The Role of Aragonite in Producing the Microstructural Diversity of Serpulid Skeletons
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Isotropic versus Aniostropic Aragonitic Structures and Evolutionary Implications
4.2. Aragonitic versus Calcitic Microstructures
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ten Hove, H.A.; van den Hurk, P. A review of Recent and fossil serpulid ‘reefs’; actuopalaeontology and the ‘Upper Malm’ serpulid limestones in NW Germany. Geol. Mijnb. 1993, 72, 23–67. [Google Scholar]
- Chan, V.; Vinn, O.; Li, C.; Lu, X.; Kudryavtsev, A.B.; Schopf, J.W.; Shih, K.; Zhang, T.; Thiyagarajan, V. Evidence of compositional and ultrastructural shifts during the development of calcareous tubes in the biofouling tubeworm, Hydroides elegans. J. Struct. Biol. 2015, 189, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Vinn, O. The role of an internal organic tube lining in the biomineralization of serpulid tubes. Carnets Géol. 2011, 11, 13–16. [Google Scholar] [CrossRef] [Green Version]
- Vinn, O.; ten Hove, H.A.; Mutvei, H.; Kirsimäe, K. Ultrastructure and mineral composition of serpulid tubes (Polychaeta, Annelida). Zool. J. Linn. Soc. 2008, 154, 633–650. [Google Scholar] [CrossRef]
- Smith, A.M.; Riedi, M.A.; Winter, D.J. Temperate reefs in a changing ocean: Skeletal carbonate mineralogy of serpulids. Mar. Biol. 2013, 160, 2281–2294. [Google Scholar] [CrossRef]
- Vinn, O.; Kirsimäe, K.; ten Hove, H.A. Tube ultrastructure of Pomatoceros americanus (Polychaeta, Serpulidae): Implications for the tube formation of serpulids. Est. J. Earth Sci. 2009, 58, 148–152. [Google Scholar] [CrossRef]
- Vinn, O.; ten Hove, H.A. Microstructure and formation of the calcareous operculum in Pyrgopolon ctenactis and Spirobranchus giganteus (Annelida, Serpulidae). Zoomorphology 2011, 130, 181–188. [Google Scholar] [CrossRef]
- Vinn, O. On the unique isotropic aragonitic tube microstructure of some serpulids (Polychaeta, Annelida). J. Morph. 2013, 274, 478–482. [Google Scholar] [CrossRef] [PubMed]
- Kupriyanova, E.K.; Vinn, O.; Taylor, P.D.; Schopf, J.W.; Kudryavtsev, A.; Bailey-Brock, J. Serpulids living deep: Calcareous tubeworms beyond the abyss. Deep Sea Res. 2014, 90, 91–104. [Google Scholar] [CrossRef]
- Vinn, O.; Kupriyanova, E.K. Evolution of a dense outer protective tube layer in serpulids (Polychaeta, Annelida). Carnets Géol. 2011, 11, CG2011_L05. [Google Scholar]
- Vinn, O. Biomineralization in Polychaete Annelids: A Review. Minerals 2021, 11, 1151. [Google Scholar] [CrossRef]
- Vinn, O. Occurrence, formation and function of organic sheets in the mineral tube structures of Serpulidae (Polychaeta, Annelida). PLoS ONE 2013, 8, e75330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buckman, J.O.; Harries, D.B. Reef forming Serpula vermicularis from Scotland and Ireland: Tube structure, composition and implications. Zool. Anz. 2020, 288, 53–65. [Google Scholar] [CrossRef]
- Vinn, O.; Jäger, M.; Kirsimäe, K. Microscopic evidence of serpulid affinities of the problematic fossil tube “Serpula” etalensis from the Lower Jurassic of Germany. Lethaia 2008, 41, 417–421. [Google Scholar] [CrossRef]
- Carter, J.G.; Bandel, K.; de Burenil, V.; Carlson, S.J.; Castanet, J.; Crenshaw, M.A.; Dalingwater, J.E.; Francillion-Vieillot, H.; Geradie, J.; Meunier, F.J.; et al. Glossary of skeletal biomineralization. In Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends; Carter, J.G., Ed.; Wiley: Hoboken, NJ, USA, 1990; pp. 609–671. [Google Scholar]
- Sanfilippo, R.; Rosso, A.; Reitano, A.; Insacco, G. First record of sabellid and serpulid polychaetes from the Permian of Sicily. Acta Palaeontol. Pol. 2017, 62, 25–38. [Google Scholar] [CrossRef]
- Ippolitov, A.P.; Vinn, O.; Kupriyanova, E.K.; Jäger, M. Written in stone: History of serpulid polychaetes through time. Mem. Mus. Vict. 2014, 71, 123–159. [Google Scholar] [CrossRef] [Green Version]
- Kupriyanova, E.K.; Macdonald, T.; Rouse, G.W. Phylogenetic relationships within Serpulidae (Sabellida, Annelida) inferred from molecular and morphological data. Zool. Scr. 2006, 35, 421–439. [Google Scholar] [CrossRef]
Species | Locality | Structures |
---|---|---|
Apomatus globifer Théel, 1878 | Kara Sea, 71° N, 64° E | AIOP |
Filogranella elatensis (Ben-Eliahu and Dafni, 1979) | Japan, Sesoko Island, Okinawa | AIOP, ASPHP |
Hydroides spongicola Benedict, 1887 | Netherlands Antilles, Curaçao, Sta.2048Ba | ASIOP |
Josephella marenzelleri Langerhans, 1884 | France, Marseille | AIOP |
Pomatostegus stellatus (Abildgaard, 1798) | Netherlands Antilles, Curaçao, Sta.2093 | ARHC |
Protula diomedea Benedict, 1887 | USA, Florida, 27° N, 84° W | ASOIOP |
Pseudovermilia occidentalis (McIntosh, 1885) | Cape Verde Islands, Sta.Luzia, Sta.6.D07 | AIOP |
Spiraserpula caribensis Pillai and ten Hove, 1994 | Netherlands Antilles, Curaçao, Sta.2061A | ASPHP, ASIOP |
Vermiliopsis infundibulum (Philippi, 1844) | Canary Islands, Lanzarote, Sta.4.071 | ASIOP |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vinn, O. The Role of Aragonite in Producing the Microstructural Diversity of Serpulid Skeletons. Minerals 2021, 11, 1435. https://doi.org/10.3390/min11121435
Vinn O. The Role of Aragonite in Producing the Microstructural Diversity of Serpulid Skeletons. Minerals. 2021; 11(12):1435. https://doi.org/10.3390/min11121435
Chicago/Turabian StyleVinn, Olev. 2021. "The Role of Aragonite in Producing the Microstructural Diversity of Serpulid Skeletons" Minerals 11, no. 12: 1435. https://doi.org/10.3390/min11121435
APA StyleVinn, O. (2021). The Role of Aragonite in Producing the Microstructural Diversity of Serpulid Skeletons. Minerals, 11(12), 1435. https://doi.org/10.3390/min11121435