$ | $\frac{0.10-0.03}{0.05}$ | $\frac{0.09-0.01}{0.02}$ | $\frac{0.02-0.01}{0.01}$ | $\frac{0.08-0.01}{0.04}$ | $\frac{0.12-0.01}{0.06}$ |

25 | KG-13-19; n = 39 | $\frac{46.95-45.50}{46.35}$ | $\frac{54.02-51.59}{53.04}$ | $\frac{2.23-0.33}{0.93}$ | $\frac{0.54-0.04}{0.08}$ | $\frac{0.15-0.01}{0.03}$ | $\frac{0.05-0.01}{0.02}$ | $\frac{0.05-0.01}{0.02}$ | $\frac{0.06-0.01}{0.02}$ |

26 | KG-9-19; n = 5 | $\frac{46.95-45.97}{46.43}$ | $\frac{54.02-52.58}{53.47}$ | $\frac{1.27-0.42}{0.78}$ | $\frac{0.10-0.04}{0.06}$ | $\frac{0.15-0.01}{0.05}$ | $\frac{0.05-0.01}{0.02}$ | $\frac{0.06-0.01}{0.03}$ | $\frac{0.03-0.01}{0.01}$ |

27 | KG-18-19; n = 26 | $\frac{46.86-45.82}{46.48}$ | $\frac{53.61-50.76}{52.89}$ | $\frac{2.29-0.56}{1.27}$ | $\frac{0.13-0.04}{0.07}$ | $\frac{0.27-0.01}{0.04}$ | $\frac{0.04-0.01}{0.01}$ | $\frac{0.08-0.01}{0.02}$ | $\frac{0.05-0.01}{0.02}$ |

28 | KG-24-19; n = 21 | $\frac{46.32-46.76}{45.99}$ | $\frac{54.78-52.66}{53.97}$ | $\frac{2.40-0.36}{1.28}$ | $\frac{0.08-0.04}{0.06}$ | $\frac{0.04-0.01}{0.02}$ | $\frac{0.03-0.01}{0.01}$ | $\frac{0.04-0.01}{0.02}$ | $\frac{0.07-0.01}{0.03}$ |

29 | KG-29-19; n = 20 | $\frac{47.17-45.78}{46.51}$ | $\frac{53.62-58.88}{52.51}$ | $\frac{1.88-0.42}{1.08}$ | $\frac{0.62-0.03}{0.08}$ | $\frac{0.23-0.01}{0.04}$ | $\frac{0.06-0.01}{0.02}$ | $\frac{0.05-0.01}{0.02}$ | $\frac{0.13-0.01}{0.05}$ |

30 | KG-30-19/1; n = 21 | $\frac{47.18-45.86}{45.81}$ | $\frac{53.93-51.92}{53.00}$ | $\frac{1.05-0.32}{0.58}$ | $\frac{0.08-0.02}{0.05}$ | $\frac{0.33-0.01}{0.10}$ | $\frac{0.04-0.01}{0.02}$ | $\frac{0.04-0.01}{0.02}$ | $\frac{0.14-0.01}{0.05}$ |

31 | Kpr-4-14; n = 9 | $\frac{46.84-44.87}{46.52}$ | $\frac{51.87-48.88}{51.38}$ | $\frac{0.97-0.31}{0.75}$ | $\frac{0.08-0.02}{0.05}$ | $\frac{0.04-0.01}{0.02}$ | $\frac{0.02-0.01}{0.01}$ | $\frac{0.07-0.01}{0.03}$ | $0.03$ |

32 | KG-30-19/2; n = 9 | $\frac{46.29-45.86}{45.86}$ | $\frac{53.64-52.10}{53.06}$ | $\frac{0.81-0.32}{0.53}$ | $\frac{0.08-0.03}{0.05}$ | $\frac{0.33-0.01}{0.12}$ | $\frac{0.04-0.01}{0.01}$ | $\frac{0.04-0.01}{0.02}$ | nd |

33 | K-7-17; n = 10 | $\frac{46.99-45.44}{46.08}$ | $\frac{53.88-49.99}{52.44}$ | $\frac{1.96-0.98}{1.37}$ | $0.02$ | $\frac{0.04-0.01}{0.01}$ | $\frac{0.02-0.01}{0.01}$ | $0.01$ | nd |

34 | K-5-14/1; n = 27 | $\frac{50.61-44.99}{45.89}$ | $\frac{55.31-52.48}{52.48}$ | $\frac{1.52-0.45}{1.09}$ | $\frac{0.17-0.04}{0.09}$ | $\frac{0.15-0.01}{0.08}$ | $\frac{0.02-0.01}{0.01}$ | $0.03$ | nd |

Hydrothermal vein Py4 | |||||||||

35 | KG-1-19; n = 14 | $\frac{47.56-46.30}{46.88}$ | $\frac{54.41-52.86}{53.65}$ | $\frac{1.14-0.35}{0.85}$ | $\frac{0.08-0.05}{0.06}$ | $\frac{0.04-0.01}{0.02}$ | $\frac{0.05-0.01}{0.02}$ | $\frac{0.05-0.01}{0.03}$ | nd |

36 | K-45-14; n = 9 | $\frac{46.71-41.62}{45.42}$ | $\frac{52.63-43.86}{49.70}$ | $\frac{2.50-0.45}{1.21}$ | $\frac{0.06-0.03}{0.04}$ | $\frac{0.05-0.01}{0.02}$ | $\frac{0.02-0.01}{0.01}$ | $\frac{0.07-0.01}{0.03}$ | nd |

Hydrothermal-metasomatic Apy1 | |||||||||

37 | K-32-14; n = 10 | $\frac{33.60-32.12}{33.00}$ | $\frac{20.78-18.88}{19.98}$ | $\frac{44.83-40.40}{42.36}$ | $\frac{0.05-0.03}{0.04}$ | $\frac{0.10-0.01}{0.03}$ | $\frac{0.03-0.01}{0.01}$ | $\frac{0.10-0.02}{0.05}$ | nd |

38 | K-51-14; n = 4 | $\frac{33.85-33.16}{33.60}$ | $\frac{21.46-20.34}{20.72}$ | $\frac{48.45-46.61}{47.57}$ | $\frac{0.11-0.07}{0.09}$ | $\frac{0.05-0.01}{0.03}$ | $\frac{0.02-0.01}{0.01}$ | $\frac{0.03-0.01}{0.01}$ | nd |

39 | K-52-14; n = 5 | $\frac{35.24-34.36}{34.69}$ | $\frac{23.70-21.77}{22.37}$ | $\frac{44.21-41.93}{43.52}$ | $\frac{0.04-0.02}{0.03}$ | $\frac{0.05-0.01}{0.03}$ | $\frac{0.02-0.01}{0.01}$ | $\frac{0.13-0.05}{0.09}$ | nd |

40 | K-4-17; n = 5 | $\frac{33.96-33.16}{33.56}$ | $\frac{20.83-19.93}{21.30}$ | $\frac{44.51-43.22}{43.80}$ | $\frac{0.15-0.03}{0.08}$ | $\frac{0.69-0.04}{0.27}$ | $\frac{0.06-0.01}{0.03}$ | $\frac{0.09-0.03}{0.07}$ | nd |

41 | KG-9-19; n = 5 | $\frac{34.29-33.53}{34.02}$ | $\frac{21.90-20.64}{21.30}$ | $\frac{45.06-43.05}{43.81}$ | $\frac{0.07-0.04}{0.06}$ | $\frac{0.02-0.01}{0.02}$ | 0.01 | $\frac{0.05-0.03}{0.04}$ | nd |

42 | KG-30-19/1; n = 5 | $\frac{34.51-33.96}{34.10}$ | $\frac{22.25-20.55}{21.33}$ | $\frac{44.16-42.02}{43.21}$ | $\frac{0.08-0.04}{0.05}$ | $\frac{0.12-0.05}{0.08}$ | nd | $\frac{0.15-0.02}{0.08}$ | nd |

43 | K-7-17; n = 15 | $\frac{36.96-33.77}{34.58}$ | $\frac{35.80-20.96}{23.12}$ | $\frac{43.92-4.99}{42.23}$ | $\frac{0.10-0.03}{0.06}$ | $\frac{0.22-0.01}{0.03}$ | nd | $\frac{0.16-0.01}{0.06}$ | nd |

Hydrothermal vein Apy2 | |||||||||

44 | KG-11-19; n = 43 | $\frac{35.66-31.59}{33.02}$ | $\frac{22.62-19.03}{20.50}$ | $\frac{49.97-41.76}{47.52}$ | $\frac{0.07-0.02}{0.03}$ | $\frac{0.16-0.01}{0.04}$ | $0.002$ | $\frac{0.22-0.01}{0.06}$ | nd |

45 | K-21-14; n = 24 | $\frac{35.57-33.24}{34.58}$ | $\frac{23.09-19.18}{21.70}$ | $\frac{47.53-41.11}{43.46}$ | $\frac{0.07-0.03}{0.05}$ | $\frac{0.04-0.01}{0.01}$ | $\frac{0.02-0.01}{0.01}$ | $\frac{0.16-0.03}{0.08}$ | nd |

**Table 2.**Data of LA-ICP-MS trace element analysis of Py3 and Apy1 of Khangalas gold deposit (all values in ppm; bdl, below detection limit; nd, not detected).

Sample | Spot Position | As | Ti | V | Cr | Mn | Co | Ni | Cu | Zn | Ga | Ge | Se | Mo | Ag | Cd | In | Sn | Sb | Te | W | Tl | Pb | Bi | Au | Pd | Ba | Pt | Hg | Au/Ag |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

K-4-17 | Asp10-6 | - | 218 | 1.23 | 6.3 | 1.04 | 521 | 565 | 15.9 | 15 | 0.036 | 1.99 | 323 | 1.53 | 0.9 | nd | 0.048 | 0.09 | 890 | 5.9 | 2.44 | 0.045 | 9.7 | 0.71 | 3.31 | 0.025 | 2.25 | 0.051 | 1.26 | 3.68 |

K-4-17 | Asp11-11 | - | 2060 | 5.07 | 3.4 | 1.45 | 57.5 | 93 | 7 | 4.2 | 0.035 | 2.36 | 104 | 0.56 | 0.55 | 0.57 | 0.122 | 0.68 | 385 | 0.5 | 0.83 | 0.01 | 7.41 | 0.417 | 2 | 0.012 | 2.49 | 0.033 | 0.41 | 3.64 |

K-4-17 | Asp12-14 | - | 37.5 | 0.204 | 2.6 | 1.16 | 524 | 534 | 14 | 3.7 | 0.055 | 1.8 | 268 | 21.6 | 0.6 | 0.16 | 0.119 | 0.18 | 721 | 1.97 | 0.129 | 0.11 | 13.5 | 0.99 | 0.574 | 0.003 | 0.29 | 0.006 | 0.3 | 0.96 |

K-4-17 | Asp13-15 | - | 0.8 | 0.077 | 3.3 | 1.09 | 3.24 | 6.3 | 4.6 | 5.7 | 0.019 | 1.86 | 156 | 7.16 | 0.186 | 0.07 | 0.076 | 0.22 | 416 | 0.35 | 0.016 | 0.026 | 1.95 | 0.466 | 0.255 | bdl | 0.28 | bdl | 0.42 | 1.37 |

K-4-17 | Asp14-15 | - | 8 | 0.132 | 2.3 | 0.3 | 7.2 | 50 | 7.9 | 3.3 | 0.085 | 1.95 | 66.9 | 7.72 | 0.47 | nd | 0.119 | bdl | 883 | 6.2 | 0.22 | 0.03 | 38.9 | 0.402 | 0.352 | 0.002 | 0.33 | 0.028 | 0.82 | 0.75 |

K-4-17 | Asp15-25 | - | 0.97 | 0.194 | 2.9 | 1.71 | 4.22 | 13.6 | 19 | 10 | 0.013 | 2.01 | 187 | 1.38 | 0.41 | 0.043 | 0.133 | 0.13 | 778 | bdl | bdl | 0.012 | 5.49 | 0.89 | 6.13 | 0.001 | 0.08 | 0.057 | 0.98 | 14.95 |

K-4-17 | Asp16-26 | - | 1.06 | 0.069 | 0.59 | 1.35 | 1070 | 1680 | 7.8 | 3.6 | 0.021 | 2.17 | 329 | 9.9 | 0.55 | 0.036 | 0.114 | 0.07 | 1414 | 8 | 0.19 | 0.043 | 7.83 | 1.42 | 0.7 | 0.017 | 0.34 | 0.01 | 1.95 | 1.27 |

K-4-17 | Asp17-33 | - | 21.7 | 0.29 | 2.7 | 1.29 | 35.7 | 76 | 9.8 | 2.55 | 0.059 | 2.01 | 107 | 20 | 0.5 | nd | 0.097 | bdl | 926 | 0.01 | 0.082 | 0.019 | 7.12 | 0.77 | 0.88 | bdl | 0.11 | 0.018 | 0.63 | 1.76 |

K-4-17 | LineA1-1 | - | 295 | 0.62 | 1.15 | nd | 65 | 122.1 | 8 | 2 | 0.014 | 3.82 | 126.2 | 9.22 | 0.57 | nd | 0.062 | 0.126 | 550 | 0.74 | 1.68 | 0.0239 | 9.18 | 0.641 | 0.488 | bdl | 3.1 | bdl | 0.51 | 0.86 |

K-4-17 | LineA1-2 | - | 242 | 0.42 | 0.71 | nd | 3.7 | 8.9 | 3.44 | 0.69 | bdl | 4.19 | 98 | 3.05 | 0.35 | 0.1 | 0.06 | 0.3 | 378 | bdl | 1.17 | 0.0038 | 5.43 | 0.56 | 0.44 | bdl | 2.2 | bdl | 1.03 | 1.26 |

K-4-17 | LineA1-3 | - | 32 | 0.111 | 0.27 | nd | 728 | 1182 | 4.57 | 1.63 | 0.0079 | 3.88 | 145.7 | 6.03 | 0.388 | nd | 0.059 | 0.1 | 429 | 0.7 | 0.27 | 0.0049 | 5.79 | 0.636 | 0.715 | bdl | 0.29 | 0.004 | 0.64 | 1.84 |

K-4-17 | LineA2 | - | 3.1 | 0.089 | 89 | nd | 56.5 | 184 | 6.5 | 4.3 | 0.058 | 4.06 | 48.9 | 0.156 | 0.341 | nd | 0.035 | 0.12 | 193.8 | 2.34 | 0.035 | 0.044 | 36.3 | 0.113 | 2.7 | bdl | 4.2 | 0.012 | 0.43 | 7.92 |

K-4-17 | LineA2 | - | 2.93 | 0.025 | 5.6 | nd | 10.32 | 26.1 | 2.46 | 2.47 | 0.0086 | 3.8 | 93.1 | 2.34 | 0.698 | nd | 0.062 | 0.091 | 208.8 | 0.24 | 0.026 | 0.0176 | 76 | 0.226 | 3.16 | bdl | 2.61 | 0.02 | 0.95 | 4.53 |

K-4-17 | LineA2 | - | 399 | 0.945 | 1.89 | nd | 401 | 874 | 2.27 | 2.3 | 0.051 | 3.89 | 118.5 | 1.5 | 0.54 | nd | 0.0534 | 0.262 | 328.3 | 0.28 | 0.93 | 0.0297 | 11.4 | 0.454 | 0.715 | bdl | 2.82 | 0.033 | 0.72 | 1.32 |

K-4-17 | LineA2 | - | 72 | 0.201 | 2.2 | nd | 109.7 | 250.8 | 2.05 | 1.69 | 0.022 | 4.09 | 71.2 | 8.68 | 0.448 | nd | 0.052 | 0.184 | 495 | bdl | 0.13 | 0.0178 | 6.16 | 0.712 | 0.833 | 0.016 | 0.54 | 0.008 | 0.46 | 1.86 |

K-4-17 | LineA2 | - | 99 | 0.334 | 1.98 | nd | 140 | 276 | 2.07 | 2.28 | 0.0314 | 3.76 | 118.5 | 11.85 | 0.376 | 0.0031 | 0.0544 | 0.182 | 512.6 | 0.255 | 0.451 | 0.0087 | 7.46 | 0.659 | 0.319 | bdl | 1.08 | 0.011 | 0.57 | 0.85 |

K-4-17 | LineA2 | - | 278 | 0.61 | 3.1 | nd | 14.84 | 37.5 | 6.3 | 2.29 | 0.0114 | 3.67 | 130.3 | 11.07 | 0.732 | nd | 0.051 | 0.218 | 550.6 | 0.35 | 0.76 | 0.0067 | 60.2 | 0.759 | 0.562 | 0.024 | 1.16 | 0.010 | 0.61 | 0.77 |

K-4-17 | LineA2 | - | 7790 | 15 | 14.8 | nd | 32.6 | 50 | 7.91 | 2.08 | 0.16 | 3.92 | 112.9 | 11.18 | 1.49 | nd | 0.037 | 0.8 | 534.3 | 0.21 | 22.6 | 0.0071 | 27.4 | 0.693 | 2.43 | 0.011 | 30.5 | 0.017 | 0.25 | 1.63 |

Minimum | 0.8 | 0.0 | 0.3 | 0.3 | 3.2 | 6.3 | 2.1 | 0.7 | 0.0079 | 1.8 | 48.9 | 0.2 | 0.2 | 0.0 | 0.04 | 0.07 | 193.8 | 0.01 | 0.02 | 0.004 | 2.0 | 0.1 | 0.3 | 0.001 | 0.08 | 0.004 | 0.25 | 0.75 | ||

Maximum | 7790.0 | 15.0 | 89.0 | 1.7 | 1070.0 | 1680.0 | 19.0 | 15.0 | 0.16 | 4.2 | 329.0 | 21.6 | 1.5 | 0.6 | 0.13 | 0.80 | 1414.0 | 8.00 | 22.60 | 0.110 | 76.0 | 1.4 | 6.1 | 0.025 | 30.5 | 0.057 | 1.95 | 14.95 | ||

Average | 642.3 | 1.4 | 8.0 | 1.2 | 210.3 | 335.0 | 7.3 | 3.9 | 0.040 | 3.1 | 144.7 | 7.5 | 0.6 | 0.1 | 0.08 | 0.23 | 588.5 | 1.87 | 1.88 | 0.026 | 18.7 | 0.6 | 1.5 | 0.012 | 3.04 | 0.021 | 0.72 | 2.84 | ||

Std dev | 1846.3 | 3.6 | 20.5 | 0.4 | 309.8 | 471.4 | 4.8 | 3.5 | 0.038 | 1.0 | 82.0 | 6.3 | 0.3 | 0.2 | 0.0 | 0.2 | 302.5 | 2.5 | 5.2 | 0.025 | 21.0 | 0.3 | 1.6 | 0.009 | 6.97 | 0.017 | 0.41 | 3.52 | ||

CV | 287% | 252% | 254% | 35% | 147% | 141% | 66% | 89% | 94% | 32% | 57% | 84% | 51% | 140% | 43% | 89% | 51% | 133% | 279% | 98% | 112% | 46% | 105% | 74% | 229% | 79% | 57% | |||

K-4-17 | Py1-1 | 4890 | 2470 | 7.16 | 10.3 | 0.85 | 1.13 | 14.4 | 3.96 | 3.51 | 0.197 | 2.49 | 4.4 | 0.079 | 0.92 | nd | 0.005 | 0.23 | 10.19 | 0.056 | 9.71 | 0.0076 | 66 | 0.243 | 0.955 | 0.008 | 3.88 | 0.062 | bdl | 1.04 |

K-4-17 | Py2-3 | 7110 | 0.7 | 0.028 | 0.38 | 0.57 | 0.233 | 8.2 | 0.54 | 3.62 | 0.055 | 2.67 | 6.2 | 0.21 | 0.0076 | nd | 0.0021 | 0.11 | 0.25 | 0.21 | 0.067 | 0.018 | 0.479 | 0.048 | 0.502 | bdl | 0.008 | 0.0073 | 0.02 | 66.05 |

K-4-17 | Py3-4 | 4390 | 8.6 | 0.116 | 0.39 | 0.82 | 17.5 | 13.4 | 1.58 | 3.8 | 0.056 | 2.59 | 2.6 | 0.64 | 0.196 | nd | 0.021 | 0.059 | 2 | 0.13 | 0.055 | 0.0074 | 3.71 | 0.084 | 0.236 | 0.01 | 0.16 | 0.034 | 0.01 | 1.20 |

K-9-17 | Py4-7 | 4220 | 0.78 | 0.058 | 0.52 | 0.41 | 1.15 | 74.9 | 3 | 4.2 | 0.018 | 2.46 | 7.2 | 0.059 | 0.85 | 0.024 | 0.0033 | 0.033 | 407 | 0.083 | 0.019 | 0.065 | 860 | 0.93 | 0.507 | 0.0036 | 0.008 | 0.029 | 0.2 | 0.60 |

K-9-17 | Py5-8 | 17480 | 36.1 | 0.35 | 0.98 | 0.4 | 7.05 | 39 | 19 | 4.7 | 0.19 | 2.71 | 3.5 | 0.047 | 0.055 | 0.036 | 0.017 | 0.07 | 6.19 | bdl | 0.08 | 0.047 | 3.35 | 0.09 | 8.83 | 0.01 | 1.83 | 0.037 | 0.33 | 160.55 |

K-9-17 | Py6-10 | 17260 | 2390 | 8.42 | 7.9 | 1.53 | 21.3 | 56.9 | 18 | 5.3 | 0.191 | 2.66 | 4.5 | 0.71 | 0.8 | 0.065 | 0.0105 | 0.31 | 40.1 | 0.06 | 8.66 | 0.089 | 26.7 | 0.446 | 15.85 | 0.013 | 4.68 | 0.064 | 0.36 | 19.81 |

K-14-17 | Py7-11 | 10280 | 77 | 0.235 | 0.58 | 7.55 | 505 | 690 | 7.3 | 6.4 | 0.009 | 2.69 | 52.1 | 1.04 | 1.01 | 0.027 | 0.0012 | 0.07 | 8.42 | 0.31 | 0.112 | 0.03 | 23.3 | 0.457 | 2.5 | 0.0027 | 0.151 | 0.044 | 0.33 | 2.48 |

K-14-17 | Py8-13 | 6820 | 79 | 0.105 | 1.09 | 0.74 | 41.6 | 1298 | 1.4 | 4.65 | 0.036 | 2.7 | 40.3 | 0.29 | 0.062 | nd | bdl | 0.1 | 1.05 | 0.21 | 0.096 | 0.0028 | 2.75 | 0.043 | 0.143 | 0.0028 | 0.05 | 0.013 | bdl | 2.31 |

K-42-17 | Py9-18 | 8030 | 208 | 0.274 | 0.77 | 0.73 | 43.5 | 64.9 | 1.29 | 4.22 | 0.018 | 2.63 | 73.6 | bdl | 0.128 | nd | 0.0031 | 0.03 | 1 | bdl | 0.56 | bdl | 3.34 | 0.024 | 1.028 | 0.007 | 0.008 | 0.01 | bdl | 304.69 |

Minimum | 4220.0 | 0.7 | 0.028 | 0.38 | 0.40 | 0.23 | 8.2 | 0.5 | 3.5 | 0.0 | 2.5 | 2.6 | 0.05 | 0.01 | 0.024 | 0.001 | 0.03 | 0.3 | 0.1 | 0.0 | 0.003 | 0.5 | 0.02 | 0.1 | 0.003 | 0.01 | 0.01 | 0.01 | 0.6 | |

Maximum | 17480.0 | 2470.0 | 8.42 | 10.30 | 7.55 | 505.0 | 1298.0 | 19.0 | 6.4 | 0.2 | 2.7 | 73.6 | 1.04 | 1.01 | 0.065 | 0.021 | 0.31 | 407.0 | 0.3 | 9.7 | 0.089 | 860.0 | 0.93 | 39.0 | 0.013 | 4.68 | 0.06 | 0.36 | 304.7 | |

Average | 8942.2 | 585.6 | 1.86 | 2.55 | 1.51 | 70.9 | 251.1 | 6.2 | 4.5 | 0.1 | 2.6 | 21.6 | 0.38 | 0.45 | 0.038 | 0.008 | 0.11 | 52.9 | 0.2 | 2.2 | 0.033 | 110.0 | 0.26 | 7.6 | 0.007 | 1.20 | 0.03 | 0.21 | 62.1 | |

Std dev | 5147.9 | 1047.8 | 3.38 | 3.77 | 2.29 | 163.6 | 448.4 | 7.2 | 0.9 | 0.1 | 0.1 | 26.7 | 0.37 | 0.43 | 0.023 | 0.007 | 0.10 | 133.4 | 0.1 | 4.0 | 0.031 | 282.1 | 0.30 | 12.9 | 0.004 | 1.85 | 0.02 | 0.16 | 105.3 | |

CV | 58% | 179% | 182% | 148% | 151% | 231% | 179% | 116% | 20% | 96% | 3% | 124% | 96% | 96% | 61% | 95% | 85% | 252% | 70% | 186% | 94% | 257% | 115% | 170% | 60% | 155% | 63% | 79% |

**Table 3.**Results of atomic absorption analysis of proximal metasomatites, their sulfides, and sulfides in quartz veins.

Sample | Mineral/Rock | Content | Au/Ag | |
---|---|---|---|---|

Au, ppm | Ag, ppm | |||

K-4-17 | Ру3 | 7.39 | 8.73 | 0.8 |

K-9-17 | Ру3 | 21.4 | 5.64 | 3.8 |

K-9-17 | Ру3 | 22.37 | 7.8 | 2.9 |

K-14-17 | Ру3 | 3.54 | 1.31 | 2.7 |

K-14-17 | Ру3 | 0.76 | 1.15 | 0.7 |

KG-9-19 | Ру3 | 4.89 | 2.74 | 1.8 |

KG-32-19 | Ру3 | 10.06 | 5.44 | 1.8 |

KG-20-19 | Ру3 | 11.87 | 6.54 | 1.8 |

K-13-18 | Ру3 | 3.67 | 6.95 | 0.5 |

KG-8-19 | Ру3 | 39.32 | 17.38 | 2.3 |

KG-30-19 | Ру3 | 12.36 | 1.13 | 10.9 |

Average | 12.51 | 5.89 | ||

Std dev | 11.32 | 4.71 | ||

CV | 91% | 80% | ||

K-4-17 | Ару1 | 12.3 | 0.43 | 28.6 |

KG-26-19 | Ару1 | 16.44 | 11.83 | 1.4 |

KG-29-19 | Ару1 | 23.8 | 7.2 | 3.3 |

Average | 17.51 | 6.49 | ||

Std dev | 5.82 | 5.73 | ||

CV | 33% | 88% | ||

KG-23-19 | Ру4 | 27.07 | 4.46 | 6.1 |

K-5-17 | Ру4 | 9.42 | 3.47 | 2.7 |

KG-34-19 | Ру4 | 51.42 | 11.13 | 4.6 |

Average | 29.30 | 6.35 | ||

Std dev | 21.09 | 4.17 | ||

CV | 72% | 66% | ||

KG-35-19 | Ару2 | 20.49 | 2.06 | 9.9 |

K-4-17 | Sandstone with sulfides and quartz veinlets | 0.084 | 0.088 | 1.0 |

K-9-17 | Sandstone with sulfides and quartz veinlets | 0.740 | 0.084 | 8.8 |

K-14-17 | Sandstone with sulfides | 0.001 | 0.032 | 0.0 |

K-25-17 | Sandstone with sulfides | 0.240 | 0.042 | 5.7 |

K-27-17 | Sandstone with sulfides | 0.059 | 0.007 | 8.4 |

K-28-17 | Sandstone with sulfides | 0.064 | 0.097 | 0.7 |

K-40-17 | Sandstone with sulfides | 5.29 | 0.142 | 37.3 |

K-41-17 | Siltstone with pyrite | 0.006 | 0.041 | 0.1 |

Average | 0.81 | 0.07 | ||

Std dev | 1.83 | 0.04 | ||

CV | 225% | 66% |

№ | Sample | Generation | δ^{34}S_{VCDT} (‰) |
---|---|---|---|

1 | K-4-17 | Apy1 | −1.2 |

2 | KG-9-19 | Apy1 | −1.4 |

3 | K-9-17 | Py3 | −0.6 |

4 | KG-32-19 | Py3 | −1.3 |

5 | KG-35-19 | Apy2 | −2.0 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kudrin, M.V.; Fridovsky, V.Y.; Polufuntikova, L.I.; Kryuchkova, L.Y. Disseminated Gold–Sulfide Mineralization in Metasomatites of the Khangalas Deposit, Yana–Kolyma Metallogenic Belt (Northeast Russia): Analysis of the Texture, Geochemistry, and S Isotopic Composition of Pyrite and Arsenopyrite. *Minerals* **2021**, *11*, 403.
https://doi.org/10.3390/min11040403

**AMA Style**

Kudrin MV, Fridovsky VY, Polufuntikova LI, Kryuchkova LY. Disseminated Gold–Sulfide Mineralization in Metasomatites of the Khangalas Deposit, Yana–Kolyma Metallogenic Belt (Northeast Russia): Analysis of the Texture, Geochemistry, and S Isotopic Composition of Pyrite and Arsenopyrite. *Minerals*. 2021; 11(4):403.
https://doi.org/10.3390/min11040403

**Chicago/Turabian Style**

Kudrin, Maxim V., Valery Yu. Fridovsky, Lena I. Polufuntikova, and Lyudmila Yu. Kryuchkova. 2021. "Disseminated Gold–Sulfide Mineralization in Metasomatites of the Khangalas Deposit, Yana–Kolyma Metallogenic Belt (Northeast Russia): Analysis of the Texture, Geochemistry, and S Isotopic Composition of Pyrite and Arsenopyrite" *Minerals* 11, no. 4: 403.
https://doi.org/10.3390/min11040403