Two-Step Solvent Extraction of Radioactive Elements and Rare Earths from Estonian Phosphorite Ore Using Nitrated Aliquat 336 and Bis(2-ethylhexyl) Phosphate
Abstract
:1. Introduction
2. Experimental
2.1. Raw Materials and Chemicals
2.2. Modification of Aliquat 336 with 2.5M KNO3
2.3. Feed Solution
2.4. Equipment
2.5. Experimental Conditions
2.6. Quantitative Analysis of REEs Extraction
3. Results and Discussion
3.1. First Extraction Step for U, Th, and Tl Removal from Concentrated Nitric Acid Media
3.1.1. Extraction with A336[NO3]
3.1.2. Extraction with D2EHPA
3.2. Extraction of REE from Partially Neutralized Nitric Acid Media
3.2.1. Extraction with A336[NO3]
3.2.2. Extraction with D2EHPA
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gao, W.; Wen, D.; Ho, J.C.; Qu, Y. Incorporation of rare earth elements with transition metal–based materials for electrocatalysis: A review for recent progress. Mater. Today Chem. 2019, 12, 266–281. [Google Scholar] [CrossRef]
- Riaño, S.; Binnemans, K. Extraction and separation of neodymium and dysprosium from used ndfeb magnets: An application of ionic liquids in solvent extraction towards the recycling of magnets. Green Chem. 2015, 17, 2931–2942. [Google Scholar] [CrossRef]
- Wang, K.; Adidharma, H.; Radosz, M.; Wan, P.; Xu, X.; Russell, C.K.; Tian, H.; Fan, M.; Yu, J. Recovery of rare earth elements with ionic liquids. Green Chem. 2017, 19, 4469–4493. [Google Scholar] [CrossRef]
- Luo, W.; Shen, F.; Bommier, C.; Zhu, H.; Ji, X.; Hu, L. Na-ion battery anodes: Materials and electrochemistry. Acc. Chem. Res. 2016, 49, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Xia, J.; Yin, D.; Luo, M.; Yan, C.; Du, Y. Rare earth incorporated electrode materials for advanced energy storage. Coord. Chem. Rev. 2019, 390, 32–49. [Google Scholar] [CrossRef]
- Irvine, J.T.S.; Neagu, D.; Verbraeken, M.C.; Chatzichristodoulou, C.; Graves, C.; Mogensen, M.B. Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers. Nat. Energy 2016, 1, 15014. [Google Scholar] [CrossRef] [Green Version]
- Kivi, I.; Aruväli, J.; Kirsimäe, K.; Möller, P.; Heinsaar, A.; Nurk, G.; Lust, E. Influence of humidified synthetic air feeding conditions on the stoichiometry of (La1-XSrx)YCoO3−δ and La0.6Sr0.4Co0.2Fe0.8O3−δ CATHODES under Applied potential measured by electrochemical in situ high-temperature XRD method. J. Solid State Electrochem. 2017, 21, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Vestli, M.; Lust, E.; Nurk, G. Characterization of Terbium and samarium co-doped ceria films prepared using ultrasonic spray pyrolysis. J. Electrochem. Soc. 2015, 162, F812–F820. [Google Scholar] [CrossRef]
- Mogensen, M.B.; Hauch, A.; Sun, X.; Chen, M.; Tao, Y.; Ebbesen, S.D.; Hansen, K.V.; Hendriksen, P.V. Relation between ni particle shape change and ni migration in Ni-YSZ electrodes—a hypothesis. Fuel Cells 2017, 17, 434–441. [Google Scholar] [CrossRef]
- Lillmaa, K.; Maide, M.; Kanarbik, R.; Nurk, G.; Lust, E. Electrochemical characteristics and gas composition generated by La 0.8 Sr 0.2 Cr 0.5 Mn 0.5 O 3–δ cathode at electrolysis and co-electrolysis modes. J. Electrochem. Soc. 2016, 163, F3190–F3196. [Google Scholar] [CrossRef]
- Valk, P.; Nerut, J.; Kanarbik, R.; Tallo, I.; Aruväli, J.; Lust, E. Synthesis and characterization of platinum-cerium oxide nanocatalysts for methanol oxidation. J. Electrochem. Soc. 2018, 165, F315–F323. [Google Scholar] [CrossRef]
- Valk, P.; Nerut, J.; Kanarbik, R.; Aruväli, J.; Paiste, P.; Tallo, I.; Lust, E. Synthesis and characterization of platinum-praseodymium oxide nanocatalysts for methanol electrooxidation. J. Electrochem. Soc. 2019, 166, F1062. [Google Scholar] [CrossRef]
- Binnemans, K.; Jones, P.T.; Blanpain, B.; Van Gerven, T.; Pontikes, Y. Towards zero-waste valorisation of rare-earth-containing industrial process residues: A critical review. J. Clean. Prod. 2015, 99, 17–38. [Google Scholar] [CrossRef] [Green Version]
- Castor, S.B. Rare earth deposits of north america. Resour. Geol. 2008, 58, 337–347. [Google Scholar] [CrossRef]
- Chen, M.; Graedel, T.E. The potential for mining trace elements from phosphate rock. J. Clean. Prod. 2015, 91, 337–346. [Google Scholar] [CrossRef]
- Chen, W.; Zhou, F.; Wang, H.; Zhou, S.; Yan, C. The Occurrence states of rare earth elements bearing phosphorite ores and rare earth enrichment through the selective reverse flotation. Minerals 2019, 9, 698. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.; Zhang, P.; Jin, Z.; DePaoli, D. Rare Earth and phosphorus leaching from a flotation tailings of florida phosphate rock. Minerals 2018, 8, 416. [Google Scholar] [CrossRef] [Green Version]
- Skorovarov, J.I.; Kosynkin, V.D.; Moiseev, S.D.; Rura, N.N. Recovery of rare earth elements from phosphorites in the USSR. J. Alloys Compd. 1992, 180, 71–76. [Google Scholar] [CrossRef]
- Wu, S.; Wang, L.; Zhao, L.; Zhang, P.; El-Shall, H.; Moudgil, B.; Huang, X.; Zhang, L. Recovery of rare earth elements from phosphate rock by hydrometallurgical processes—a critical review. Chem. Eng. J. 2018, 335, 774–800. [Google Scholar] [CrossRef]
- Wu, S.; Wang, L.; Zhang, P.; El-Shall, H.; Moudgil, B.; Huang, X.; Zhao, L.; Zhang, L.; Feng, Z. Simultaneous recovery of rare earths and uranium from wet process phosphoric acid using solvent extraction with D2EHPA. Hydrometallurgy 2018, 175, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Komasawa, I.; Hisada, K.; Miyamura, M. Extraction and separation of rare-earth elements by Tri-n-Octylmethylammonium nitrate. J. Chem. Eng. Jpn. 1990, 23, 308–315. [Google Scholar] [CrossRef] [Green Version]
- Habashi, F. The Recovery of the lanthanides from phosphate rock. J. Chem. Technol. Biotechnol. Chem. Technol. 2007, 35, 5–14. [Google Scholar] [CrossRef]
- Larsson, K.; Binnemans, K. Separation of rare earths by solvent extraction with an undiluted nitrate ionic liquid. J. Sustain. Metall. 2017, 3, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Rout, A.; Binnemans, K. Separation of rare earths from transition metals by liquid–liquid extraction from a molten salt hydrate to an ionic liquid phase. Dalton Trans 2014, 43, 3186–3195. [Google Scholar] [CrossRef] [Green Version]
- Yin, S.-H.; Li, S.-W.; Wu, W.-Y.; Bian, X.; Peng, J.-H.; Zhang, L.-B. Extraction and separation of Ce(III) and Pr(III) in the system containing two complexing agents with Di- (2-Ethylhexyl) phosphoric acid. RSC Adv 2014, 4, 59997–60001. [Google Scholar] [CrossRef]
- Kumari, A.; Panda, R.; Lee, J.Y.; Thriveni, T.; Jha, M.K.; Pathak, D.D. Extraction of rare earth metals (REMs) from chloride medium by organo-metallic complexation using D2EHPA. Sep. Purif. Technol. 2019, 227, 115680. [Google Scholar] [CrossRef]
- Aide, M.T.; Aide, C. Rare Earth Elements: Their importance in understanding soil genesis. ISRN Soil Sci. 2012, 2012, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Kovarikova, M.; Tomaskova, I.; Soudek, P. Rare earth elements in plants. Biol. Plant. 2019, 63, 20–32. [Google Scholar] [CrossRef]
- Jürjo, S.; Siinor, L.; Siimenson, C.; Paiste, P.; Lust, E. Extraction of Thallium, Thorium and Uranium from Estonian Phosphorite and Phosphogypsum Using Aliquat 336 2018. Available online: https://sisu.ut.ee/sites/default/files/webform/Silvester_Jurjo.pdf (accessed on 20 March 2021).
- Raudsep, R. Estonian georesources in the european context. Est. J. Earth Sci. 2008, 57, 80. [Google Scholar] [CrossRef]
- Carpenter, D.; Boutin, C.; Allison, J.E.; Parsons, J.L.; Ellis, D.M. Uptake and effects of six rare earth elements (rees) on selected native and crop species growing in contaminated soils. PLoS ONE 2015, 10, e0129936. [Google Scholar] [CrossRef] [Green Version]
- Wahid, P.A.; Kamalam, N.V.; Krishna Prabhu, R.; Sekhar, J.K.; Vijayalakshmi, S.; Mahalingam, T.R.; Kumar, C.E.A. Rare earth element fluxes in diverse soils and their absorption by coconut palm. J. Plant Nutr. 2003, 26, 1427–1438. [Google Scholar] [CrossRef]
- Černá, M.; Volaufová, E.; Rod, V. Extraction of light rare earth elements by amines at high inorganic nitrate concentration. Hydrometallurgy 1992, 28, 339–352. [Google Scholar] [CrossRef]
- Zhao, J.; Hu, Q.; Li, Y.; Liu, H. Efficient Separation of vanadium from chromium by a novel ionic liquid-based synergistic extraction strategy. Chem. Eng. J. 2015, 264, 487–496. [Google Scholar] [CrossRef]
- Kumari, A.; Sahu, K.K.; Sahu, S.K. Solvent Extraction and Separation of nd, pr and dy from leach liquor of waste NdFeB Magnet using the nitrate form of Mextral® 336At in the presence of aquo-complexing agent EDTA. Metals 2019, 9, 269. [Google Scholar] [CrossRef] [Green Version]
Salt | Concentration |
---|---|
La(NO3)3·6H2O | 0.94 mM |
Ce(NO3)3·6H2O | 0.98 mM |
Pr(NO3)3·6H2O | 0.69 mM |
Gd(NO3)2·6H2O | 0.60 mM |
Tb(NO3)3·6H2O | 0.69 mM |
Element | Concentration, ppm | ±ppm |
---|---|---|
La | 226.5 | 4.53 |
Ce | 464.5 | 9.29 |
Pr | 58.9 | 1.18 |
Nd | 257.42 | 5.15 |
Sm | 51.33 | 1.03 |
Eu | 12.28 | 0.25 |
Tb | 10.13 | 0.20 |
Dy | 66,43 | 1.33 |
Gd | 77.37 | 1.55 |
Ho | 13.43 | 0.27 |
Er | 31.32 | 0.63 |
Tm | 3.52 | 0.07 |
Yb | 17.24 | 0.34 |
Lu | 2.18 | 0.04 |
Hf | 0.54 | 0.01 |
Y | 464.37 | 9.29 |
U | 46.47 | 0.93 |
Th | 5.08 | 0.10 |
Tl | 2.33 | 0.05 |
Pb | 40.86 | 0.82 |
As | 26.4 | 0.53 |
Ti | 12.21 | 0.24 |
V | 24.4 | 0.49 |
Mo | 13.91 | 0.28 |
Element | Concentrated Nitric Acid (7.5 M) | Partly Neutralized Nitric Acid pH = 1.5 | ||
---|---|---|---|---|
E% | D | E% | D | |
La | 2.60 | 0.03 | 92.98 | 13.25 |
Ce | 3.27 | 0.03 | 94.51 | 17.21 |
Pr | 6.61 | 0.07 | 94.91 | 18.65 |
Nd | 3.52 | 0.04 | 95.27 | 20.14 |
Sm | 4.80 | 0.05 | 97.39 | 37.31 |
Eu | 5.27 | 0.06 | 98.01 | 49.25 |
Gd | 4.60 | 0.05 | 97.77 | 43.84 |
Tb | 8.02 | 0.09 | 98.81 | 83.03 |
Dy | 14.12 | 0.16 | 99.24 | 130.58 |
Ho | 19.10 | 0.24 | 99.53 | 211.77 |
Er | 27.70 | 0.38 | 99.50 | 199.00 |
Tm | 43.17 | 0.76 | 99.55 | 221.22 |
Yb | 58.38 | 1.40 | 99.44 | 177.57 |
Lu | 66.38 | 1.97 | 99.62 | 262.16 |
Sc | 92.86 | 14.00 | 99.30 | 141.31 |
Y | 27.06 | 0.37 | 99.57 | 228.93 |
U | 91.53 | 10.81 | 98.32 | 58.43 |
Th | 92.50 | 12.33 | 96.99 | 32.27 |
Tl | 4.54 | 0.05 | 3.47 | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jürjo, S.; Siinor, L.; Siimenson, C.; Paiste, P.; Lust, E. Two-Step Solvent Extraction of Radioactive Elements and Rare Earths from Estonian Phosphorite Ore Using Nitrated Aliquat 336 and Bis(2-ethylhexyl) Phosphate. Minerals 2021, 11, 388. https://doi.org/10.3390/min11040388
Jürjo S, Siinor L, Siimenson C, Paiste P, Lust E. Two-Step Solvent Extraction of Radioactive Elements and Rare Earths from Estonian Phosphorite Ore Using Nitrated Aliquat 336 and Bis(2-ethylhexyl) Phosphate. Minerals. 2021; 11(4):388. https://doi.org/10.3390/min11040388
Chicago/Turabian StyleJürjo, Silvester, Liis Siinor, Carolin Siimenson, Päärn Paiste, and Enn Lust. 2021. "Two-Step Solvent Extraction of Radioactive Elements and Rare Earths from Estonian Phosphorite Ore Using Nitrated Aliquat 336 and Bis(2-ethylhexyl) Phosphate" Minerals 11, no. 4: 388. https://doi.org/10.3390/min11040388
APA StyleJürjo, S., Siinor, L., Siimenson, C., Paiste, P., & Lust, E. (2021). Two-Step Solvent Extraction of Radioactive Elements and Rare Earths from Estonian Phosphorite Ore Using Nitrated Aliquat 336 and Bis(2-ethylhexyl) Phosphate. Minerals, 11(4), 388. https://doi.org/10.3390/min11040388