Sr, S, and O Isotope Compositions of Evaporites in the Lanping–Simao Basin, China
Abstract
1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results
4.1. Characteristics of Evaporite Minerals
4.2. XRD Results
4.3. Sr, S and O Isotopes
5. Discussion
5.1. Sr Isotopes
5.2. S Isotopes
5.3. O Isotopes
5.4. The Origin of Evaporites and Paleoenvironmental Significance
6. Conclusions
- (1)
- The 87Sr/86Sr ratios of sulfate samples (including gypsum and celestite) in the Lanping–Simao basin are higher than those of contemporaneous seawater, indicating continental contribution; elevated 87Sr/86Sr ratios of rock salt samples were caused by continental contribution and radiogenic 87Sr accumulation.
- (2)
- The δ34S values of gypsum samples in the Simao basin are consistent with those of Cretaceous seawater, suggesting a marine origin; the reduced δ34S values of rock salts samples might be due to reservoir effect and continental contribution; the relatively higher δ34S values of sulfates in Lanping were likely caused by BSR or/and recycling of Triassic sulfates; the low δ34S values of gypsums in Nuodeng was caused by re-oxidation of weathering sulfides with negative S isotope compositions.
- (3)
- Sr and S isotope compositions of gypsum samples in a single section in Baozang suggest that continental water played an increasingly significant role with the evaporation of brines.
- (4)
- The O isotope compositions of evaporite salts showing more complex pattern compared with Sr and S, indicating that sulfate reduction or/and re-oxidation processes prevailed during deposition.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shen, L.; Liu, C.; Zhao, J.; Feng, Y.; Wang, L.; Zhou, J. The remaking of the Mengyejing potash deposit in Yunnan, China: Evidence from Rb-Sr isotopic systematics. Ore Geol. Rev. 2017, 89, 876–886. [Google Scholar] [CrossRef]
- Xue, C.; Zeng, R.; Liu, S.; Chi, G.; Qing, H.; Chen, Y.; Yang, J.; Wang, D. Geologic, fluid inclusion and isotopic characteristics of the Jinding Zn–Pb deposit, western Yunnan, South China: A review. Ore Geol. Rev. 2007, 31, 337–359. [Google Scholar] [CrossRef]
- Hu, G.Y.; Li, Y.H.; Zeng, P.S. The role of halosalt in mineralization of the Jinding Pb-Zn deposit: Evidence from sulphur and strontium isotopic compositions. Acta Geol. Sin. 2013, 87, 1694–1702. (In Chinese) [Google Scholar]
- Deng, J.; Wang, Q.; Li, G.; Santosh, M. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth Sci. Rev. 2014, 138, 268–299. [Google Scholar] [CrossRef]
- Leach, D.L.; Song, Y.C.; Hou, Z.Q. The world-class Jinding Zn–Pb deposit: Ore formation in an evaporite dome, Lanping Basin, Yunnan, China. Miner. Deposita. 2017, 52, 281–296. [Google Scholar] [CrossRef]
- Xia, W.; Li, X. about the theoretic original study of evaporites-from the potash-halite deposit in Mengyejing Yunnan. J. Miner. Pet. 1983, 3, 1–11. (In Chinese) [Google Scholar]
- Shuai, K. Geologic-Tectonic evolution and evaporite formation of Mesozoic-Cenozoic era in Yunnan. Geoscience 1987, 1, 207–227. (In Chinese) [Google Scholar]
- Gao, G. Review of geological origion about Jinding lead-zinc ore deposit. Earth Sci. J. China Univ. Geosci. 1989, 14, 467–475. (In Chinese) [Google Scholar]
- Gao, G. Formation age and involved problems on anhydrites ore in Jinding lead-zinc ore area. Yunnan Geol. 1991, 10, 191–206. (In Chinese) [Google Scholar]
- Qu, Y.; Yuan, P.; Shuai, K.; Zhang, Y.; Cai, K.; Jia, S.; Chen, C. Potash-forming Rules and Prospects of Lower Tertiary in Lanping–Simao Basin, Yunnan; Geological Publishing House: Beijing, China, 1998; pp. 1–120. (In Chinese) [Google Scholar]
- Gao, X.; Fang, Q.; Yao, W.; Peng, Q.; Dong, J.; Qin, H.; Di, Y. Genesis of the Mengyejing potash deposit in Lanping-Simao basin, Yunnan: Implication from the components of the deposit. Acta Geosci. Sin. 2013, 34, 529–536. (In Chinese) [Google Scholar]
- Wang, L.; Liu, C.; Fei, M.; Shen, L.; Zhang, H. Sulfur isotopic composition of sulfate and its geological significance of the Yunlong formation in the Lanping Basin, Yunnan Province. China Min. Mag. 2014, 23, 57–65. (In Chinese) [Google Scholar]
- Shen, L.; Liu, C.; Wang, L.; Hu, Y.; Hu, M.; Feng, Y. Degree of Brine Evaporation and Origin of the Mengyejing Potash Deposit: Evidence from Fluid Inclusions in Halite. Acta Geol. Sin. 2017, 91, 175–185. (In English) [Google Scholar] [CrossRef]
- Zhang, J.; Wen, H.; Qiu, Y.; Zhang, Y.; Li, C. Ages of sediment-hosted Himalayan Pb–Zn–Cu–Ag polymetallic deposits in the Lanping basin, China: Re–Os geochronology of molybdenite and Sm–Nd dating of calcite. J. Asian Earth Sci. 2013, 73, 284–295. [Google Scholar] [CrossRef]
- Xu, X.; Wu, J. Potash deposits in Mengyejing, Yunnan-A study of certain characteristics, geochemistry of trace elements and genesis of the deposits. Bull. Chin. Acad. Geol. Sci. 1983, 5, 17–36. (In Chinese) [Google Scholar]
- Li, M.; Yan, M.; Wang, Z.; Liu, X.; Fang, X.; Li, J. The origins of the Mengye potash deposit in the Lanping–Simao basin, Yunnan province, Western China. Ore Geol. Rev. 2015, 69, 174–186. [Google Scholar] [CrossRef]
- Liu, C.; Wang, L.; Yan, M.; Zhao, Y.; Cao, Y.; Fang, X.; Shen, L.; Wu, C.; Lv, F.; Ding, T. The Mesozoic-Cenozoic tectonic settings, paleogeography and evaporitic sedimentation of Tethyan blocks within China: Implications for potash formation. Ore Geol. Rev. 2018, 102, 406–425. [Google Scholar] [CrossRef]
- Palmer, M.R.; Helvací, C.; Fallick, A.E. Sulphur, sulphate oxygen and strontium isotope composition of Cenozoic Turkish evaporites. Chem. Geol. 2004, 209, 341–356. [Google Scholar] [CrossRef]
- Claypool, G.E.; Holser, W.T.; Kaplan, I.R.; Sakai, H.; Zak, I. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem. Geol. 1980, 28, 199–260. [Google Scholar] [CrossRef]
- Veizer, J. Strontium isotopes in seawater through time. Annu. Rev. Earth Planet. Sci. Lett. 1989, 17, 141–167. [Google Scholar] [CrossRef]
- Strauss, H. The isotopic composition of sedimentary sulfur through time. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1997, 132, 97–118. [Google Scholar] [CrossRef]
- McArthur, J.M.; Howarth, R.J.; Bailey, T.R. Strontium isotope stratigraphy: LOWESS version 3: Best fit to the marine Sr-isotope curve for 0–509 Ma and accompanying look-up table for deriving numerical age. J. Geol. 2001, 109, 155–170. [Google Scholar] [CrossRef]
- Kampschulte, A.; Strauss, H. The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates. Chem. Geol. 2004, 204, 255–286. [Google Scholar] [CrossRef]
- Alonso-Azcárate, J.; Bottrell, S.H.; Mas, J.R. Synsedimentary versus metamorphic control of S, O and Sr isotopic compositions in gypsum evaporites from the Cameros Basin, Spain. Chem. Geol. 2006, 234, 46–57. [Google Scholar] [CrossRef]
- Metcalfe, I. Palaeozoic-Mesozoic history of SE Asia. Geol. Soc. Lond. Spec. Publ. 2011, 355, 7–35. [Google Scholar]
- Chen, H.H.; Dobson, J.; Heller, F.; Hao, J. Paleomagnetic evidence for clockwise rotation of the Simao region since the Cretaceous: A consequence of India–Asia collision. Earth Planet Sci. Lett. 1995, 134, 203–217. [Google Scholar]
- Wang, L.; Liu, C.; Fei, M.; Shen, L.; Zhang, H.; Zhao, Y. First SHRIMP U–Pb zircon ages of the potash-bearing Mengyejing formation, Simao Basin, southwestern Yunnan, China. Cretac. Res. 2015, 52, 238–250. [Google Scholar] [CrossRef]
- Chen, K. Provenance Analysis of the Late Cretaceous Yunlong Formation in the Lanping Basin, Yunnan Province and Its Tectonic Implications. Master’s Dissertation, China University of Geosciences, Beijing, China, 2017. (In Chinese). [Google Scholar]
- Wang, L.C.; Shen, L.J.; Liu, C.L.; Chen, K.; Ding, L.; Wang, C.S. The Late Cretaceous source-to-sink system at the eastern margin of the Tibetan Plateau: Insights from the provenance of the Lanping Basin. Geosci. Front. 2021, 12, 101102. [Google Scholar] [CrossRef]
- Babechuk, M.G.; Kamber, B.S. An estimate of 1.9 Ga mantle depletion using the high-field-strength elements and Nd–Pb isotopes of ocean floor basalts, Flin Flon Belt, Canada. Precambrian Res. 2011, 189, 114–139. [Google Scholar] [CrossRef]
- Niu, Y.; Batiza, R. Trace element evidence from seamounts for recycled oceanic crust in the Eastern Pacific mantle. Earth Planet Sci. Lett. 1997, 148, 471–483. [Google Scholar] [CrossRef]
- Denison, R.E.; Kirkland, D.W.; Evans, R. Using strontium isotopes to determine the age and origin of gypsum and anhydrite beds. J. Geol. 1998, 106, 1–18. [Google Scholar] [CrossRef]
- Cong, F.; Wu, F.Y.; Li, W.C.; Mou, C.L.; Huang, X.M.; Wang, B.D.; Hu, F.Y.; Peng, Z.M. Origin of the Triassic Lincang granites in the southeastern Tibetan Plateau: Crystallization from crystal mush. Lithos 2020, 360–361, 105452. [Google Scholar] [CrossRef]
- Noh, H.; Huh, Y.; Qin, J.; Ellis, A. Chemical weathering in the Three Rivers region of Eastern Tibet. Geochim. Cosmochim. Acta 2009, 73, 1857–1877. [Google Scholar] [CrossRef]
- Xiao, R.; Chen, H.; Shuai, K.; Yang, Z. Mineralization of Jinman copper deposit in Mesozoic sedimentary rocks in Lanping, Yunnan Province. Geoscience 1994, 8, 490–4960. (In Chinese) [Google Scholar]
- Wang, L.; Liu, C.; Gao, X.; Zhang, H. Provenance and paleogeography of the Late Cretaceous Mengyejing Formation, Simao Basin, southeastern Tibetan Plateau: Whole-rock geochemistry, U-Pb geochronology, and Hf isotopic constraints. Sediment. Geol. 2014, 304, 44–58. [Google Scholar] [CrossRef]
- Holser, W.T.; Kaplan, I.R. Isotope geochemistry of sedimentary sulfates. Chem. Geol. 1966, 1, 93–135. [Google Scholar] [CrossRef]
- Kaplan, I.R.; Rittenberg, S.C. Microbiological fractionation of sulphur isotopes. Microbiology 1964, 34, 195–212. [Google Scholar] [CrossRef]
- Zeng, P.; Li, H.; Li, Y.; Wang, Z.; Wen, L.; Liu, S. Asian largest lead-zinc ore deposit: The Jinding giant Pb-Zn deposit by three stages superimposed mineralization. Acta Geol. Sin. 2016, 90, 2384–2397. (In Chinese) [Google Scholar]
- Taylor, B.E.; Wheeler, M.C.; Nordstrom, D.K. Stable isotope geochemistry of acid mine drainage: Experimental oxidation of pyrite. Geochim. Cosmochim. Acta 1984, 48, 2669–2678. [Google Scholar] [CrossRef]
- El Tabakh, M.; Utha-Aroon, C.; Schreiber, B.C. Sedimentology of the Cretaceous Maha Sarakham evaporites in the Khorat Plateau of northeastern Thailand. Sediment. Geol. 1999, 123, 31–62. [Google Scholar] [CrossRef]
- Qin, Z.; Li, Q.; Zhang, X.; Fan, Q.; Wang, J.; Du, Y.; Ma, Y.; Wei, H.; Yuan, Q.; Shan, F. Origin and recharge model of the Late Cretaceous evaporites in the Khorat Plateau. Ore Geol. Rev. 2020, 116, 103226. [Google Scholar] [CrossRef]
- Lu, F.H.; Meyers, W.J. Sr, S, and OSO4 isotopes and the depositional environments of the upper Miocene evaporites, Spain. J. Sediment. Res. 2003, 73, 444–450. [Google Scholar] [CrossRef]
- Rick, B. Sulphur and oxygen isotopic composition of Swiss Gipskeuper (Upper Triassic). Chem. Geol. Isot. Geosci. 1990, 80, 243–250. [Google Scholar] [CrossRef]
- Longinelli, A.; Flora, O. Isotopic composition of gypsum samples of Permian and Triassic age from the north-eastern Italian Alps: Palaeoenvironmental implications. Chem. Geol. 2007, 245, 275–284. [Google Scholar] [CrossRef]
- Lloyd, R.M. Oxygen-18 composition of oceanic sulfate. Science 1967, 156, 1228–1231. [Google Scholar] [CrossRef] [PubMed]
- Balci, N.; Shanks, W.C., III; Mayer, B.; Mandernack, K.W. Oxygen and sulfur isotope systematics of sulfate produced by bacterial and abiotic oxidation of pyrite. Geochim. Cosmochim. Acta 2007, 71, 3796–3811. [Google Scholar] [CrossRef]
- Mangalo, M.; Meckenstock, R.U.; Stichler, W.; Einsiedl, F. Stable isotope fractionation during bacterial sulfate reduction is controlled by reoxidation of intermediates. Geochim. Cosmochim. Acta 2007, 71, 4161–4171. [Google Scholar] [CrossRef]
- Yao, W.; Paytan, A.; Wortmann, U.G. Effects of a transient marine sulfur reservoir on seawater δ18OSO4 during the Paleocene-Eocene Thermal Maximum. Geochim. Cosmochim. Acta 2020, 269, 257–269. [Google Scholar] [CrossRef]
- Turchyn, A.V.; Schrag, D.P. Cenozoic evolution of the sulfur cycle: Insight from oxygen isotopes in marine sulfate. Earth Planet Sci. Lett. 2006, 241, 763–779. [Google Scholar] [CrossRef]
- Turchyn, A.V.; Brüchert, V.; Lyons, T.W.; Engel, G.S.; Balci, N.; Schrag, D.P.; Brunner, B. Kinetic oxygen isotope effects during dissimilatory sulfate reduction: A combined theoretical and experimental approach. Geochim. Cosmochim. Acta 2010, 74, 2011–2024. [Google Scholar] [CrossRef]
- Chen, G.; Yin, H.; Chu, Y. Characteristics and geological significance of organic matter contained in Tertiary ore deposits in Lanping-Simao Basin, west Yunnan. Miner. Depos. 1996, 15, 374–380. (In Chinese) [Google Scholar]
- Lu, F.H.; Meyers, W.J.; Schoonen, M.A. S and O (SO4) isotopes, simultaneous modeling, and environmental significance of the Nijar Messinian gypsum, Spain. Geochim. Cosmochim. Acta 2001, 65, 3081–3092. [Google Scholar] [CrossRef]
- Kristall, B.; Jacobson, A.D.; Sageman, B.B.; Hurtgen, M.T. Coupled strontium-sulfur cycle modeling and the Early Cretaceous sulfur isotope record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 496, 305–322. [Google Scholar] [CrossRef]
- Longinelli, A. Isotope geochemistry of some Messinian evaporates: Paleoenvironmental implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1979, 29, 95–123. [Google Scholar] [CrossRef]
- Fontes, J.C.; Pierre, C. Oxygen 18 changes in dissolved sulphate during sea water evaporation in saline ponds. In Proceedings of the 10th International Congress on Sedimentology, Jerusalem, Israel, 9–14 July 1978; International Accounting Standards (IASs): London, UK, 1978; pp. 215–216. [Google Scholar]
Location | Sample ID | Age | Formation | Compositions, Based on XRD Analyses | Lithology |
---|---|---|---|---|---|
Lanping | LP-SM-G5 | late Cretaceous? | Yunlong | 90% gypsum, 10% calcite, and trace quartz | Gypsum laminae |
Lanping | LP-SM-G6 | late Cretaceous? | Yunlong | 55% calcite, 40% celestite, 5% quartz | Gypsum laminae |
Lanping | LP-SM-G7 | late Cretaceous? | Yunlong | 90% gypsum, 10% calcite, and trace quartz | Gypsum laminae |
Lanping | LP-SM-G8 | late Cretaceous? | Yunlong | 90% calcite, 10% celestite | Gypsum laminae |
Nuodeng | LP-SM-G1 | late Cretaceous? | Yunlong | 100% gypsum | Gypsum veins |
Nuodeng | LP-SM-G2 | late Cretaceous? | Yunlong | 100% gypsum | Gypsum veins |
Nuodeng | LP-SM-G3 | late Cretaceous? | Yunlong | 93% gypsum, 3% quartz, and trace albite | Gypsum veins |
Jinggu | JG-G1 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum laminae |
Jinggu | JG-G2 | late Cretaceous | Mengyejing | 95% gypsum, 5% calcite | Gypsum laminae |
Jinggu | JG-G3 | late Cretaceous | Mengyejing | 90% gypsum, 5% calcite, 5% magnesite | Gypsum laminae |
Jinggu | JG-G6 | late Cretaceous | Mengyejing | 90% gypsum, 20% dolomite, | Gypsum laminae |
Mengyejing | G1 | late Cretaceous | Mengyejing | nearly 100% halite, trace gypsum | |
Mengyejing | G2 | late Cretaceous | Mengyejing | nearly 100% halite, trace gypsum | Layered rock salts |
Mengyejing | G3 | late Cretaceous | Mengyejing | 95% halite, 5% anhydrite | Layered rock salts |
Mengyejing | G4 | late Cretaceous | Mengyejing | 70% halite, 10% anhydrite, 10% quartz | Layered rock salts |
Mengyejing | G5 | late Cretaceous | Mengyejing | 65% halite, 15% quartz, 10% anhydrite, 10% dolomite | Layered rock salts |
Mengyejing | G6 | late Cretaceous | Mengyejing | 85% halite, 15% sylvite, trace anhydrite | Layered rock salts |
Baozang | JBZ-F1 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum veins |
Baozang | JBZ-F2 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum veins |
Baozang | JBZ-F3 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum veins |
Baozang | JBZ-F4 | late Cretaceous | Mengyejing | 85% gypsum, 15% bassanite | Gypsum veins |
Baozang | JBZ-F5 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum veins |
Baozang | JBZ-G02 | late Cretaceous | Mengyejing | 98% gypsum, trace quartz | Gypsum laminae |
Baozang | JBZ-G03 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum laminae |
Baozang | JBZ-G04 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum laminae |
Baozang | JBZ-G05 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum laminae |
Baozang | JBZ-G06 | late Cretaceous | Mengyejing | nearly 100% gypsum, trace quartz | Gypsum laminae |
Baozang | JBZ-G07 | late Cretaceous | Mengyejing | nearly 100% gypsum, trace bassanite | Gypsum laminae |
Baozang | JBZ-G08 | late Cretaceous | Mengyejing | nearly 100% gypsum, trace quartz | Gypsum laminae |
Baozang | JBZ-G09 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum laminae |
Baozang | JBZ-G10 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum laminae |
Baozang | JBZ-G11 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum laminae |
Baozang | JBZ-G12 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum laminae |
Baozang | JBZ-G13 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum laminae |
Baozang | JBZ-G14 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum laminae |
Baozang | JBZ-G15 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum laminae |
Baozang | JBZ-G16 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum laminae |
Baozang | JBZ-G17 | late Cretaceous | Mengyejing | nearly 100% gypsum, trace quartz | Gypsum laminae |
Baozang | JBZ-G18 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum laminae |
Baozang | JBZ-G19 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum laminae |
Baozang | JBZ-G20 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum laminae |
Baozang | JBZ-G21 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum laminae |
Baozang | JBZ-G22 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum laminae |
Baozang | JBZ-G23 | late Cretaceous | Mengyejing | 95% gypsum, 5% calcite | Gypsum laminae |
Baozang | JBZ-G24 | late Cretaceous | Mengyejing | 95% gypsum, 5% quartz | Gypsum laminae |
Baozang | JBZ-G25 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum laminae |
Baozang | JBZ-G26 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum laminae |
Baozang | JBZ-G27 | late Cretaceous | Mengyejing | 98% gypsum, trace quartz | Gypsum laminae |
Baozang | JBZ-G28 | late Cretaceous | Mengyejing | 95% gypsum, 5% dolomite | Gypsum laminae |
Baozang | JBZ-G29 | late Cretaceous | Mengyejing | 98% gypsum, trace calcite | Gypsum laminae |
Baozang | JBZ-G30 | late Cretaceous | Mengyejing | nearly 100% gypsum, trace quartz | Gypsum laminae |
Baozang | JBZ-G31 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum laminae |
Baozang | JBZ-G32 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum laminae |
Baozang | JBZ-G33 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum laminae |
Location | Sample ID | δ18O‰ | δ34SV-CDT | 87Sr/86Sr | Rb (ppm) | Sr (ppm) | Rb/Sr |
---|---|---|---|---|---|---|---|
Lanping | LP-SM-G5 | 21.6 | 14.5 | 0.709622 ± 0.000005 | 1.34 | 3572 | 0.0003751 |
LP-SM-G6 | 18.4 | 20.5 | 0.710049 ± 0.000007 | 0.678 | >5000 | <0.0001356 | |
LP-SM-G7 | 23.1 | 17.6 | 0.709845 ± 0.000008 | 0.483 | 4699 | 0.0001028 | |
LP-SM-G8 | 17 | 20.7 | 0.710039 ± 0.000005 | 2.05 | >5000 | <0.00041 | |
Nuodeng | LP-SM-G1 | 6.8 | 10.2 | 0.709406 ± 0.000013 | 2.59 | 192 | 0.0134896 |
LP-SM-G2 | - | 9.5 | 0.709438 ± 0.000007 | 3.04 | 293 | 0.0103754 | |
LP-SM-G3 | 8 | 10.4 | 0.709475 ± 0.000006 | 2.71 | 603 | 0.0044942 | |
jinggu | LP-SM-G1 | - | 14.4 | 0.708648 ± 0.000007 | 1.15 | 186 | 0.0061828 |
LP-SM-G2 | 6.9 | 14.4 | 0.708081 ± 0.000006 | 3.47 | 3573 | 0.0009712 | |
LP-SM-G3 | 20.3 | 15.1 | 0.708712 ± 0.000008 | 3.49 | 679 | 0.0051399 | |
LP-SM-G6 | 10.2 | 13.5 | 0.708792 ± 0.000010 | 12.4 | 308 | 0.0402597 | |
Mengyejing | G1 | - | 12.2 | 0.709717 ± 0.000007 | 15.5 | 29.4 | 0.5272109 |
G2 | - | 15.5 | 0.710058 ± 0.000006 | 0.258 | 152 | 0.0016974 | |
G3 | - | 8.8 | 0.710019 ± 0.000006 | 4.73 | 227 | 0.020837 | |
G4 | 4.1 | 8 | 0.709881 ± 0.000007 | 22.5 | 100 | 0.225 | |
G5 | 10.3 | 9.1 | 0.709937 ± 0.000005 | 37.1 | 163 | 0.2276074 | |
G6 | - | 13.9 | 0.710071 ± 0.000005 | 11.6 | 55.4 | 0.2093863 | |
Baozang | JBZ-F1 | 6.6 | 15 | 0.709268 ± 0.000006 | 0.458 | 144 | 0.0031806 |
JBZ-F2 | 6.8 | 14.8 | 0.709225 ± 0.000006 | 0.314 | 154 | 0.002039 | |
JBZ-F3 | 7.7 | 15 | 0.709548 ± 0.000005 | 0.363 | 161 | 0.0022547 | |
JBZ-F4 | 7.4 | 14.8 | 0.708794 ± 0.000005 | 0.525 | 178 | 0.0029494 | |
JBZ-F5 | - | 14.3 | 0.709074 ± 0.000005 | 1.25 | 528 | 0.0023674 | |
JBZ-G02 | 15.1 | 15.2 | 0.709148 ± 0.000009 | 3.19 | 263 | 0.0121293 | |
JBZ-G03 | 13.6 | 14.9 | 0.70855 ± 0.000011 | 0.813 | 222 | 0.0036622 | |
JBZ-G04 | 16.8 | 14.9 | 0.708755 ± 0.000010 | 3.47 | 232 | 0.0149569 | |
JBZ-G05 | 9.1 | 14.9 | 0.708152 ± 0.000017 | 0.962 | 236 | 0.0040763 | |
JBZ-G06 | 10.3 | 15.1 | 0.708513 ± 0.000020 | 2 | 236 | 0.0084746 | |
JBZ-G07 | 10.2 | 14.9 | 0.708114 ± 0.000010 | 0.154 | 319 | 0.0004828 | |
JBZ-G08 | 10.5 | 14.9 | 0.708918 ± 0.000011 | 9.53 | 135 | 0.0705926 | |
JBZ-G09 | 16.1 | 15 | 0.708322 ± 0.000013 | 1.05 | 262 | 0.0040076 | |
JBZ-G10 | 14 | 14.7 | 0.708242 ± 0.000009 | 0.159 | 195 | 0.0008154 | |
JBZ-G11 | 13.4 | 14.5 | 0.708625 ± 0.000011 | 1.85 | 166 | 0.0111446 | |
JBZ-G12 | 9.7 | 14.6 | 0.70833 ± 0.000010 | 0.078 | 234 | 0.0003333 | |
JBZ-G13 | 9 | 14.7 | 0.708538 ± 0.000016 | 1.05 | 218 | 0.0048165 | |
JBZ-G14 | 13.3 | 14.2 | 0.709253 ± 0.000016 | 8.93 | 279 | 0.0320072 | |
JBZ-G15 | 7.1 | 14.6 | 0.708693 ± 0.000018 | 1.71 | 202 | 0.0084653 | |
JBZ-G16 | 14.3 | 0.708672 ± 0.000013 | #DIV/0! | ||||
JBZ-G17 | 15.7 | 14.8 | 0.708643 ± 0.000026 | 26.9 | 168 | 0.160119 | |
JBZ-G18 | 8.9 | 13.9 | 0.708713 ± 0.000013 | 3.94 | 246 | 0.0160163 | |
JBZ-G19 | 14.8 | 14.6 | 0.7086 ± 0.000011 | 0.517 | 312 | 0.0016571 | |
JBZ-G20 | 17.3 | 14.7 | 0.708807 ± 0.000017 | 0.506 | 321 | 0.0015763 | |
JBZ-G21 | 10 | 14.4 | 0.708439 ± 0.000010 | 0.757 | 451 | 0.0016785 | |
JBZ-G22 | 10 | 13.6 | 0.708346 ± 0.000011 | 0.198 | 476 | 0.000416 | |
JBZ-G23 | 13 | 14.5 | 0.708584 ± 0.000009 | 0.321 | 514 | 0.0006245 | |
JBZ-G24 | 8.4 | 14.6 | 0.708523 ± 0.000012 | 10 | 485 | 0.0206186 | |
JBZ-G25 | 15.7 | 14.1 | 0.708897 ± 0.000013 | 0.262 | 551 | 0.0004755 | |
JBZ-G26 | 9.1 | 14.6 | 0.709085 ± 0.000013 | 1.63 | 248 | 0.0065726 | |
JBZ-G27 | 11.3 | 14.7 | 0.709174 ± 0.000014 | 10 | 284 | 0.0352113 | |
JBZ-G28 | 9.4 | 14.3 | 0.709184 ± 0.000010 | 3.61 | 302 | 0.0119536 | |
JBZ-G29 | 12.7 | 13.4 | 0.709128 ± 0.000006 | 1.89 | 366 | 0.0051639 | |
JBZ-G30 | 18.4 | 14.3 | 0.709053 ± 0.000005 | 12.2 | 403 | 0.030273 | |
JBZ-G31 | 23.7 | 14.2 | 0.708704 ± 0.000006 | 1.21 | 445 | 0.0027191 | |
JBZ-G32 | 10 | 14.2 | 0.709038 ± 0.000006 | 2.25 | 277 | 0.0081227 | |
JBZ-G33 | 11 | 14.1 | 0.708781 ± 0.000005 | 1.47 | 491 | 0.0029939 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, L.; Wang, L.; Liu, C.; Zhao, Y. Sr, S, and O Isotope Compositions of Evaporites in the Lanping–Simao Basin, China. Minerals 2021, 11, 96. https://doi.org/10.3390/min11020096
Shen L, Wang L, Liu C, Zhao Y. Sr, S, and O Isotope Compositions of Evaporites in the Lanping–Simao Basin, China. Minerals. 2021; 11(2):96. https://doi.org/10.3390/min11020096
Chicago/Turabian StyleShen, Lijian, Licheng Wang, Chenglin Liu, and Yanjun Zhao. 2021. "Sr, S, and O Isotope Compositions of Evaporites in the Lanping–Simao Basin, China" Minerals 11, no. 2: 96. https://doi.org/10.3390/min11020096
APA StyleShen, L., Wang, L., Liu, C., & Zhao, Y. (2021). Sr, S, and O Isotope Compositions of Evaporites in the Lanping–Simao Basin, China. Minerals, 11(2), 96. https://doi.org/10.3390/min11020096