
minerals

Article

LA-ICP-MS Trace-Element Analysis of Pyrite from the
Huanxiangwa Gold Deposit, Xiong’ershan District,
China: Implications for Ore Genesis

Fuping Gao 1,* , Yangsong Du 1,*, Zhenshan Pang 2, Yilun Du 2, Fengpei Xin 3 and Jinsong Xie 3

1 School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
2 Development and Research Center of China Geological Survey, Beijing 100037, China;

pangzs835@163.com (Z.P.); dylbeijing@163.com (Y.D.)
3 No. 1 Institute of Geological and Mineral Resources Survey of Henan, Luoyang 471023, China;

cugbxfp@hotmail.com (F.X.); shanchengxiaozhu@163.com (J.X.)
* Correspondence: gfp2000@163.com (F.G.); duys5510@cugb.edu.cn (Y.D.)

Received: 24 January 2019; Accepted: 1 March 2019; Published: 6 March 2019
����������
�������

Abstract: The Huanxiangwa deposit is a major gold deposit in the Xiong’ershan district, which
is the third-largest gold-producing district in China. Pyrites from the Huanxiangwa deposit were
investigated using ore microscopy and laser ablation-inductively coupled plasma-mass spectrometry
(LA-ICP-MS). Pyrite is the dominant Au-bearing mineral in the Huanxiangwa deposit and can be
divided into two types: medium- to fine-grained subhedral-anhedral pyrite (Py1) disseminated in
altered rocks and coarse-grained subhedral-euhedral pyrite (Py2) hosted in auriferous quartz veins.
LA-ICP-MS time-resolved depth profiles show that invisible gold occurs primarily as solid solution
or as homogeneously distributed nanoparticles of native gold, electrum, or Au-Ag-Te minerals in Py1,
whereas it is present mainly as nano- to submicron-sized inclusions of complex Au-Ag-Cu-Pb-Zn
domains in Py2. The presented data indicate that the Huanxiangwa deposit resulted from two
episodes of hydrothermal mineralization associated with two distinct source reservoirs. The first
episode of mineralization was linked to the dehydration of deep-seated mafic-ultramafic metamorphic
rock during the Triassic collision of the North China Craton with the Yangtze Craton. The second
episode of mineralization was related to hydrothermal activity resulting from Early Cretaceous I-type
granitic magmatism.
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1. Introduction

The North China Craton (NCC) contains several large gold deposits and supplies almost 70% of
China’s gold production [1,2]. The Xiong’ershan gold field is situated in the southern margin of the
NCC (Figure 1a) and is the third-largest gold-producing district in China [3,4]. Most of the gold deposits
in the Xiong’ershan area are located to the north of the Machaoying Fault and are hosted in Neoarchean
metamorphic rocks and late Paleoproterozoic volcanic rocks (Figure 1b). These deposits have been
extensively studied during the last two decades [3,5–7], but their genesis remains controversial. Several
different interpretations have been proposed, including (i) the gold deposits are of greenstone type [8],
associated with the occurrence of Neoarchean high-grade metamorphic rocks that provided the source
material for the metallogenesis [2]; (ii) the deposits are orogenic gold deposits that formed during
a Mesozoic continental collision regime, with the gold-mineralizing fluids originating mainly from
metamorphic dehydration and mixing with meteoric water [3,5,9]; and (iii) the deposits have a late
Mesozoic magmatic-hydrothermal origin [6,7,10,11].
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Figure 1. (a) Simplified structural map of China showing the major tectonic subdivisions and the 
location of the Xiong’ershan gold district [12,13]. (b) Simplified geological map showing the 
distribution of gold deposits in the Xiong’ershan area [12]. 

Pyrite is the most important Au-bearing mineral in the Xiong’ershan district [3,5]. Previous 
investigations have shown that pyrite is stable under a wide range of physicochemical conditions 
and, in contrast to other sulfides, exhibits refractory behavior with respect to post-depositional 
metamorphic processes [14–16]. These features make pyrite a suitable mineral for reconstructing the 
processes of ore formation [15,17]. In addition, previous studies have shown that the incorporation 
of gold into pyrite is controlled mainly by As in the case of As-rich pyrite and by Te in the case of 
As-free pyrite [17–21]. The structure of pyrite becomes distorted when As or Te are incorporated, 
favoring the entry of relatively large Au+ ions into the structure [22,23]. Some of the pyrites in the 
Xiong’ershan district are known to have an As-free and low-Te signature [3]. The characteristics of 
the deposits in this ore district are therefore favorable for investigating the distribution of invisible 
gold in pyrite. 

The Huanxiangwa deposit is a large and representative gold deposit of the Xiong’ershan ore 
district. In this paper, we report the results of a laser ablation-inductively coupled plasma-mass 
spectrometry (LA-ICP-MS) analysis of pyrite in the Huanxiangwa deposit, based on which we infer 
the mineralization processes that led to the formation of the deposit and present a new model of ore 
genesis. 

2. Geological Setting  

The Xiong’ershan ore district is located in the southern margin of the NCC (Figure 1a) and is 
bounded by the Machaoying Fault to the south and the Luoning Fault to the northwest (Figure 1b). 
The Xiong’ershan ore district contains more than 20 gold deposits, with most being hosted in Taihua 
Group metamorphic rocks and Xiong’er Group volcanic rocks. The Taihua Group comprises a 
high-grade metamorphic sequence of amphibolite- to granulite-facies rocks [24,25]. This group 
consists mainly of plagioclase-amphibole gneiss, biotite-plagioclase gneiss, amphibolite, granulite, 
and quartz schists, all of which belong to a tonalite–trondhjemite–granodiorite (TTG) suite [26]. The 
whole-rock Sm-Nd and zircon U-Pb ages of the amphibolite- to granulite-facies rocks of the Taihua 

Figure 1. (a) Simplified structural map of China showing the major tectonic subdivisions and the
location of the Xiong’ershan gold district [12,13]. (b) Simplified geological map showing the distribution
of gold deposits in the Xiong’ershan area [12].

Pyrite is the most important Au-bearing mineral in the Xiong’ershan district [3,5]. Previous
investigations have shown that pyrite is stable under a wide range of physicochemical conditions and,
in contrast to other sulfides, exhibits refractory behavior with respect to post-depositional metamorphic
processes [14–16]. These features make pyrite a suitable mineral for reconstructing the processes of ore
formation [15,17]. In addition, previous studies have shown that the incorporation of gold into pyrite is
controlled mainly by As in the case of As-rich pyrite and by Te in the case of As-free pyrite [17–21]. The
structure of pyrite becomes distorted when As or Te are incorporated, favoring the entry of relatively
large Au+ ions into the structure [22,23]. Some of the pyrites in the Xiong’ershan district are known
to have an As-free and low-Te signature [3]. The characteristics of the deposits in this ore district are
therefore favorable for investigating the distribution of invisible gold in pyrite.

The Huanxiangwa deposit is a large and representative gold deposit of the Xiong’ershan ore district.
In this paper, we report the results of a laser ablation-inductively coupled plasma-mass spectrometry
(LA-ICP-MS) analysis of pyrite in the Huanxiangwa deposit, based on which we infer the mineralization
processes that led to the formation of the deposit and present a new model of ore genesis.

2. Geological Setting

The Xiong’ershan ore district is located in the southern margin of the NCC (Figure 1a) and is
bounded by the Machaoying Fault to the south and the Luoning Fault to the northwest (Figure 1b). The
Xiong’ershan ore district contains more than 20 gold deposits, with most being hosted in Taihua Group
metamorphic rocks and Xiong’er Group volcanic rocks. The Taihua Group comprises a high-grade
metamorphic sequence of amphibolite- to granulite-facies rocks [24,25]. This group consists mainly of
plagioclase-amphibole gneiss, biotite-plagioclase gneiss, amphibolite, granulite, and quartz schists, all
of which belong to a tonalite–trondhjemite–granodiorite (TTG) suite [26]. The whole-rock Sm-Nd and
zircon U-Pb ages of the amphibolite- to granulite-facies rocks of the Taihua Group are 2.84–2.26 Ga [26–28].
The Xiong’er Group comprises a succession of low-grade volcanic rocks (3.0–7.6 km thick) that
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together cover an area of >6000 km2 [29]. The volcanic rocks are divided into the Xushan, Jidanping,
and Majiahe formations [29]. These volcanic rocks consist mostly of andesite and basaltic andesite
together with subordinate dacite and rhyolite [29] and yield zircon U-Pb ages of 1.80–1.75 Ma [29,30].

Mesozoic igneous rocks are widespread in the Xiong’ershan area and occur as large batholiths
(e.g., Wuzhangshan, Huashan, and Heyu) or small porphyritic bodies (e.g., Lemengou, Qiyugou,
and Banzhusi) (Figure 1b). These plutons comprise mostly biotite granite, biotite amphibole granite,
monzogranite, and syenogranite, and they intrude the Archean to Paleoproterozoic rocks of the Taihua
and Xiong’er groups. High-precision zircon U-Pb dating of the intrusive rocks in the Xiong’ershan
district using LA-ICP-MS and sensitive high resolution ion micro probe (SHRIMP) methods yields
Late Jurassic–Early Cretaceous ages (mainly 163–113 Ma) [31–34].

The E–W trending Machaoying Fault and the NE–SW trending Luoning Fault are the major
structures in the Xiong’ershan district. The Machaoying Fault is >200 km long and 5 km wide, reaches
depths of 34–38 km, and dips 50◦–80◦ to the NNE [35]. This fault is considered to have been an important
control on the formation and distribution of gold deposits in the Xiong’ershan district. The Machaoying
Fault has been interpreted from geophysical data as a major fracture cutting the crust and extending
into the lithospheric mantle [36]. The Luoning Fault is located in the northwestern Xiong’ershan district
and juxtaposes late Mesozoic sedimentary sequences against Archean metamorphic rocks [6]. Several
NE–SW trending secondary or minor faults are developed in the area north of the Machaoying Fault
(Figure 1b).

3. Deposit Geology

The Huanxiangwa gold deposit is located in the central part of the Xiong’ershan ore district
(Figure 1b). The stratigraphic sequence exposed in the deposit comprises the Xushan and Jidanping
formations of the Xiong’er Group (Figure 2). The Xushan Formation consists predominantly of andesite
and basaltic andesite with minor mugearite and tuff. The Jidanping Formation is dominated by rhyolite
and dacite interlayered with andesite and basaltic andesite. The orebodies are typically found in
alteration zones developed along the NW–SE trending Huanxiangwa F985 Fault. This fault is ~3000 m
long and 10–30 m wide and dips ~29◦ to the NE. The only exposed Mesozoic intrusion near the mining
area is the Wuzhangshan monzogranite (Figure 2), which intrudes Xiong’er Group volcanic rocks in
the Huanxiangwa gold deposit. The rocks of this intrusion are generally reddish to pinkish porphyritic
monzogranites consisting of 3%–6% phenocrysts (mainly plagioclase, with lesser K-feldspar) in a
medium-grained granular matrix of K-feldspar, plagioclase, quartz, amphibole, and minor biotite. The
main accessory minerals are zircon, titanite, magnetite, and apatite. The Wuzhangshan monzogranites
show relatively high Sr contents, high Sr/Y and (La/Yb)N ratios, and low Y and Yb contents, indicating
an adakitic affinity [37]. Detailed geochemical and Sr-Nd-Pb isotopic data show that the Wuzhangshan
monzogranites originated from the partial melting of Neoarchean-Paleoproterozoic Taihua Group
metamorphic basement rocks [37]. Zircon U-Pb ages for the Wuzhangshan monzogranites range
between 153.6 ± 1.3 and 163.3 ± 2.1 Ma [4,31,33].

The Huanxiangwa gold deposit is located ~50 km northwest of Songxian County, Henan Province,
and was discovered in the early 1980s. The deposit has a gold resource of ~30 t with an ore grade of
~4.7 g/t. Gold mineralization is hosted within the Xushan andesite of the Xiong’er Group. The deposit
contains 10 orebodies, with the largest, the No. I orebody, showing mineralization features that are
representative of the deposit. The No. I orebody is structurally controlled by the F985 Fault (Figure 2a,b)
and contains >80% of the known reserves of the Huanxiangwa deposit [38]. This orebody strikes
90◦–110◦, dips 20◦–40◦ to the NE, is ~1300 m long and 0.6–22.2 m thick, and is continuous between the
1230 and 620 m ore-mining elevations.
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The alteration zone ranges from 20 to 100 m in width and contains variable quantities of metallic 
minerals including disseminated pyrite. The occurrence of gold is closely associated with the 
distribution of sericitization and pyritization (Figure 2b). The boundaries between the wall-rocks 
and the orebodies are transitional rather than sharp and can be defined only by the ore cut-off grade. 
The textures of type 1 ore are primarily relicts of metasomatism and are anhedral granular (Figure 
3a,b). The ore minerals are disseminated and are dominated by pyrite together with minor 
arsenopyrite and galena (Figure 3a,b), whereas the gangue minerals include feldspar, quartz, calcite, 
sericite, and chlorite. Type 2 ore occurs as veins and cross-cuts the type 1 ore (Figure 3c), with the 
auriferous quartz veins generally having a thickness of 0.1–2.0 m. The ore textures are mainly 
euhedral granular (Figure 3d–f). The minerals of type 2 ore include pyrite, chalcopyrite, sphalerite, 
and galena, and the gangue minerals are quartz, calcite, and fluorite (Figure 3d–f). In both types of 
ore, visible gold occurs predominantly as native gold and electrum and commonly forms grains 
within pyrite as well as along boundaries within or between mineral microfractures (Figure 3g,h). 
Electron microprobe analyses show that native gold consists of 92.1 wt %–92.2 wt % Au and 7.1 wt 
%–7.3 wt % Ag, corresponding to a gold fineness of 926–928, whereas the electrum has ~81.6 wt % 
Au and ~17.1 wt % Ag, with a gold fineness of ~827 [39].  

Figure 2. Simplified geological maps of (a) the Huanxiangwa district and (b) the No. 1 orebody of the
Huanxiangwa deposit [38].

4. Pyrite Types and Textures

Two mineralization styles are found in the Huanxiangwa deposit: disseminated in altered rocks
(type 1) and auriferous quartz veins (type 2). The type 1 ore is economically the most important
mineralization type of the deposit. Hydrothermal alteration associated with type 1 ore is well developed
and includes silicification, sericitization, chloritization, carbonatization, and pyritization. The alteration
zone ranges from 20 to 100 m in width and contains variable quantities of metallic minerals including
disseminated pyrite. The occurrence of gold is closely associated with the distribution of sericitization
and pyritization (Figure 2b). The boundaries between the wall-rocks and the orebodies are transitional
rather than sharp and can be defined only by the ore cut-off grade. The textures of type 1 ore are primarily
relicts of metasomatism and are anhedral granular (Figure 3a,b). The ore minerals are disseminated
and are dominated by pyrite together with minor arsenopyrite and galena (Figure 3a,b), whereas the
gangue minerals include feldspar, quartz, calcite, sericite, and chlorite. Type 2 ore occurs as veins and
cross-cuts the type 1 ore (Figure 3c), with the auriferous quartz veins generally having a thickness
of 0.1–2.0 m. The ore textures are mainly euhedral granular (Figure 3d–f). The minerals of type 2
ore include pyrite, chalcopyrite, sphalerite, and galena, and the gangue minerals are quartz, calcite,
and fluorite (Figure 3d–f). In both types of ore, visible gold occurs predominantly as native gold and
electrum and commonly forms grains within pyrite as well as along boundaries within or between
mineral microfractures (Figure 3g,h). Electron microprobe analyses show that native gold consists
of 92.1 wt %–92.2 wt % Au and 7.1 wt %–7.3 wt % Ag, corresponding to a gold fineness of 926–928,
whereas the electrum has ~81.6 wt % Au and ~17.1 wt % Ag, with a gold fineness of ~827 [39].

Pyrite is the most common Au-bearing sulfide mineral in the Huanxiangwa deposit and can be
divided into two types based on its morphology and the host rock type: (1) Py1 is distributed in type 1
ores (disseminated in altered rocks) and comprises medium- to fine-grained subhedral-anhedral pyrite
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with sizes of 20–300 µm (Figure 3a,b) and (2) Py2 is found in type 2 ores (auriferous quartz veins)
and occurs as aggregates dispersed in quartz veins, consisting of coarse-grained, subhedral-euhedral
crystals with a cubic or pyritohedral form that typically exceed 500 µm in diameter (Figure 3d–f).
Chalcopyrite, sphalerite, and galena inclusions are observed locally in Py2 (Figure 3i).
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pyrite during analysis. 

Trace-element concentrations in pyrite were determined using LA-ICP-MS on polished 
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Australia, with a single-collector quadrupole Agilent 7700 ICP-MS instrument (Hachioji, Japan). The 
analyses were performed by ablating spots with diameters of 30–62 μm (depending on pyrite size) 
using a repetition rate of 5 Hz and an output energy of ~30 mJ. The analysis time for each sample 
was 80 s, which included 40 s of background measurement with the laser off and 40 s of analysis 

Figure 3. Hand-specimen photographs and reflected-light ore petrography of the Huanxiangwa gold
deposit. (a,b) Fine-grained anhedral pyrite (Py1) disseminated in altered rocks; (c) auriferous quartz
vein (type 2 ore) cross-cutting disseminated ore (type 1 ore); (d–f) coarse-grained, subhedral-euhedral
pyrite (Py2) in an auriferous quartz vein; (g,h) native gold and electrum in fractures or as inclusions
in pyrite; (i) chalcopyrite and galena inclusions in Py2. Type 1 ore—disseminated ore; Type 2 ore—
auriferous quartz vein; Py—pyrite; Py1—pyrite disseminated in altered rocks; Py2—pyrite hosted in
auriferous quartz veins; Ccp—chalcopyrite; Gn—galena; Sp—sphalerite; Au—visible gold; Qz—quartz.

5. Samples and Analytical Technique

Twenty samples were collected from the two types of ore and polished into thin-sections for
petrographic observations. Of these 20 samples, 8 were selected for pyrite trace-element analysis.
As gold and sulfide inclusions were present in the pyrite, all pyrites were first inspected using
reflected-light microscopy to avoid native gold grains or other discrete sulfide minerals within the
pyrite during analysis.

Trace-element concentrations in pyrite were determined using LA-ICP-MS on polished
thin-sections at the Research School of Earth Sciences, Australian National University, Canberra,
Australia, with a single-collector quadrupole Agilent 7700 ICP-MS instrument (Hachioji, Japan). The
analyses were performed by ablating spots with diameters of 30–62 µm (depending on pyrite size)
using a repetition rate of 5 Hz and an output energy of ~30 mJ. The analysis time for each sample
was 80 s, which included 40 s of background measurement with the laser off and 40 s of analysis
with the laser on. The acquisition time for all materials was set to 0.01–0.03 s, with a total sweep
time of ~0.5 s. Data reduction was performed using Iolite [40], with Fe being adopted as the internal
standard. The analyses of pyrite were calibrated using the standards STDGL3 and CANMET Po727.
Au and Pt were calibrated to CANMET Po727, and the remaining elements were calibrated to STDGL3.
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Trace-element concentrations in each sampled mineral, as well as the detection limits, were calculated
following the methods of Longerich et al. [41].

6. Results

A total of 39 LA-ICP-MS spot analyses were conducted on pyrites from selected samples, including
18 spots on Py1 and 21 spots on Py2. Element contents and their variations in the two types of pyrite
are presented in Table 1 and Figure 4.

Table 1. LA-ICP-MS results for pyrites from the Huanxiangwa gold deposit.

Sample No. Au Ag Cu Pb Zn Co Ni As Te

Py1

APY-1 2.65 34.9 48.8 37.5 1.46 459 559 730 39.2
APY-2 0.80 15.2 26.4 23.8 1.86 181 303 171 21.8
APY-3 1.38 19.6 33.4 18.4 1.22 347 493 289 29.0
APY-4 0.33 5.70 21.1 23.0 4.40 229 264 52.4 9.60
APY-5 3.78 83.0 41.4 32.5 7.90 380 321 342 62.4
APY-6 0.90 4.38 37.9 259 3.84 554 533 280 6.60
APY-7 0.73 3.09 38.0 77.2 1.36 415 394 164 4.18
APY-8 1.84 31.9 41.1 1880 2.48 429 459 422 14.2
APY-9 1.41 7.40 72.0 92.8 2.43 452 271 46 10.2

APY-10 0.80 3.72 60.0 730 8.50 710 441 448 6.56
APY-11 0.44 8.00 30.3 102 17.4 453 364 121 3.41
APY-12 2.07 12.5 62.0 750 3.54 453 438 38.5 14.5
APY-13 4.30 5.50 23.2 68.4 2.96 319 426 178 8.00
APY-14 1.08 3.04 45.0 94.7 2.02 337 370 270 6.64
APY-15 0.77 14.9 52.2 700 5.70 350 365 185 7.50
APY-16 2.60 47.7 74.0 12,600 19.6 806 627 1060 10.0
APY-17 1.09 4.43 132 102 2.80 830 163 18.4 6.59
APY-18 1.16 200 84.0 179 7.50 815 171 30.6 19.5
Average 1.56 28.1 51.3 987 5.39 473 386.8 269 15.5

RSD 71.8 170 52.7 297 98.2 41.4 32.59 99.8 96.3

Py2

QPY-1 - - - - 0.55 6.53 50.2 - -
QPY-2 - - 0.59 0.11 0.45 7.30 9.50 1.70 -
QPY-3 - - - - - 2.59 1.63 -
QPY-4 0.27 1.10 49.7 53.0 1.26 100 8.30 - 1.44
QPY-5 0.02 0.04 0.60 0.17 0.62 2530 23.0 55.5 -
QPY-6 - - 0.83 0.09 0.54 1830 28.4 19.4 -
QPY-7 4.00 360 2700 82,000 7.30 5.63 7.50 - 2.50
QPY-8 1.18 21.5 19.6 69.0 0.80 367 99.4 6.60
QPY-9 0.08 - 0.72 0.251 0.61 328 192 2.46 11.2

QPY-10 - - 0.67 0.22 0.42 388 159 - 2.51
QPY-11 - 0.02 0.42 0.26 - 245 40.4 - 14.8
QPY-12 - - - 0.07 0.43 2330 72.9 13.3 1.06
QPY-13 - - 0.30 0.17 0.38 295 236 3.15 8.60
QPY-14 - - 0.28 0.05 - 99.4 71.1 2.27 10.3
QPY-15 - 0.01 0.83 - - 3.13 0.54 - -
QPY-16 5.00 103 460 340 270 2.66 24.9 - 3.60
QPY-17 1.06 2.41 5.40 2.80 - 587 73.8 19.9 7.70
QPY-18 0.05 1.14 0.48 760 0.69 44.0 59 - 34.6
QPY-19 2.71 167 71.0 18,700 405 2.22 62.1 - 20.4
QPY-20 0.16 101 2090 500 217 1240 70 18.4 55.3
QPY-21 - - 0.45 0.06 - 47.8 2.32 1.80 42.2
Average 1.45 68.8 300 5690 60.4 498 64.5 12.2 15.4

RSD 125 163.5 259 343 212 158 99.9 128 110

Note: RSD—relative standard deviation; “-“ means below detection limit.
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The trace-element results reveal that the concentrations of most elements analyzed were relatively
constant in Py1 but show variations of up to several orders of magnitude in Py2. The relative standard
deviation (RSD) indicates the extent of variability in relation to the mean of the population. This
measure is often expressed as a percentage and is defined as the ratio of the standard deviation to the
mean. The RSD values of Au, Cu, Zn, Co, Ni, As, and Te were lower than 100% in Py1, whereas the
values (except for Ni) in Py2 exceeded 100%. Py1 contained significant amounts of Pb, Co, Ni, and As
with trace Zn, Ag, Cu, Au, and Te. Py2 contained significant amounts of Cu, Pb, and Co with trace
Zn, Ag, As, Au, and Te. The pyrite generally contained low Au concentrations, ranging from 0.33 to
4.30 ppm (mean 1.56 ppm) in Py1 and from <0.02 to 5.00 ppm (mean 1.45 ppm) in Py2. The pyrite
contained abundant amounts of Co and Ni, with Co contents of 181–830 ppm in Py1 and 2.22–2530
ppm in Py2 and Ni contents of 163–627 ppm in Py1 and 0.54–236 ppm in Py2.

Ni and As occurred at higher concentrations in Py1 than in Py2, whereas Cu, Pb, Zn, and Ag
occurred at higher concentrations in Py2 than in Py1 (Table 1). Au, Co, and Te were more uniformly
distributed among samples of the two pyrite types. The plots of Au versus other elements (Figure 4)
and the associated correlation coefficients (Tables 2 and 3) show positive linear correlations of Au with
As, Te, Ag, and Ni in Py1 and of Au with Cu, Pb, Zn, and Ag in Py2 as well as a negative correlation
between Au and Co in Py2.
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Table 2. Correlation coefficients between trace elements in Py1 from the Huanxiangwa gold deposits.

Element Au Ag Cu Pb Zn Co Ni As

Ag 0.44
Cu 0.19 0.21
Pb 0.18 0.15 0.45
Zn −0.08 0.29 0.18 0.52
Co 0.18 0.20 0.81 0.57 0.43
Ni 0.31 −0.07 −0.33 0.35 −0.02 −0.08
As 0.33 0.14 −0.29 0.27 0.08 −0.06 0.82
Te 0.55 0.73 −0.02 −0.29 −0.21 −0.18 0.03 0.21

Table 3. Correlation coefficients between trace elements in Py2 from the Huanxiangwa gold deposits.

Element Au Ag Cu Pb Zn Co Ni As

Ag 0.81
Cu 0.68 0.88
Pb 0.63 0.87 0.83
Zn 0.60 0.73 0.79 0.71
Co −0.71 −0.29 −0.28 −0.55 −0.44
Ni −0.22 0.41 −0.06 −0.11 −0.13 0.48
As −0.29 −0.77 0.41 0.33 0.29 0.83 0.14
Te −0.48 −0.06 −0.20 0.07 0.39 −0.05 0.01 −0.23

7. Discussion

7.1. Gold Distribution in Py1

Although visible gold is recognized in Py1 from the Huanxiangwa deposit, the amounts do not
tend to correspond to the gold assay data for bulk rock samples [38,39], meaning that some gold in
Py1 is likely to be present as invisible gold. LA-ICP-MS output data for each laser spot analysis can
be inspected to ascertain whether a particular trace element occurs in homogeneously distributed
invisible form or as nano- to submicron-sized inclusions in pyrite [19,42]. To examine the occurrence
of invisible gold in the Huanxiangwa deposit pyrite, we disregarded the visible gold grains, and
therefore the measured Au concentrations are rather low. Representative LA-ICP-MS time-resolved
depth profiles for Py1 are presented in Figure 5.

A total of 18 Py1 spots contained measurable quantities of gold. The dataset shows that gold
concentrations are relatively uniform among the samples (Table 1). Gold distribution patterns for
most samples are relatively smooth (Figure 5a–c) with no obvious spikes, meaning that gold occurs
primarily as solid solution in the pyrite lattice or as homogeneously distributed nanoparticles in
pyrite [19,20]. A small number of Py1 grains show spiky depth-concentration profiles for Au, Ag, and
Te (Figure 5d), suggesting the presence of nano- to submicron-sized inclusions of native gold, electrum,
and/or Au-Ag-Te minerals in Py1 grains.

Arsenic likely enters the structure of pyrite by the substitution of As- for S- to form Fe(As,S)2,
a typical mechanism under reducing conditions, or by a substitution involving the coupling of As
with Au (e.g., Au+ + As3+ ↔ 2Fe2+) [43–47]. The structure of pyrite becomes distorted when As is
incorporated, favoring the entry of relatively large Au+ ions into the structure [17,18,21]. Thus, the
adsorption of gold complexes onto As-rich pyrite surfaces is considered a key process in the deposition
of gold from fluid [17,45,47]. Furthermore, the incorporation of Te might also distort the pyrite lattice,
allowing Au to enter instead of, or together with, As [19,23,48]. The abundance of As in most Py1
samples (Table 1) suggests that Py1 is As bearing. Gold shows a positive correlation with As and Te
in Py1 (Figure 4a,b; Table 2), suggesting that the incorporation of Au into Py1 in the Huanxiangwa
deposit was largely controlled by the presence and behavior of As and Te.
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Figure 5. LA-ICP-MS time-resolved depth profiles for Py1 from selected samples showing the occurrences
of Au and other elements. The smooth time-resolved depth profiles for Au and Ag (a–c) reflect
solid-solution gold and electrum in Py1. The spiky time-resolved depth profiles for Au, Ag, and Te
(d) suggest that some Py1 grains contain small amounts of native Au, electrum, and/or Au-Ag-Te
minerals as nano- to submicron-sized inclusions.

7.2. Gold Distribution in Py2

The results show that both visible and invisible gold occurs in Py2 from the Huanxiangwa deposit.
Similar to Py1, visible gold in Py2 occurs as native gold and electrum in fractures or as inclusions.

The absolute values of As in Py2 are low, ranging from levels below the detection limit to
55.5 ppm. Measured Te concentrations in Py2 are also low, ranging from 1.06 to 55.3 ppm, with a
mean of 15.4 ppm. Furthermore, there is no discernable correlation of Au with As or Te (Figure 4a,b;
Table 3). These observations indicate that As and Te were not important scavengers of gold during the
development of the auriferous quartz-vein-type ores in the Huanxiangwa deposit. The occurrence of
invisible gold in Py2 is therefore of particular significance because the pyrite contains very low levels
of As and Te. These results contradict the conventional view that the presence of these elements assists
the incorporation of gold into pyrite [17–19,21,44].

Most of the LA-ICP-MS time-resolved depth profiles for Au in Py2 are wavy, displaying several
spikes (Figure 6a,b), indicating the occurrence of Au in Py2 as nano- to submicron-sized inclusions.
Notably, the absolute values of Cu, Pb, Zn, and Ag show that these elements are abundant in Py2
and vary markedly from levels below the detection limit to several hundreds or thousands of ppm
(Table 1). All of these elements show positive correlations with Au (Figure 4; Table 3). Moreover, the
spikes of Cu, Pb, Zn, and Ag observed in the time-resolved depth profiles (Figure 6c,d) are similar to
those of Au in most samples, suggesting that gold occurs in the form of complex Au-Cu-Pb-Zn-Ag
nano- to submicron-sized inclusions in Py2. Considering that Py2 is poor in As and Te and shows
strong associations of Au with Cu, Pb, Zn, and Ag, the occurrence of invisible gold in Py2 implies
that some or all of the elements (Cu, Pb, Zn, and Ag) might have assisted the incorporation of Au into
pyrite, although the particular mechanism involved is still unknown. This proposed process has also
been reported in gold deposits elsewhere [19,49].
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Figure 6. LA-ICP-MS time-resolved depth profiles for Au in Py2 display several spikes (a,b), indicating
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the profiles are similar to those of Au in most samples (c,d), suggesting that gold occurs as complex
Au-Cu-Pb-Zn-Ag nano- to submicron-sized inclusions in Py2.

7.3. Implication for Ore Genesis

Although the gold deposits in the Xiong’ershan district have been well studied, their genesis
remains debated. The main issue is the source of the ore-forming fluids. On the basis of the structural
setting and fluid geochemistry of the Xiong’ershan district, most investigators have classified the
deposits as orogenic gold deposits and have suggested that the gold-mineralizing fluids were
derived mainly from metamorphic dehydration reactions [3,5,9]. Considering the temporal and
spatial relationships between the gold deposits and the magmatic intrusions, some investigators
have proposed that gold mineralization in the Xiong’ershan district resulted from Early Cretaceous
magmatic-hydrothermal processes [6,7,10,11]. In contrast, other studies have suggested that the gold
deposits are greenstone type deposits [8], with basement metamorphic rocks being the source for the
gold [2]. However, there is a time gap of approximately 2 Gyr between the metamorphism and the
gold mineralization [50], and therefore we disregard this hypothesized metamorphism-related genesis.

The two types of pyrite in the Huanxiangwa gold deposit exhibit contrasting sizes, textures, and
crystal forms and also differ in terms of their host rocks. These two types of pyrite also differ with
respect to their trace-element concentrations and gold occurrences. These contrasting characteristics
indicate that the two types of pyrite precipitated from different hydrothermal fluid systems.

The Co and Ni contents of pyrite can reflect its origin and reveal the geological setting of its
formation [15,19,51]. The majority (apart from two samples) of the Co/Ni ratios of Py1 range from
0.60 to 1.67 (Table 1), with a mean of 1.04, similar to metamorphic pyrite [52,53]. Fluid inclusions from
type 1 ores at the Huanxiangwa deposit have high CO2 contents (7.45 mol %–15.6 mol %) and low
salinities (5 wt %–11 wt %) [39], which are typical of metamorphic-hydrothermal fluid systems [5,54,55].
Therefore, we infer that Py1 was precipitated from this type of fluid system. Conversely, the Co/Ni
ratios of Py2 in auriferous quartz veins range from 0.04 to 110, with a mean of 14.5 (Table 1), typical of
magmatic–hydrothermal pyrite and consistent with ratios measured in Early Cretaceous magmatic
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rocks [37]. Type 2 ores at Huanxiangwa contain halite-bearing, liquid-rich, and CO2-bearing fluid
inclusions [39], which is a common fluid inclusion assemblage in typical magmatic-hydrothermal
deposits. Sulfur isotopes of Py2 (mostly from −3.4‰ to +0.6‰) [39] and the presence of fluorite
further confirm a magmatic origin for Py2 in the Huanxiangwa deposit.

Nickel can be readily incorporated into the crystal lattice of pyrite but is not easily released during
the recrystallization of hydrothermal pyrite [56–58]. Therefore, the patterns of Ni distribution in pyrite
should yield information about the pyrite-precipitating fluid [48]. Ultramafic (and to a lesser extent
mafic) rocks exhibit strong enrichment in Ni, whereas felsic rocks typically have low Ni contents.
Therefore, pyrite from granite-related gold deposits should contain only small amounts of Ni, and
high Ni contents should indicate a high proportion of mafic-ultramafic rocks compared with felsic
rocks in the fluid source domain [48]. In the Huanxiangwa deposit, the Ni concentrations of Py1 reach
up to 627 ppm (mean 387 ppm). The high Ni contents of Py1 at Huanxiangwa might reflect local
leaching of the mafic basement rocks of the Xiong’ershan district. In contrast, the absolute values of Ni
in Py2 are relatively low (mean 64.5 ppm), suggesting that Py2 was precipitated from granite-related
hydrothermal fluids.

The disseminated ores (type 1 ores) are cut by auriferous quartz veins (type 2 ore) (Figure 3c) in
the Huanxiangwa deposit, indicating that type 1 ores formed earlier than type 2 ores. The available
geochronological data suggest that the Mesozoic gold mineralization in the Xiong’ershan district
occurred during two main periods: Triassic (242–202 Ma, mainly 222–202 Ma) [5,59,60] and Early
Cretaceous (135–110 Ma) [6,10,11,59]. The Triassic ages are chiefly from the minerals within the
disseminated ores (e.g., Shanggong and Dianfang deposits), whereas the Early Cretaceous ages are
mainly from minerals within alteration zones around quartz veins.

Based on our field and petrographic observations, our LA-ICP-MS analysis results, and previous
geochronological data, we conclude that the Huanxiangwa gold deposit was formed during two
episodes of hydrothermal mineralization events associated with two distinct source reservoirs. The first
episode took place during the Triassic, shortly after the collision of the NCC with the Yangtze Craton [12,48].
The ore-forming fluids originated from the metamorphic dehydration of basement ultramafic to mafic
rocks. This metamorphism-derived fluid reacted with the Fe2+-rich andesite in the Xiong’er Group,
which led to the precipitation of Py1 and gold in the altered andesite to form disseminated ores (type 1
ores). The second episode occurred during the Early Cretaceous, when lithospheric thinning triggered
the intrusion and emplacement of various granitic bodies and porphyry stocks in the Xiong’ershan
district [6,7,31–34]. Py2 was formed during the related ensuing magmatic-hydrothermal activity and
was precipitated as coarse euhedral grains dispersed in auriferous quartz veins, as indicated by low
Ni, As, and Te contents in Py2 and the presence of fluorite.

8. Conclusions

Pyrite is the dominant Au-bearing mineral in the Huanxiangwa gold deposit and can be classified
into two types: (1) medium- to fine-grained subhedral-anhedral pyrite (Py1) disseminated in altered
rocks and (2) coarse-grained, subhedral-euhedral pyrite (Py2) hosted in auriferous quartz veins.

Petrographic observations indicate that both visible and invisible gold are present in the pyrite.
Visible gold occurs as native gold and electrum and commonly forms anhedral grains within pyrite as
well as along boundaries within or between mineral microfractures. LA-ICP-MS depth profiles indicate
that invisible gold occurs primarily as solid solution or as homogeneously distributed nanoparticles of
native gold, electrum, or Au-Ag-Te minerals in Py1 but is present mainly as nano- to submicron-sized
inclusions of complex Au-Cu-Pb-Zn-Ag domains in Py2.

The data presented here, together with previous geochronological information, suggest that the
Huanxiangwa gold deposit was a result of two episodes of hydrothermal mineralization associated
with two distinct source reservoirs. The first episode of mineralization occurred during the Triassic
and resulted from the collision of the NCC with the Yangtze Craton. The ore-forming fluids were
derived from the metamorphic dehydration of ultramafic-mafic basement rocks. The second episode
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of mineralization took place during Early Cretaceous and was related to the development of felsic
magmatic-hydrothermal fluids.
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