Thermal Maturity of the Grajcarek Unit (Pieniny Klippen Belt): Insights for the Burial History of a Major Tectonic Boundary of the Western Carpathians
Abstract
:1. Introduction
Geological Setting
2. Materials and Methods
3. Results
3.1. Organic Matter Petrography
3.2. Thermal Maturity
3.3. Burial Depth
4. Discussion
4.1. How Do Organic Matter Components Suppress Vitrinite Reflectance?
4.2. Regional Thermal Maturity Distribution
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Sample Symbol | Formation | Age | VR (%) | SD | CV (%) | T-Peak (°C) | Estimated Burial Depth | ||
---|---|---|---|---|---|---|---|---|---|
19.8 °C/km | 29.18 °C/km | 16.5 °C/km | |||||||
BW2a | Szlachtowa | J1/J2 | 0.75 | 0.12 | 16.13 | 112 | 5.70 | 3.80 | 6.80 |
BW2pb | Szlachtowa | J1/J2 | 0.87 | 0.22 | 25.63 | 124 | 6.30 | 4.30 | 7.70 |
JJF4 | Szlachtowa | J1/J2 | 0.61 | 0.12 | 19.18 | 96 | 4.80 | 3.30 | 5.80 |
JJF5 | Szlachtowa | J1/J2 | 0.72 | 0.27 | 38.33 | 109 | 5.50 | 3.70 | 6.60 |
SzSzl1 | Szlachtowa | J1/J2 | 0.78 | 0.14 | 17.94 | 115 | 5.80 | 4.00 | 7.00 |
SzSzl2 | Szlachtowa | J1/J2 | 0.92 | 0.13 | 13.91 | 121 | 6.50 | 4.40 | 7.80 |
SzSzl3 | Szlachtowa | J1/J2 | 0.90 | 0.12 | 13.89 | 127 | 6.40 | 4.30 | 7.70 |
SzSzl4 | Szlachtowa | J1/J2 | 0.84 | 0.14 | 17.02 | 121 | 6.10 | 4.20 | 7.30 |
Jar1 | Szlachtowa | J1/J2 | 0.81 | 0.13 | 16.29 | 133 | 6.70 | 4.50 | 8.10 |
SzlSzt1 | Szlachtowa | J1/J2 | 0.78 | 0.13 | 17.05 | 115 | 5.80 | 4.00 | 7.00 |
SzlSzt2 | Szlachtowa | J1/J2 | 0.82 | 0.15 | 18.29 | 119 | 6.00 | 4.10 | 7.20 |
SzlSzt3 | Szlachtowa | J1/J2 | 0.79 | 0.17 | 22.53 | 116 | 5.90 | 4.00 | 7.10 |
SzlSzt4 | Szlachtowa | J1/J2 | 0.69 | 0.14 | 20.58 | 105 | 5.30 | 3.60 | 6.40 |
SzLSzt5 | Szlachtowa | J1/J2 | 0.75 | 0.11 | 14.13 | 112 | 5.60 | 3.80 | 6.80 |
SzlSzt6 | Szlachtowa | J1/J2 | 0.79 | 0.18 | 23.54 | 116 | 5.90 | 4.05 | 7.10 |
SzlSzt7 | Szlachtowa | J1/J2 | 0.97 | 0.13 | 13.61 | 133 | 6.70 | 4.60 | 8.10 |
SzlKr1 | Szlachtowa | J1/J2 | 0.72 | 0.17 | 24.30 | 109 | 5.50 | 3.70 | 6.60 |
SzlKr2 | Szlachtowa | J1/J2 | 0.85 | 0.22 | 25.52 | 122 | 6.20 | 4.20 | 7.40 |
SzlKr3 | Szlachtowa | J1/J2 | 0.86 | 0.14 | 14.77 | 123 | 6.20 | 4.20 | 7.50 |
SzlKr4 | Szlachtowa | J1/J2 | 0.76 | 0.14 | 19.21 | 113 | 5.70 | 3.90 | 6.70 |
SzlKr5 | Szlachtowa | J1/J2 | 0.74 | 0.08 | 11.08 | 111 | 5.60 | 3.80 | 6.70 |
DSzl3 | Szlachtowa | J1/J2 | 0.90 | 0.15 | 17.11 | 127 | 6.40 | 4.30 | 7.70 |
DSzl4 | Szlachtowa | J1/J2 | 1.10 | 0.15 | 13.54 | 143 | 7.20 | 4.90 | 8.70 |
SzOp1 | Opaleniec | J2 | 0.67 | 0.13 | 20.00 | 103 | 5.20 | 3.50 | 6.20 |
SzOp2 | Opaleniec | J2 | 0.80 | 0.13 | 13.87 | 117 | 5.90 | 4.00 | 7.10 |
HlOp | Opaleniec | J2 | n.d.* | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
DOp1 | Opaleniec | J2 | 1.01 | 0.14 | 14.25 | 136 | 6.70 | 4.70 | 8.20 |
DOp2 | Opaleniec | J2 | 0.89 | 0.18 | 20.33 | 126 | 6.40 | 4.30 | 7.60 |
DOp3 | Opaleniec | J2 | 1.01 | 0.16 | 16.33 | 136 | 6.90 | 4.70 | 8.30 |
DSzl1 | Opaleniec | J2 | 0.79 | 0.15 | 19.24 | 116 | 5.90 | 4.00 | 7.10 |
DSzl2 | Opaleniec | J2 | 1.00 | 0.12 | 12.40 | 135 | 6.80 | 4.60 | 8.20 |
Krt1 | Opaleniec | J2 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
SzKap1 | Kapuśnica | Cr1 | 0.80 | 0.15 | 19.5 | 117 | 5.90 | 4.00 | 7.10 |
SzG1 | Kapuśnica | Cr1 | 0.76 | 0.13 | 17.63 | 113 | 5.70 | 3.90 | 6.90 |
SzWr1 | Wronine | Cr1 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
SzWr2 | Wronine | Cr1 | 0.88 | 0.13 | 14.65 | 125 | 6.30 | 4.30 | 7.60 |
SzfWr | Wronine | Cr1 | 0.91 | 0.10 | 11.31 | 128 | 6.30 | 4.30 | 7.50 |
Hłsz1pw | Hałuszowa | Cr2 | 0.83 | 0.07 | 8.80 | 120 | 6.10 | 4.10 | 7.30 |
Hłsz2 | Hałuszowa | Cr2 | 1.01 | 0.10 | 9.45 | 136 | 6.90 | 4.60 | 8.20 |
JJF1 | Jarmuta | Cr2/Pl | 0.75 | 0.15 | 18.96 | 112 | 5.70 | 3.80 | 6.80 |
JJF2 | Jarmuta | Cr2/Pl | 0.83 | 0.17 | 21.44 | 120 | 6.10 | 4.10 | 7.30 |
JJF3 | Jarmuta | Cr2/Pl | 0.58 | 0.08 | 13.96 | 92 | 4.60 | 3.10 | 5.50 |
References
- Mukhopadhyay, P.K. Vitrinite reflectance as maturity parameter: Petrographic and molecular characterization and its applications to basin modeling. In Vitrinite Reflectance as a Maturity Parameter: Applications and Limitations; Mukhopadhyay, P.K., Dow, W.G., Eds.; American Chemical Society Symposium Series: Washington, DC, USA, 1994; Volume 570, pp. 1–24. [Google Scholar]
- Aderoju, T.; Bend, S.; Aderoju, T.; Bend, S. A comparative assessment of biomarker-based thermal maturity parameters. In Petroleum Systems Analysis—Case Studies; Abu Ali, M.A., Moretti, I.I., Nordgård Bolås, H.M., Eds.; AAPG Memoir: Tulsa, OK, USA, 2017; Volume 114, pp. 219–237. [Google Scholar]
- Abarghani, A.; Ostadhassan, M.; Bubach, M.B.; Zhao, P. Estimation of thermal maturity in the Bakken source rock from a combination of well logs, North Dakota, USA. Mar. Petrol. Geol. 2019, 105, 32–44. [Google Scholar] [CrossRef]
- Baig, I.; Faleide, J.I.; Jahren, J.; Mondol, N.H. Cenozoic exhumation on the southwestern Barents Shelf: Estimates and uncertainties constrained from compaction and thermal maturity analyses. Mar. Petrol. Geol. 2016, 73, 105–130. [Google Scholar] [CrossRef]
- Buchardt, B.; Lewan, M.D. Reflectance of vitrinite-like macerals as a thermal maturity index for Cambrian-Ordovician Alum Shale, southern Scandinavia. AAPG Bull. 1990, 74, 394–406. [Google Scholar]
- Bostick, N.H.; Pawlewicz, M.J. Paleotemperatures based on vitrinite reflectance of shales and limestones in igneous dike aureoles in the Upper Cretaceous Pierre Shale, Walsenburg, Colorado. In Hydrocarbon Source Rocks of the Greater Rocky Mountain Region: Denver; CO; Rocky Mountain; Woodward, J., Meissner, F.F., Clayton, J.L., Eds.; Rocky Mountain Association of Geologists: Denver, CO, USA, 1984; pp. 387–392. [Google Scholar]
- Corrado, S.; Aldega, L.; Di Leo, P.; Giampaolo, C.; Invernizzi, C.; Mazzoli, S.; Zattin, M. Thermal maturity of the axial zone of the southern Apennines fold-and-thrust belt (Italy) from multiple organic and inorganic indicators. Terra Nova 2005, 17, 56–65. [Google Scholar] [CrossRef]
- Dewing, K.; Obermajer, M. Lower Paleozoic thermal maturity and hydrocarbon potential of the Canadian Arctic Archipelago: Bulletin of Canadian. Petrol. Geol. 2009, 57, 141–166. [Google Scholar]
- Laughland, M.M.; Underwood, M.B. Vitrinite reflectance and estimates of paleotemperature within the Upper Shimanto Group, Muroto Peninsula, Shikoku, Japan. Geol. Soc. Am. Spec. Pap. 1993, 273, 25–43. [Google Scholar]
- Levine, J.R.; Davis, A. The relationship of coal optical farbrics to Alleghanian tectonic deformation in the central Appalachian fold-and-thrust belt, Pennsylvania. Geol. Soc. Am. Bull. 1984, 101, 1333–1337. [Google Scholar] [CrossRef]
- Miyakawa, A.; Kinoshita, M.; Hamada, Y. Thermal maturity structures in an accretionary wedge by a numerical simulation. Prog. Earth. Planet Sci. 2019, 6, 8. [Google Scholar] [CrossRef]
- Mori, K.; Taguchi, K. Examination of the low-grade metamorphism in the Shimanto Belt by vitrinite reflectance. Mod. Geol. 1988, 12, 325–339. [Google Scholar]
- O’Hara, K. Paleo-stress estimates on ancient seismogenic faults based on frictional heating of coal. Geophys. Res. Let. 2004, 31, L03601. [Google Scholar]
- Rusciadelli, G.; Viandante, M.G.; Calamita, F.; Cook, A.C. Burial-exhumation history of the central Apennines (Italy), from the foreland to the chain building: Thermochronological and geological data. Terra Nova 2005, 17, 560–572. [Google Scholar] [CrossRef]
- Sakaguchi, A. High geothermal gradient with ridge subduction beneath Cretaceous Shimanto accretionary prism, southwest Japan. Geology 1996, 24, 795–798. [Google Scholar] [CrossRef]
- Bullock, L.; Parnell, D.; Muirhead, D.; Amstrong, J.; Schito, A.; Corrado, S. A thermal maturity map based on vitrinite reflectance of British coals. J. Geol. Soc. 2019, 176, 1136. [Google Scholar] [CrossRef]
- Corrado, S.; Invernizzi, C.; Mazzoli, S. Tectonic burial and exhumation in a foreland fold and thrust belt: The Monte Alpi case history (Southern Apennines, Italy). Geodin. Acta 2002, 15, 159–177. [Google Scholar] [CrossRef]
- Pollastro, R.M.; Barker, C.E. Application of clay minerals, vitrinite reflectance and fluid inclusion studies to the thermal and burial history of the Pindale anticline, Green River basin, Wyoming. In Roles of Organic Matter in Sediment Diagenesis; Gautier, D.L., Ed.; SEPM Special Publications: Tulsa, OK, USA, 1986; Volume 38, pp. 73–83. [Google Scholar]
- Nemčok, M.; Pospišil, L.; Lexa, J.; Donelick, R.A. Tertiary subduction and slab break-off model of the Carpathian-Pannonia region. Tectonophysics 1998, 295, 307–340. [Google Scholar] [CrossRef]
- Froitzheim, N.; Plašienka, D.; Schuster, R. Alpine tectonics of the Alps and Western Carpathians. In The Geology of Central Europe; 2: Mesozoic and Cenozoic; McCann, T.T., Ed.; Geological Society Publishing House: London, UK, 2008; pp. 1141–1232. [Google Scholar]
- Birkenmajer, K. Preliminary revision of the stratigraphy of the Pieniny Klippen Belt series in Poland. Bull. L’académie Pol. Sci. Cl. 1953, 3, 271–274. [Google Scholar]
- Ratschbacher, L.; Frisch, W.; Linzer, H.G.; Merle, O. Lateral extrusion in the Eastern Alps. Part 2: Structural analysis. Tectonics 1991, 10, 257–271. [Google Scholar] [CrossRef]
- Ratschbacher, L.; Merle, O.; Davy, P.; Cobbold, P. Lateral extrusion in the eastern Alps. Part 1: Boundary conditions and experiments scaled for gravity. Tectonics 1991, 10, 245–256. [Google Scholar] [CrossRef]
- Ratschbacher, L.; Frisch, W.; Linzer, H.G.; Sperner, B.; Meschede, M.; Decker, K. The Pieniny Klippen Belt in the Western Carpathians of northeastern Slovakia: Structural evidence for transpression. Tectonophysics 1993, 226, 471–483. [Google Scholar] [CrossRef]
- Aubrecht, R.; Ožvoldová, L. Middle Jurassic-Lower Cretaceous development of the Pruské Unit in the western part of the Pieniny Klippen Belt. Geol. Carpath. 1994, 45, 211–223. [Google Scholar]
- Nemčok, M.; Nemčok, J. Late Cretaceous deformation of the Pieniny Klippen Belt, West Carpathians. Tectonophysics 1994, 239, 286–294. [Google Scholar] [CrossRef]
- Jurewicz, E. The contact between the Pieniny Klippen Belt and Magura Unit (the Małe Pieniny Mts.). Geol. Quart. 1997, 41, 315–326. [Google Scholar]
- Jurewicz, E. Geodynamic evolution of the Tatra Mts. and the Pieniny Klippen Belt (Western Carpathians): Problems and comments. Acta Geol. Polon. 2005, 55, 295–338. [Google Scholar]
- Jurewicz, E. The Šariš Transitional Zone, revealing interactions between Pieniny Klippen Belt, Outer Carpathians and European platform. Swiss J. Geosci. 2018, 111, 245–267. [Google Scholar] [CrossRef] [Green Version]
- Birkenmajer, K.; Gedl, P.; Myczyński, R.; Tyszka, J. “Cretaceous black flysch” in the Pieniny Klippen Belt, West Carpathians: A case of geological misinterpretation. Cretac. Res. 2008, 29, 535–549. [Google Scholar] [CrossRef]
- Schmid, S.M.; Bernoulli, D.; Fügenschyh, B.; Matenco, L.; Schefer, S.; Schuster, R.; Tischler, M.; Ustaszewski, K. The Alpine-Carpathian-Dinaridic orogenic system: Correlation and evolution of tectonic units. Swiss J. Geosc. 2008, 101, 139–183. [Google Scholar] [CrossRef] [Green Version]
- Oszczypko, N.; Jurewicz, E.; Plašienka, D. Tectonics of the Klippen Belt and Magura Nappe in the eastern part of the Pieniny Mts. In Western Carpathians, Poland and Slovakia—New approaches and results. In Proceedings of the Congress of the Carpathian—Balkan Geological Association, Thessaloniki, Greece, 23–30 September2010. [Google Scholar]
- Barski, M.; Matyja, B.A.; Segit, T.; Wierzbowski, A. Early to Late Bajocian age of the so called “black flysch” (Szlachtowa Formation) depos its: Implications for the history and geological structure of the Pieniny Klippen Belt, Carpathians. Geol. Quart. 2012, 56, 391–410. [Google Scholar]
- Plašienka, D. Jurassic syn-rift and Cretaceous syn-orogenic, coarse-grained deposits related to opening and closure of the Vahic (South Penninic) Ocean in the Western Carpathians—An overview. Geol. Quart. 2012, 56, 601–628. [Google Scholar] [CrossRef] [Green Version]
- Plašienka, D.; Mikuš, M. Geological structure of the Pieniny and Šariš sections of the Klippen Belt between the Litmanová and Drienica villages in Eastern Slovakia. Bratislava. Miner. Slovaca 2010, 42, 155–178, (In Slovak, with English Summary). [Google Scholar]
- Plašienka, D.; Soták, J. Evolution of Late Cretaceous-Palaeogene synorogenic basins in the Pieniny Klippen Belt and adjacent zones (Western Carpathians, Slovakia): Tectonic controls over a growing orogenic wedge. Ann. Soc. Geol. Pol. 2015, 85, 43–76. [Google Scholar] [CrossRef]
- Plašienka, D.; Soták, J.; Aubrecht, R.; Michalík, J. Discussion of ‘Olistostromes of the Pieniny Klippen Belt Northern Carpathians. Geol. Mag. 2016, 154, 187–192. [Google Scholar] [CrossRef]
- Krobicki, M.; Golonka, J. Geological history of the Pieniny Klippen Belt and Middle Jurassic Black Shales as one of the oldest deposits of this region—Stratigraphical position and palaeoenvironmental significance. Geotourism 2008, 2, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Golonka, J.; Krobicki, M.; Waśkowska, A.; Cieszkowski, M.; Ślączka, A. Olistostromes of the Pieniny Klippen Belt, Northern Carpathians. Geol. Mag. 2015, 152, 269–286. [Google Scholar] [CrossRef]
- Plašienka, D. The Carpathian Klippen Belt and types of its klippen- an attempt at a genetic classification. Miner. Slovaca 2015, 50, 1–24. [Google Scholar]
- Csonto, L.; Vörös, A. Mesozoic plate tectonic reconstruction of the Carpathian region. Palaeogeogr. Palaeoclimatol. Plaeoecol. 2016, 210, 1–56. [Google Scholar] [CrossRef]
- Golonka, J.; Gahagan, L.; Krobicki, M.; Marko, F.; Oszczypko, N.; Ślączka, A. Plate tectonic evolution and paleogeography of the Circum-Carpathian Region. In The Carpathians and Their Foreland: Geology and Hydrocarbon Resources; Golonka, J., Picha, F., Eds.; AAPG Memoir: Tulsa, OK, USA, 2006; Volume 84, pp. 11–46. [Google Scholar]
- Kováč, M.; Kráľ, J.; Márton, E.; Plašienka, D.; Uher, P. Alpine uplift history of the Central Western Carpathians: Geochronological, paleomagnetic, sedimentary and structural data. Geol. Carpath. 1994, 45, 83–96. [Google Scholar]
- Plašienka, D. Mesozoic evolution of Tatric units in the Malé Karpaty and Považský Inovec Mts.: Implications for the position of the Klape and related units in western Slovakia. Geol. Carpath. 1995, 46, 101–112. [Google Scholar]
- Plašienka, D. Dynamics of Mesozoic pre-orogenic rifting in the Western Carpathians. Austrian J. Earth Sci. 2003, 94, 79–98. [Google Scholar]
- Krzywiec, P. Contrasting tectonic and sedimentary history of the central and eastern parts of the Polish Carpathian foredeep basin-results of seismic data interpretation. Mar. Pet. Geol. 2001, 18, 13–38. [Google Scholar] [CrossRef]
- Csontos, L.; Nagymarosy, A.; Horváth, F.; Kováč, M. Tertiary evolution of the intracarpathian area: A model. Tectonophysics 1992, 208, 221–241. [Google Scholar] [CrossRef]
- Csontos, L.; Nagymarosy, A. The Mid-Hungarian line: A zone of repeated tectonic inversion. Tectonophysics 1998, 297, 51–72. [Google Scholar] [CrossRef]
- Haas, J.; Mioč, P.; Pamić, J.; Tomljenović, B.; Árkai, P.; Bérczi-Mak, A.; Koroknai, B.; Kovács, S.; Felgenhauer, E.R. Complex structural pattern of the Alpine–Dinaridic–Pannonian triple junction. Int. J. Earth Sci. 2000, 89, 377–389. [Google Scholar] [CrossRef]
- Buła, Z.; Żaba, J. Structure of the Precambrian basement of the eastern part of the Upper Silesian block (Brunovistulicum). Przegląd Geol. 2008, 56, 473–480. (In Polish) [Google Scholar]
- Zuchiewicz, W.; Oszczypko, N. Topography of the Magura floor thrust and morphotectonics of the Outer West Carpathians in Poland. Ann. Soc. Geol. Pol. 2008, 78, 135–148. [Google Scholar]
- Kováč, M.; Nagymarosy, A.; Oszczypko, N.; Ślączka, A.; Csontos, L.; Marunteanu, M. Palinspastic reconstruction of the Carpathian-Pannonian region during the Miocene. In Geodynamic Development of the Western Carpathians; Raks, M., Ed.; Dionýz Štúr Publishers, Geological Survey of Slovac Republic: Bratislava, Czechoslovakia, 1998; pp. 180–217. [Google Scholar]
- Golonka, J.; Pietsch, K.; Marzec, P. Deep structure of the Pieniny Klippen Belt in Poland. Swiss J. Geosci. 2019, 112, 475–506. [Google Scholar] [CrossRef]
- Birkenmajer, K.; Gedl, P. The Grajcarek Succession (Lower Jurassic–Mid Paleocene) in the Pieniny Klippen Belt, West Carpathians, Poland: A stratigraphic synthesis. Ann. Soc. Geol. Pol. 2017, 87, 55–88. [Google Scholar] [CrossRef] [Green Version]
- Gedl, P. Organic-walled dinoflagellate cyst stratigraphy of dark Middle Jurassic marine deposition of the Pieniny Klippen Belt, West Carpathians. Stud. Geol. Pol. 2008, 131, 7–227. [Google Scholar]
- Plašienka, D. Continuity and Episodicity in the Early Alpine Tectonic Evolution of the Western Carpathians: How Large-Scale Processes Are Expressed by the Orogenic Architecture and Rock Record Data. Tectonics 2018, 37, 2020–2079. [Google Scholar] [CrossRef]
- Jurewicz, E.; Segit, T. The tectonics and stratigraphy of the transitional zone between the Pieniny Klippen Belt and Magura Nappe (Szczawnica area, Poland). Geol. Geoph. Environ. 2018, 44, 127–144. [Google Scholar] [CrossRef] [Green Version]
- Plašienka, D. Early stages of structural evolution of the Carpathian Klippen Belt (Slovakian Pieniny sector). Miner. Slovaca 2012, 44, 1–16. [Google Scholar]
- Plašienka, D.; Józsa, Š.; Gedl, P.; Madzin, J. Fault contact of the Pieniny Klippen Belt with the Central Carpathian Paleogene Basin (Western Carpathians): New data from a unique temporary exposure in Ľutina village (Eastern Slovakia). Geol. Capath. 2013, 64, 165–168. [Google Scholar] [CrossRef] [Green Version]
- Birkenmajer, K.; Myczyñski, R. Pilensbachian (Early Jurassic) fauna from the Pieniny Klippen Belt, Carpathians, Poland: Its strati graphic and palaeogeographic position. Bul. Pol. Acad. Sci. Earth Sci. 1994, 42, 223–245. [Google Scholar]
- Golonka, J.; Rączkowski, W. Explanations to the Detailed Geological Map of Poland, Sheet Piwniczna, 1:50,000; Polish Geological Institute: Warszawa, Poland, 1984. [Google Scholar]
- Oszczypko, N.; Malata, E.; Švábebenická, L.; Golonka, J.; Marko, F. Jurassic-Cretaeous controveries in the Western Carpathian flysch: The “black flysch” case study. Cretaceous Res. 2004, 25, 89–113. [Google Scholar] [CrossRef]
- International Organization for Standardization. 7404-5:2009 (Methods for the Petrographic Analysis of Coals—Part 5: Method of Determining the Reflectance of Vitrinite Microscopically); International Organization for Standardization: Geneva, Switzerland, 2009. [Google Scholar]
- American Society for Testing and Materials. ASTM D7708-11 (Standard Test Method for Microscopical Determination of the Reflectance of Vitrinite Dispersed in Sedimentary Rocks); American Society for Testing and Materials: West Conshohocken, PA, USA.
- ICCP (International Committee for Coal and Organic Petrology). New vitrinite classification (ICCP system 1994). Fuel 1998, 77, 349–358. [Google Scholar] [CrossRef]
- ICCP (International Committee for Coal and Organic Petrology). New inertinite classification (ICCP system 1994). Fuel 2001, 80, 459–471. [Google Scholar] [CrossRef]
- Pickel, W.; Kus, J.; Flores, D.; Kalaitzidis, S.; Christanis, K.; Cardott, B.J.; Misz-Kennan, M.; Rodrigues, S.; Hentschel, A.; Hamor-Vido, M.; et al. Classification of liptinite—ICCP System 1994. Int. J. Coal Geol. 2017, 169, 40–61. [Google Scholar] [CrossRef] [Green Version]
- Kotarba, M.J.; Więcław, D.; Bilkiewicz, E.; Dziadzio, P.; Kowalski, A. Genetic correlation of source rocks and natural gas in the Polish Outer Carpathians and Paleozoic–Mesozoic basement east of Kraków (southern Poland). Geol. Q. 2017, 61, 569–589. [Google Scholar] [CrossRef] [Green Version]
- Waliczek, M.; Machowski, G.; Więcław, D.; Konon, A.; Wandycz, P. Properties of solid bitumen and other organic matter from Oligocene shales of the Fore-Magura Unit in Polish Outer Carpathians: Microscopic and geochemical approach. Int. J. Coal Geol. 2019, 210, 103206. [Google Scholar] [CrossRef]
- Barker, C.E.; Pawlewicz, M.J. Calculation of vitrinite reflectance from thermal histories and peak temperatures, a comparison of methods. In Vitrinite Reflectance as a Maturity Parameter: Applications and Limitations; Mukhopadhyay, P.K., Dow, W.G., Eds.; American Chemical Society Symposium: Washington, DC, USA, 1994; Series 570; pp. 216–229. [Google Scholar]
- Barker, C.E. The influence of time on metamorphism of sedimentary organic matter is selected geothermal systems, Western North America. Geology 1983, 11, 384–388. [Google Scholar] [CrossRef]
- Barker, C.E. Temperature and time in the thermal maturation of sedimentary organic matter. In Thermal History of Sedimentary Basins: Methods and Case Histories; Neaser, N.D., McCulloh, T.H., Eds.; Springer: New York, NY, USA, 1989; pp. 73–98. [Google Scholar]
- Barker, C.E. Implications for organic matter maturation studies of evidence for a geologically rapid increase and stabilization of vitrinite reflectance at peak temperature: Cerro Prieto Geothermal System, Mexico. AAPG Bull. 1991, 75, 1852–1863. [Google Scholar]
- Burnham, A.K.; Sweeney, J.J. A chemical kinetic model of vitrinite maturation and reflectance. Geochim. Cosmochim. Acta 1989, 53, 2649–2657. [Google Scholar] [CrossRef]
- Dow, W.G.; O’Connor, D.J. Kerogen maturity and type by reflected light microscopy applied to petroleum exploration. In How to Asses Maturation and Palaeotemperatures; Staplin, F.L., Ed.; SEMP Short Course No. 7; Society of Economic Paleontologists and Mineralogists: Tulsa, OK, USA, 1987; pp. 133–157. [Google Scholar]
- Ercegovac, M.; Kostic, A.; Karg, H.; Welte, D.H.; Littke, R. Temperature and burial history modelling of the Drmno and Markovac depressions, SE Pannonian Basin, Serbia. J. Petrol. Geol. 2003, 26, 5–27. [Google Scholar] [CrossRef]
- Huang, W.L. Experimental study of vitrinite maturation: Effects of temperature, time, pressure, water and hydrogen index. Org. Geochem. 1996, 24, 233–241. [Google Scholar] [CrossRef]
- Waples, D.W. Thermal models for oil generation. In Advances in Petroleum Geochemistry; Brooks, J., Welte, D., Eds.; Academic Press: London, UK, 1984; pp. 7–67. [Google Scholar]
- Świerczewska, A. The interplay of the thermal and structural histories of the Magura nappe (Outer Carpathians) in Poland and Slovakia. Min. Polon. 2005, 36, 91–144. [Google Scholar]
- Peacock, S.M. Thermal and petrologic structure of subduction zones (overview). In Subduction Top to Bottom; Beobut, G.E., Scholl, D.W., Kirby, S.H., Platt, J.P., Eds.; American Geophysical Union: Washington, WA, USA, 1996; pp. 119–134. [Google Scholar]
- Kotulová, J. Relation Analysis of Thermal Alteration of Flysch Sediments in the Eastern Slovakian Part of Western Carpathians. Ph.D. Thesis, Comenius University in Bratislava, Bratislava, Slovakia, 2010. (In Slovak with English Summary). [Google Scholar]
- Florez, D.; Suárez-Ruiz, I. Organic Petrology in the Study of Dispersed Organic Matter. In The Role of Organic Petrology in the Exploration of Conventional and Unconventional Hydrocarbon Systems; Suárez-Ruiz, I., Filho, J.G.M., Eds.; Benthams Books: Sharjah, United Arab Emirates, 2017; Volume 43, pp. 37–46. [Google Scholar] [CrossRef]
- Suárez-Ruiz, I.; Flores, D.; Filho, J.G.M.; Hackley, P.C. Review and update of organic petrology: Part 1, geological application. Int. J. Coal Geol. 2012, 99, 54–112. [Google Scholar] [CrossRef]
- Costa, A.; Flores, D.; Suárez-Ruiz, I.; Pevida, C.; Rubiera, F.; Iglesias, M.J. The importance of thermal behavior and petrographic composition for understanding the characteristics of a Portuguese perhydrous Jurassic coal. Int. J. Coal Geol. 2010, 84, 237–247. [Google Scholar] [CrossRef]
- Iglesias, M.J.; del Río, J.C.; Laggoun-Defarge, F.; Cuesta, M.J.; Suarez-Ruiz, I. Control of the chemical structure in perhydrous coals by FTIR and Py-GC/MS. J. Anal. Appl. Pyrol. 2002, 62, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Zhang, E.; Hatcher, P.G.; Davis, A. Chemical composition of pseudo-phlobaphinite precursors: Implications for the presence of aliphatic biopolymers in vitrinite from coal. Org. Geochem. 1993, 20, 721–734. [Google Scholar] [CrossRef]
- Chen, Z.; Dewing, K.; Synnott, D.P.; Liu, X. Correcting Tmax suppression: A numerical model for removing adsorbed heavy oil and bitumen from Upper Ordovician source rocks, Arctic Canada. Energy Fuels 2019, 33, 6234–6246. [Google Scholar] [CrossRef]
- Hackley, P.C.; Lewan, M. Understanding and distinguishing reflectance measurements of solid bitumen and vitrinite using hydrous pyrolysis: Implications to petroleum assessment. AAPG Bull. 2018, 102, 1119–1140. [Google Scholar] [CrossRef]
- Peters, K.E.; Hackley, P.C.; Thomas, J.J.; Pomerantz, A.E. Suppression of vitrinite reflectance by bitumen generated from liptinite during hydrous pyrolysis of artificial source rock. Org. Geochem. 2018, 125, 220–228. [Google Scholar] [CrossRef]
- Goodarzi, F.; Snowdon, L.; Gentzis, T.; Pearson, D. Petrological and chemical characteristics of liptinite-rich coals from Alberta, Canada. Mar. Petrol. Geol. 1994, 11, 307–319. [Google Scholar] [CrossRef]
- Mastalerz, M.; Wilks, K.R.; Bustin, R.M. Variation in vitrinite chemistry as a function of associated liptinite content; a microprobe and FT-i.r. investigation. Org. Geochem. 1993, 20, 555–562. [Google Scholar] [CrossRef]
- Petersen, H.I.; Vosgerau, H. Composition and organic maturity of Middle Jurassic coals, North-East Greenland: Evidence for liptinite-induced suppression of huminite reflectance. Int. J. Coal Geol. 1999, 41, 257–274. [Google Scholar] [CrossRef]
- Quick, J.C. Iso-rank variation of vitrinite reflectance and fluorescence intensity. In Vitrinite Reflectance as a Maturity Parameter: Applications and Limitations; Mukhopadhyay, P.K., Dow, W.G., Eds.; American Chemical Society Symposium: Washington, WA, USA, 1994; Series 570; pp. 64–75. [Google Scholar]
- Benedict, L.G.; Thompson, R.R.; Shigo, J.J.; Aikaman, R.P. Pseudovitinite in Appalachan coking coals. Fuel 1968, 47, 125–143. [Google Scholar]
- Murchison, D.G.; Cook, A.C.; Raymond, A.C. Optical properties of organic matter in relation to thermal gradients and structural deformation. Philos. Trans. R. Soc. Lond. 1985, 315, 157–486. [Google Scholar]
- Nzoussi-Mbassani, P.; Copard, Y.; Disnar, J.R. Vitrinite recycling: Diagnostic criteria and reflectance changes during weathering and reburial. Int. J. Coal Geol. 2005, 61, 223–239. [Google Scholar] [CrossRef] [Green Version]
- Khavari-Khorasani, G.; Michelsen, J.K. Thermal evolution of solid bitumens, bitumen reflectance and kinetic modelling of reflectance: Application in petroleum and ore prospecting. Energy Sources 1993, 15, 181–204. [Google Scholar] [CrossRef]
- Anczkiewicz, A.A.; Świerczewska, A. Thermal history and exhumation of the Polish Western Outer Carpathians: Evidence from combined apatite fission track and illite-smectite data. In Proceedings of the 11th International Conference on Thermochronology, Anchorange, Alaska, 15–19 September 2008; pp. 1–4. [Google Scholar]
- Kalinowski, A.A.; Gurba, L.W. Interpretation of vitrinite reflectance-depth profiles in the Northern Denison Trough, Bowen Basin, Australia. Int. J. Coal. Geol. 2020, 219, 103364. [Google Scholar] [CrossRef]
- Hutton, A.C.; Cook, A.C. Influence of alginite on the reflectance of vitrinite from Joadja, N.S.W., and some other coals and oil shales containing alginate. Fuel 1980, 59, 711–714. [Google Scholar] [CrossRef]
- Kalkreuth, W. Rank and petrographic composition of selected Jurassic-Lower Cretaceous coals of British Columbia, Canada. Bull. Can. Pet. Geol. 1982, 30, 112–139. [Google Scholar]
- Walker, A.L.; McCulloch, T.H.; Petersen, N.F.; Stewert, R.J. Discrepancies between anomalously low reflectance of vitrinite and other maturation indicators from an Upper Miocene oil source rock, Los Angeles Basin, California. AAPG Bull. 1983, 67, 565. [Google Scholar]
- Newman, J.; Newman, N.A. Reflectance anomalies in Pike River coals: Evidence of variability in vitrinite type, with implications for maturation studies and “Suggate rank”. N. Z. J. Geol. Geophys. 1982, 25, 233–243. [Google Scholar] [CrossRef] [Green Version]
- Barker, C.E.; Lewan, M.D.; Pawlewicz, M.J. The influence of extractable organic matter on vitrinite reflectance suppression: A survey of kerogen and coal types. Int. J. Coal Geol. 2007, 70, 67–78. [Google Scholar] [CrossRef]
- Rizzi, M.; Hovikoski, J.; Schovsbo, N.H.; Therkelsen, J.; Olivarius, M.; Nytoft, H.P.; Nga, L.H.; Thuy, N.T.T.; Toan, D.M.; Bojesen-Koefoed, J.; et al. Factors controlling accumulation of organic carbon in a rift-lake, Oligocene Vietnam. Sci. Rep. 2020, 10, 14976. [Google Scholar] [CrossRef] [PubMed]
- Mazzoli, S.; Jankowski, L.; Szaniawski, R.; Zattin, M. Low-T thermochronometric evidence for post-thrusting (~11 Ma) exhumation in the Western Outer Carpathians, Poland. CR Geosci. 2010, 342, 162–169. [Google Scholar] [CrossRef]
- Botor, D.; Dunkl, I.; Rauch-Włodarska, M.; von Eynatten, H. Attempt to dating of accretion in the West Carpathian Flysch Belt: Apatite fission track thermochronology of tuff layers. Geolines 2006, 20, 21–23. [Google Scholar]
- Castelluccio, A.; Mazzoli, S.; Andreucci, B.; Jankowski, L.; Szaniawski, R.; Zattin, M. Building and exhumation of the Western Carpathians: New constraints from sequentially restored, balanced cross sections integrated with low-temperature thermochronometry. Tectonics 2016, 35, 2698–2733. [Google Scholar] [CrossRef]
- Zielińska, M. Organic-matter vitrinite reflectance variability in the Outer Carpathians, Poland: Relationship to tectonic evolution. Geol. Quart. 2017, 61, 214–226. [Google Scholar] [CrossRef] [Green Version]
- Sakaguchi, A. Thermal maturity in the Shimanto accretionary prism, southern Japan, with the thermal change with the subducting slab: Fluid inclusion and vitrinite reflectance study. Earth Planet. Sci. Lett. 1996, 173, 63–74. [Google Scholar]
- Andreucci, B.; Castelluccio, A.; Jankowski, L.; Mazzoli, S.; Szaniawski, R.; Zattin, M. Burial and exhumation history of the Polish Outer Carpathians: Discriminating the role of thrusting and post-thrusting extension. Tectonophysics 2013, 608, 866–883. [Google Scholar] [CrossRef]
- Săndulescu, M. Cenozoic tectonic history of the Carpathians, in The Pannonian Basin: A Study in Basin Evolution. AAPG Mem. 1988, 35, 17–25. [Google Scholar]
- Matenco, L.; Bertotti, G.; Leever, K.; Cloetingh, S.; Schmid, M.; Tărăpoancă, M.; Dinu, C. Large scale deformations at a locked collisional boundary: Coeval Pliocene-Quaternary differential tectonic movements in the foreland of the SE Carpathians. Tectonics 2007, 26, TC4011. [Google Scholar] [CrossRef] [Green Version]
- Bustin, R.M. Heating during thrust faulting in the Rocky Mountains: Friction of fiction? Tectonophysics 1983, 95, 309–328. [Google Scholar] [CrossRef]
- Gayer, R.; Fowler, R.; Davies, G. Coal rank variations related to major thrust detachments in South Wales coalfield: Implication of fluid flow and mineralization. In European Coal Geology and Technology; Geological Society of London: London, UK, 1997; Volume 125, pp. 161–178. [Google Scholar]
- O’Hara, K.; Hower, J.C.; Rimmer, S.M. Constraints on the emplacement and uplift history of the Pine Mountains thrust sheet, eastern Kentucky: Evidence from coal rank trends. J. Geol. 1990, 98, 43–51. [Google Scholar] [CrossRef]
- Sakaguchi, A.; Yanagihara, A.; Ujiie, K.; Tanaka, H.; Kameyarna, M. Thermal maturity of a fold-thrust belt based on vitrinite reflectance analysis in the Western Foothills complex, western Taiwan. Tectonophyscis 2007, 443, 220–232. [Google Scholar] [CrossRef]
Sample | Formation | VR (%) | Maceral Group | Other OM Petrographic Features | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Vitrinite | Vitrinite-Type | Inertinite | Liptinite | Pyritization | SB | OH | Oxidation | ||||
JJF1 | Jarmuta | flysch | 0.75 | A, B | p | p | a | a | |||
JJF2 | 0.83 | A, B | p | a | a | a | |||||
JJF3 | 0.58 | A, B | p | p | a | a | |||||
Hłsz1pw | Hałuszowa | 0.83 | A, B | p | a | a | a | ||||
Hłsz2 | 1.01 | A | p | a | p | a | |||||
SzWr1 | Wronine | hemipelagic deposits | n.d.* | a | a | a | p | ||||
SzWr2 | 0.88 | a | a | a | p | ||||||
SzfWr | 0.91 | C | a | a | a | p | |||||
SzKap1 | Kapuśnica | 0.80 | A | a | p | a | a | ||||
SzG1 | 0.76 | A, B, C | a | p | a | a | |||||
SzOp1 | Opaleniec | 0.67 | A, C | a | a | a | p | ||||
SzOp2 | 0.80 | A | a | a | a | p | |||||
HlOp | n.d. * | a | a | a | p | ||||||
DOp1 | 1.01 | A, C | a | a | a | a | |||||
DOp2 | 0.89 | A | a | a | a | p | |||||
DOp3 | 1.01 | A, C | a | a | a | a | |||||
DSzl1 | 0.79 | A, C | a | a | a | a | |||||
DSzl2 | 1.00 | A, C | a | a | a | a | |||||
Krt1 | n.d.* | A, C | a | a | a | a | |||||
BW2a | Szlachtowa flysch to hemipelagic deposits | 0.75 | A, B | p | a | a | a | ||||
BW2pb | 0.87 | A | p | p | p | a | |||||
JJF4 | 0.61 | A | p | p | a | a | |||||
JJF5 | 0.72 | A, B, C | p | p | a | a | |||||
SzSzl1 | 0.78 | A | p | p | a | a | |||||
SzSzl2 | 0.92 | A | p | a | a | a | |||||
SzSzl3 | 0.90 | A | p | p | a | a | |||||
SzSzl4 | 0.84 | A, B | p | p | a | a | |||||
Jar1 | 0.81 | A | p | p | p | a | |||||
SzlSzt1 | 0.78 | A, B | p | p | p | a | |||||
SzlSzt2 | 0.82 | A, B | p | p | p | a | |||||
SzlSzt3 | 0.79 | A, B | p | p | a | a | |||||
SzlSzt4 | 0.69 | A | p | p | a | a | |||||
SzlSzt5 | 0.75 | A | p | p | a | a | |||||
SzlSzt6 | 0.79 | A | p | a | a | a | |||||
SzlSzt7 | 0.97 | A | p | p | a | a | |||||
SzlKr1 | 0.72 | A | p | p | a | a | |||||
SzlKr2 | 0.85 | A, B | p | p | a | a | |||||
SzlKr3 | 0.86 | A, B | p | a | p | a | |||||
SzlKr4 | 0.76 | A, B | p | p | p | a | |||||
SzlKr5 | 0.74 | A | p | a | a | a | |||||
DSzl3 | 0.90 | A | p | p | a | a | |||||
DSzl4 | 1.10 | A | p | p | a | a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zielińska, M. Thermal Maturity of the Grajcarek Unit (Pieniny Klippen Belt): Insights for the Burial History of a Major Tectonic Boundary of the Western Carpathians. Minerals 2021, 11, 1245. https://doi.org/10.3390/min11111245
Zielińska M. Thermal Maturity of the Grajcarek Unit (Pieniny Klippen Belt): Insights for the Burial History of a Major Tectonic Boundary of the Western Carpathians. Minerals. 2021; 11(11):1245. https://doi.org/10.3390/min11111245
Chicago/Turabian StyleZielińska, Magdalena. 2021. "Thermal Maturity of the Grajcarek Unit (Pieniny Klippen Belt): Insights for the Burial History of a Major Tectonic Boundary of the Western Carpathians" Minerals 11, no. 11: 1245. https://doi.org/10.3390/min11111245
APA StyleZielińska, M. (2021). Thermal Maturity of the Grajcarek Unit (Pieniny Klippen Belt): Insights for the Burial History of a Major Tectonic Boundary of the Western Carpathians. Minerals, 11(11), 1245. https://doi.org/10.3390/min11111245