Seismic-Scale Evidence of Thrust-Perpendicular Normal Faulting in the Western Outer Carpathians, Poland
Abstract
:1. Introduction
2. Geological Settings
3. Data and Methods
3.1. Surface Data
3.2. Well Data
3.3. Seismic Data
4. Results
4.1. Surface Expression of the Rycerka Fault (RF)
4.2. Seismic Data Interpretation
5. Discussion—Deciphering the Faulting Mechanism
6. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Golonka, J.; Waśkowska, A.; Ślączka, A. The Western Outer Carpathians: Origin and evolution. Z. Dtsch. Ges. Geowiss. 2019, 170, 229–254. [Google Scholar] [CrossRef]
- Kováč, M.; Márton, E.; Oszczypko, N.; Vojtko, R.; Hók, J.; Králiková, S.; Plašienka, D.; Klučiar, T.; Hudáčková, N.; Oszczypko-Clowes, M. Neogene palaeogeography and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas. Glob. Planet. Chang. 2017, 155, 133–154. [Google Scholar] [CrossRef]
- Kováč, M.; Plašienka, D.; Soták, J.; Vojtko, R.; Oszczypko, N.; Less, G.; Ćosović, V.; Fügenschuh, B.; Králiková, S. Paleogene palaeogeography and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas. Glob. Planet. Chang. 2016, 140, 9–27. [Google Scholar] [CrossRef]
- Gągała, Ł.; Vergés, J.; Saura, E.; Malata, T.; Ringenbach, J.C.; Werner, P.; Krzywiec, P. Architecture and orogenic evolution of the northeastern Outer Carpathians from cross-section balancing and forward modeling. Tectonophysics 2012, 532, 223–241. [Google Scholar] [CrossRef]
- Schmid, S.M.; Fügenschuh, B.; Kounov, A.; Maţenco, L.; Nievergelt, P.; Oberhänsli, R.; Pleuger, J.; Schefer, S.; Schuster, R.; Tomljenović, B. Tectonic units of the Alpine collision zone between Eastern Alps and western Turkey. Gondwana Res. 2020, 78, 308–374. [Google Scholar] [CrossRef]
- Mancktelow, N.S. Neogene lateral extension during convergence in the Central Alps: Evidence from interrelated faulting and backfolding around the Simplonpass (Switzerland). Tectonophysics 1992, 215, 295–317. [Google Scholar] [CrossRef]
- Wawrzyniec, T.F.; Selverstone, J.; Axen, G.J. Styles of footwall uplift along the Simplon and Brenner normal fault systems, central and Eastern Alps. Tectonics 2001, 20, 748–770. [Google Scholar] [CrossRef]
- Campani, M.; Herman, F.; Mancktelow, N. Two-and three-dimensional thermal modeling of a low-angle detachment: Exhumation history of the Simplon Fault Zone, central Alps. J. Geophys. Res. Solid Earth 2010, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, C.L.; Garcia, S. Estimating displacement along the Brenner Fault and orogen-parallel extension in the Eastern Alps. Int. J. Earth Sci. 2011, 100, 1129–1145. [Google Scholar] [CrossRef]
- Unrug, R. Tectonic rotation of flysch nappes in the Polish Outer Carpathians. Ann. Soc. Geol. Pol. 1980, 50, 27–39. [Google Scholar]
- Aleksandrowski, P. A structure of the Mount Babia Góra region (Magura nappe, Western Outer Carpathians): An inference of West and East Carpathians fold trends. Ann. Soc. Geol. Pol. 1985, 55, 375–422. (In Polish) [Google Scholar]
- Morley, C.K. Models for relative motion of crustal blocks within the Carpathian region, based on restorations of the outer Carpathian thrust sheets. Tectonics 1996, 15, 885–904. [Google Scholar] [CrossRef]
- Rubinkiewicz, J. Development of fault pattern in the Silesian nappe: Eastern Outer Carpathians, Poland. Geol. Q. 2000, 44, 391–404. [Google Scholar]
- Jankowski, L.; Margielewski, W. Strukturalne uwarunkowania rozwoju rzeźby Karpat zewnȩtrznych—Nowe spojrzenie. Przeglad Geologiczny 2014, 62, 29–35. [Google Scholar]
- Jankowski, L.; Kopciowski, R.; Ryłko, W.; Małecka, J.; Ogrodowczyk, W.; Szewczyk, A. Geological Map of the Outer Carpathians: Borderlands of Poland, Ukraine and Slovakia: 1: 200000; Polish Geological Institute: Warsaw, Poland, 2004. [Google Scholar]
- Jankowski, L. Nowe Spojrzenie na Budowę Geologiczną Karpat—Ujęcie Dyskusyjne; Prace Naukowe Instytutu Nafty i Gazu: Kraków, Poland, 2015; pp. 1–154. [Google Scholar]
- Mazzoli, S.; Jankowski, L.; Szaniawski, R.; Zattin, M. Low-T thermochronometric evidence for post-thrusting (<11 Ma) exhumation in the Western Outer Carpathians, Poland. Comptes Rendus Geosci. 2010, 342, 162–169. [Google Scholar] [CrossRef]
- Zattin, M.; Andreucci, B.; Jankowski, L.; Mazzoli, S.; Szaniawski, R. Neogene exhumation in the Outer Western Carpathians. Terra Nova 2011, 23, 283–291. [Google Scholar] [CrossRef]
- Andreucci, B.; Castelluccio, A.; Jankowski, L.; Mazzoli, S.; Szaniawski, R.; Zattin, M. Burial and exhumation history of the Polish Outer Carpathians: Discriminating the role of thrusting and post-thrusting extension. Tectonophysics 2013, 608, 866–883. [Google Scholar] [CrossRef]
- Castelluccio, A.; Mazzoli, S.; Andreucci, B.; Jankowski, L.; Szaniawski, R.; Zattin, M. Building and exhumation of the Western Carpathians: New constraints from sequentially restored, balanced cross sections integrated with low-temperature thermochronometry. Tectonics 2016, 35, 2698–2733. [Google Scholar] [CrossRef]
- Zuchiewicz, W. Morphological development of the Beskid Niski Mts and Quaternary palaeogeography of the Polish Flysch Carpathians. Kwart. Geol. 1989, 33, 541–560. [Google Scholar]
- Zuchiewicz, W. Selected aspects of neotectonics of the Polish Carpathians. Folia Quat. 1995, 66, 145–204. [Google Scholar]
- Zuchiewicz, W. Przydatność metod morfometrycznych w ocenie tendencji neotektonicznych Karpat polskich. Przegląd Geologiczny 1999, 47, 851–854. [Google Scholar]
- Zuchiewicz, W.; Tokarski, A.K.; Jarosiński, M.; Márton, E. Late Miocene to present day structural development of the Polish segment of the Outer Carpathians. Stephan Mueller Spec. Publ. Ser. 2001, 3, 185–202. [Google Scholar] [CrossRef]
- Carey, S. The orocline concept in geotectonics—Part I. Pap. Proc. R. Soc. Tasman. 1955, 89, 255–288. [Google Scholar]
- Ries, A.C.; Shackleton, R.M. Patterns of Strain Variation in Arcuate Fold Belts. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 1976, 283, 281–288. [Google Scholar] [CrossRef]
- Eldredge, S.; Bachtadse, V.; Van der Voo, R. Paleomagnetism and the orocline hypothesis. Tectonophysics 1985, 119, 153–179. [Google Scholar] [CrossRef] [Green Version]
- Marshak, S. Kinematics of orocline and arc formation in thin-skinned orogens. Tectonics 1988, 7, 73–86. [Google Scholar] [CrossRef]
- Merle, O. Strain models within spreading nappes. Tectonophysics 1989, 165, 57–71. [Google Scholar] [CrossRef]
- Marshak, S.; Wilkerson, M.S.; Hsui, A.T. Generation of curved fold-thrust belts: Insight from simple physical and analytical models. In Thrust Tectonics; Springer: New York, NY, USA, 1992; pp. 83–92. [Google Scholar] [CrossRef]
- Ferrill, D.A.; Groshong, R.H. Kinematic model for the curvature of the northern Subalpine Chain, France. J. Struct. Geol. 1993, 15, 523–541. [Google Scholar] [CrossRef]
- Ratschbacher, L.; Linzer, H.G.; Moser, F.; Strusievicz, R.O.; Bedelean, H.; Har, N.; Mogoş, P.A. Cretaceous to Miocene thrusting and wrenching along the central South Carpathians due to a corner effect during collision and orocline formation. Tectonics 1993, 12, 855–873. [Google Scholar] [CrossRef]
- Coleman, M.E. Orogen-parallel and orogen-perpendicular extension in the central Nepalese Himalayas. Bull. Geol. Soc. Am. 1996, 108, 1594–1607. [Google Scholar] [CrossRef]
- Hindle, D.; Burkhard, M. Strain, displacement and rotation associated with the formation of curvature in fold belts; the example of the Jura arc. J. Struct. Geol. 1999, 21, 1089–1101. [Google Scholar] [CrossRef] [Green Version]
- Hindle, D.; Besson, O.; Burkhard, M. A model of displacement and strain for arc-shaped mountain belts applied to the Jura arc. J. Struct. Geol. 2000, 22, 1285–1296. [Google Scholar] [CrossRef] [Green Version]
- Johnston, S.T.; Mazzoli, S. The Calabrian Orocline: Buckling of a previously more linear orogen. Geol. Soc. Lond. Spec. Publ. 2009, 327, 113–125. [Google Scholar] [CrossRef]
- Johnston, S.T.; Weil, A.B.; Gutiérrez-Alonso, G. Oroclines: Thick and thin. Bulletin 2013, 125, 643–663. [Google Scholar] [CrossRef]
- Márton, E.; Grabowski, J.; Plašienka, D.; Túnyi, I.; Krobicki, M.; Haas, J.; Pethe, M. New paleomagnetic results from the Upper Cretaceous red marls of the Pieniny Klippen Belt, Western Carpathians: Evidence for general CCW rotation and implications for the origin of the structural arc formation. Tectonophysics 2013, 592, 1–13. [Google Scholar] [CrossRef]
- Cardello, G.L.; Almqvist, B.S.; Hirt, A.M.; Mancktelow, N.S. Determining the timing of formation of the Rawil Depression in the Helvetic Alps by palaeomagnetic and structural methods. Geol. Soc. Lond. Spec. Publ. 2016, 425, 145–168. [Google Scholar] [CrossRef]
- Jiménez-Bonilla, A.; Crespo-Blanc, A.; Balanyá, J.C.; Expósito, I.; Díaz-Azpiroz, M. Analog Models of Fold-and-Thrust Wedges in Progressive Arcs: A Comparison with the Gibraltar Arc External Wedge. Front. Earth Sci. 2020, 8. [Google Scholar] [CrossRef]
- Burchfiel, B.C. Eastern European Alpine system and the Carpathian orocline as an example of collision tectonics. Tectonophysics 1980, 63, 31–61. [Google Scholar] [CrossRef]
- Burchfiel, B.C.; Royden, L. Carpathian Foreland Fold and Thrust Belt and Its Relation to Pannonian and Other Basins. AAPG Bulletin 1982, 66, 1179–1195. [Google Scholar] [CrossRef]
- Kruczyk, J.; Ka̧dzialko-Hofmokl, M.; Lefeld, J.; Pagač, P.; Tunyi, I. Paleomagnetism of Jurassic sediments as evidence for oroclinal bending of the Inner West Carpathians. Tectonophysics 1992, 206, 315–324. [Google Scholar] [CrossRef]
- Zweigel, P. Arcuate accretionary wedge formation at convex plate margin corners: Results of sandbox analogue experiments. J. Struct. Geol. 1998, 20, 1597–1609. [Google Scholar] [CrossRef]
- Zweigel, P.; Ratschbacher, L.; Frisch, W. Kinematics of an arcuate fold-thrust belt: The southern Eastern Carpathians (Romania). Tectonophysics 1998, 297, 177–207. [Google Scholar] [CrossRef]
- Nemčok, M.; Dilov, T.; Wojtaszek, M.; Ludhová, L.; Klecker, R.A.; Sercombe, W.J.; Coward, M.P. Dynamics of the Polish and Eastern Slovakian parts of the Carpathian accretionary wedge: Insights from palaeostress analyses. Geol. Soc. Lond. Spec. Publ. 2007, 272, 271–302. [Google Scholar] [CrossRef]
- Shaw, J.; Johnston, S.T. The carpathian-balkan bends: An oroclinal record of ongoing Arabian-Eurasian collision. J. Virtual Explor. 2012, 43, 4. [Google Scholar] [CrossRef]
- Mahel, M. Tectonic Map of the Carpathian–Balkan Mountain System and Adjacent Areas; GÚDŠ: Bratislava, Slovakia, 1973. [Google Scholar]
- Rubinkiewicz, J. Fold-thrust-belt geometry and detailed structural evolution of the Silesian nappe—Eastern part of the Polish Outer Carpathians (Bieszczady Mts.). Acta Geol. Pol. 2007, 57, 479–508. [Google Scholar]
- Jankowski, L.; Probulski, J. Rozwój tektoniczno-basenowy Karpat zewnętrznych na przykładzie budowy geologicznej złóż Grabownica, Strachocina i Łodyna oraz ich otoczenia. Geologia—Akademia Górniczo-Hutnicza Im. Stanisława Staszica w Krakowie 2011, 37, 555–583. [Google Scholar]
- Beidinger, A.; Decker, K. Paleogene and Neogene kinematics of the Alpine-Carpathian fold-thrust belt at the Alpine-Carpathian transition. Tectonophysics 2016, 690, 263–287. [Google Scholar] [CrossRef]
- Golonka, J.; Gahagan, L.; Krobicki, M.; Marko, F.; Oszczypko, N.; Ślączka, A. Plate-tectonic Evolution and Paleogeography of the Circum-Carpathian Region. In The Carpathians and Their Foreland: Geology and Hydrocarbon Researches; AAPG Memoir 84. Golonka, J., Picha, F.J., Eds.; American Association of Petroleum Geologists: Tulsa, OK, USA, 2007; pp. 11–46. [Google Scholar] [CrossRef]
- Oszczypko, N. Late Jurassic-Miocene evolution of the Outer Carpathian fold-and-thrust belt and its foredeep basin (Western Carpathians, Poland). Geol. Q. 2006, 50, 169–194. [Google Scholar]
- Ślączka, A. Geologia Jednostki Dukielskiej; Prace Instytutu Geologicznego, Polish Geological Institute: Warszawa, Poland, 1971. [Google Scholar]
- Książkiewicz, M. The tectonics of the Carpathians. Geol. Pol. 1977, 4, 476–620. [Google Scholar]
- Siemińska, A.; Starzec, K.; Godlewski, P.; Wendorff, M. Sedimentary response to tectonic uplift of the Dukla basin margin recorded at Skrzydlna—The Menilite Beds (Oligocene), Outer Carpathians, S. Poland. Geol. Geophys. Environ. 2018, 44, 231. [Google Scholar] [CrossRef]
- Siemińska, A.; Starzec, K.; Waśkowska, A.; Wendorff, M. Sedimentary and diapiric mélanges in the Skrzydlna area (Outer Carpathians of Poland) as indicators of basinal and structural evolution. J. Geol. Soc. 2019, 177, 600–618. [Google Scholar] [CrossRef]
- Koszarski, L.; Sikora, W.; Wdowiarz, S. The Flysch Carpathians. Polish Carpathians. Tectonics of the Carpathian–Balkan Regions, Explanations to the Tectonic Map of the Carpathian-Balkan Regions and Their Foreland; Geologický Ústav Dionyza Štura: Bratislava, Slovakia, 1974; pp. 180–197. [Google Scholar]
- Ksiazkiewicz, M. Sedimentation in the Carpathian Flysch sea. Geologische Rundschau 1958, 47, 418–425. [Google Scholar] [CrossRef]
- Teták, F. The gravity flow dynamics of submarine fan sedimentation in the Magura Basin of the Western Carpathians (Magura Nappe, Slovakia). Geol. Carpathica 2010, 61, 201–209. [Google Scholar] [CrossRef] [Green Version]
- Pivko, D. Geology of Pilsko Mountain and surroundings (Flysch belt on northern Orava). Acta Geol. Univ. Comen. 2002, 57, 67–94. [Google Scholar]
- Oszczypko, N.; Malata, E.; Bąk, K.; Kędzierski, M.; Oszczypko-Clowes, M. Lithostratigraphy and biostratigraphy of the Upper Albian-Lower/Middle Eocene flysch deposits in the Bystrica and Rača subunits of the Magura Nappe (Beskid Wyspowy and Gorce Ranges; Poland). Ann. Soc. Geol. 2005, 75, 27–69. [Google Scholar]
- Sikora, W.; Żytko, K. Geology of the Beskid Wysoki Range south of Żywiec (Western Carpathians). Biuletyn Instytutu Geologicznego 1959, 141, 61–204, (In Polish, English Summary). [Google Scholar]
- Malata, E.; Malata, T.; Oszczypko, N. Litho-and biostratigraphy of the Magura Nappe in the eastern part of the Beskid Wyspowy Range (Polish Western Carpathians). Ann. Soc. Geol. Pol. 1996, 66, 269–284. [Google Scholar]
- Oszczypko, N. Late Cretaceous through Paleogene evolution of Magura Basin. Geol. Carpathica 1992, 43, 333–338. [Google Scholar]
- Waśkowska, A.; Golonka, J.; Starzec, K.; Cieszkowski, M. Campanian–Paleocene Jaworzynka Formation in its type area (Magura Nappe, Outer Carpathians). Acta Geol. Pol. 2021, 71, 345–370. [Google Scholar]
- Książkiewicz, M. Detailed Geological Map of Poland 1: 50,000. Sucha Beskidzka Sheet; Wyd. Geol.: Warsaw, Poland, 1974. (In Polish) [Google Scholar]
- Oszczypko, N. Stratigraphy of the Palaeogene deposits of the Bystrica subunit (Magura nappe, Polish Outer Carpathians). Bull. Pol. Acad. Sci. Earth Sci. 1991, 39, 415–431. [Google Scholar]
- Golonka, J.; Waśkowska, A. The Beloveža Formation of the Rača Unit in the Beskid Niski Mts. (Magura Nappe, Polish Flysch Carpathians) and adjacent parts of Slovakia and their equivalents in the western part of the Magura Nappe; Remarks on the Beloveža Formation—Hieroglyphic Beds. Geol. Q. 2012, 56, 821–832. [Google Scholar] [CrossRef] [Green Version]
- Starzec, K.; Schnabel, W.; Szotek, A.; Pastucha, M. Updating of the Geological Map in Frame of the Project: Seismic Data Aqusition „Sól 2D“; Geokrak Company Archives: Kraków, Poland, 2014. [Google Scholar]
- Barmuta, J.; Mikołajczak, M.; Starzec, K. Constraining depth and architecture of the crystalline basement based on potential field analysis—The westernmost polish outer carpathians. J. Geosci. 2019, 64, 161–177. [Google Scholar] [CrossRef]
- Burtan, J. Detailed Geological Map of Poland in Scale 1: 50.000, Wisła Sheet; Geological Institute: Warszawa, Poland, 1973. [Google Scholar]
- Burtan, J.; Sokołowski, S.; Sikora, W.; Żytko, K. Detailed Geological Map of Poland in Scale 1: 50.000 1: 50000, Milówka Sheet; Geological Institute: Warszawa, Poland, 1956. [Google Scholar]
- Ryłko, W.; Żytko, K.; Rączkowski, W. Detailed Geological Map of Poland in Scale 1: 50.000, Czadca-Ujsoły Sheet; Geological Institute: Warszawa, Poland, 1992. [Google Scholar]
- Cieszkowski, M.; Ślączka, A.; Wdowiarz, S. New data on structure of the Flysch Carpathians. Przegląd Geologiczny 1985, 33, 313–332. [Google Scholar]
- Starzec, K.; Barmuta, J.; Stefaniuk, M. The structure of the silesian and magura units in the westernmost polish outer carpathians. In International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management; SGEM. International: Sofia, Bulgaria, 2017; pp. 477–484. [Google Scholar] [CrossRef]
- Jarosiński, M. Contemporary stress field distortion in the Polish part of the Western Outer Carpathians and their basement. Tectonophysics 1998, 297, 91–119. [Google Scholar] [CrossRef]
- Jarosiński, M. Ongoing tectonic reactivation of the Outer Carpathians and its impact on the foreland: Results of borehole breakout measurements in Poland. Tectonophysics 2005, 410, 189–216. [Google Scholar] [CrossRef]
- Pini, G.A. Tectonosomes and olistostromes in the Argille Scagliose of the Northern Apennines, Italy. Geol. Soc. Am. 1999, 335. [Google Scholar] [CrossRef]
- Festa, A.; Dilek, Y.; Pini, G.A.; Codegone, G.; Ogata, K. Mechanisms and processes of stratal disruption and mixing in the development of mélanges and broken formations: Redefining and classifying mélanges. Tectonophysics 2012, 568–569, 7–24. [Google Scholar] [CrossRef]
- Festa, A.; Pini, G.A.; Dilek, Y.; Codegone, G.; Vezzani, L.; Ghisetti, F.; Lucente, C.C.; Ogata, K. Peri-Adriatic mélanges and their evolution in the Tethyan realm. Int. Geol. Rev. 2010, 52, 369–403. [Google Scholar] [CrossRef]
- Festa, A.; Pini, G.A.; Ogata, K.; Dilek, Y. Diagnostic features and field-criteria in recognition of tectonic, sedimentary and diapiric mélanges in orogenic belts and exhumed subduction-accretion complexes. Gondwana Res. 2019, 74, 7–30. [Google Scholar] [CrossRef]
- Starzec, K.; Malata, E.; Wronka, A.; Malina, L. Mélanges and broken formations at the boundary zone of the Magura and Silesian nappes (Gorlice area, Polish Outer Carpathians)—A result of sedimentary and tectonic processes. Geol. Q. 2015, 59, 169–178. [Google Scholar] [CrossRef] [Green Version]
- Vannucchi, P.; Maltman, A.; Bettelli, G.; Clennell, B. On the nature of scaly fabric and scaly clay. J. Struct. Geol. 2003, 25, 673–688. [Google Scholar] [CrossRef]
- Golonka, J.; Pietsch, K.; Marzec, P.; Stefaniuk, M.; Waskowska, A.; Cieszkowski, M. Tectonics of the western part of the Polish Outer Carpathians. Geodin. Acta 2009, 22, 127. [Google Scholar] [CrossRef] [Green Version]
- Mikołajczak, M.; Barmuta, J.; Ponikowska, M.; Mazur, S.; Starzec, K. Depth-to-basement study for the western Polish Outer Carpathians from three-dimensional joint inversion of gravity and magnetic data. J. Geosci. 2021, 66, 15–36. [Google Scholar] [CrossRef]
- Burbank, D.W.; Anderson, R.S. Tectonic Geomorphology; Wiley-Blackwell: Hoboken, NJ, USA, 2012. [Google Scholar] [CrossRef]
- Wallace, R.E. Geometry and rates of change of fault-generated range fronts, north-central Nevada. J. Res. USA Geol. Surv. 1978, 6, 637–649. [Google Scholar]
- Bull, W.B. Tectonic Geomorphology of Mountains: A New Approach to Paleoseismology; Blackwell Publishing Ltd.: Malden, MA, USA, 2007. [Google Scholar] [CrossRef]
- Jankowski, L.S.; Margielewski, W.; Ratajczak-Szczerba, M.; Urban, J. Strukturalne i Litofacjalne Uwarunkowania Rozwoju Rzeźby Polskich Karpat Zewnętrznych. III Warsztaty Geomorfologii Strukturalnej: Beskid Niski, Beskid Sądecki, Babia Góra, Dukla, Piwniczna, Zawoja, 25–28 Września 2012 r; Instytut Ochrony Przyrody, Polska Akademia Nauk: Kraków, Poland, 2012. [Google Scholar]
- Sanderson, D.J.; Marchini, W.R.D. Transpression. J. Struct. Geol. 1984, 6, 449–458. [Google Scholar] [CrossRef]
- Christie-Blick, N.; Biddle, K.T. Deformation and Basin Formation along Strike-Slip Faults. Strike-Slip Deformation, Basin Formation, and Sedimentation; SEPM: Tulsa, OK, USA, 1985; pp. 1–34. [Google Scholar]
- Sylvester, A.G. Strike-slip faults. Geol. Soc. Am. Bull. 1988, 100, 1666–1703. [Google Scholar] [CrossRef]
- Storti, F.; Billi, A.; Salvini, F. Particle size distributions in natural carbonate fault rocks: Insights for non-self-similar cataclasis. Earth Planet. Sci. Lett. 2003, 206, 173–186. [Google Scholar] [CrossRef]
- Segall, P.; Pollard, D.D. Faults Coyote Creek Fault trace Fold axis. J. Geophys. Res. 1980, 85, 4337–4350. [Google Scholar] [CrossRef]
- Myers, R.; Aydin, A. The evolution of faults formed by shearing across joint zones in sandstone. J. Struct. Geol. 2004, 26, 947–966. [Google Scholar] [CrossRef]
- Granier, T. Origin, damping, and pattern of development of faults in granite. Tectonics 1985, 4, 721–737. [Google Scholar] [CrossRef]
- Martel, S.J. Formation of compound strike-slip fault zones, Mount Abbot quadrangle, California. J. Struct. Geol. 1990, 12, 869–882. [Google Scholar] [CrossRef]
- De Joussineau, G.; Aydin, A. The evolution of the damage zone with fault growth in sandstone and its multiscale characteristics. J. Geophys. Res. Solid Earth 2007, 112, 1–19. [Google Scholar] [CrossRef]
- Butler, R.W.H. The terminology of structures in thrust belts. J. Struct. Geol. 1982, 4, 239–245. [Google Scholar] [CrossRef]
- Butler, R.W.H. Hangingwall strain: A function of duplex shape and footwall topography. Tectonophysics 1982, 88, 235–246. [Google Scholar] [CrossRef]
- Charlesworth, H.A.K.; Johnston, S.T.; Gagnon, L.G. Evolution of the triangle zone in the Rocky Mountain Foothills near Coalspur, central Alberta. Can. J. Earth Sci. 1987, 24, 1668–1678. [Google Scholar] [CrossRef]
- Baird, A.W.; Russell, A.J. Structural and stratigraphic perspectives on the uplift and erosional history of Djebel Cherichira and Oued Grigema, a segment of the Tunisian Atlas thrust front. Geol. Soc. Spec. Publ. 1999, 162, 127–142. [Google Scholar] [CrossRef]
- Elliott, D.; Johnson, M.R.W. Structural evolution in the northern part of the Moine thrust belt, NW Scotland. Trans. R. Soc. Edinb. Earth Sci. 1980, 71, 69–96. [Google Scholar] [CrossRef]
- Larrasoaña, J.C.; Parés, J.M.; Millán, H.; del Valle, J.; Pueyo, E.L. Paleomagnetic, structural, and stratigraphic constraints on transverse fault kinematics during basin inversion: The Pamplona Fault (Pyrenees, North Spain). Tectonics 2003, 22, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Searle, M.P.; Cooper, D.J.W.; Watts, K.F. Structure of the Jebel Sumeini-Jebel Ghawil area, Northern Oman. Geol. Soc. Spec. Publ. 1990, 49, 361–374. [Google Scholar] [CrossRef]
- Dahlstrom, C.D.A. Structural geology in the eastern margin of the Canadian Rocky Mountains. Bull. Can. Pet. Geol. 1970, 18, 332–406. [Google Scholar]
- Zhang, J.; Ding, L.; Zhong, D.; Zhou, Y. Orogen-parallel extension in Himalaya: Is it the indicator of collapse or the product in process of compressive uplift? Chin. Sci. Bull. 2000, 45, 114–120. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barmuta, J.; Starzec, K.; Schnabel, W. Seismic-Scale Evidence of Thrust-Perpendicular Normal Faulting in the Western Outer Carpathians, Poland. Minerals 2021, 11, 1252. https://doi.org/10.3390/min11111252
Barmuta J, Starzec K, Schnabel W. Seismic-Scale Evidence of Thrust-Perpendicular Normal Faulting in the Western Outer Carpathians, Poland. Minerals. 2021; 11(11):1252. https://doi.org/10.3390/min11111252
Chicago/Turabian StyleBarmuta, Jan, Krzysztof Starzec, and Wojciech Schnabel. 2021. "Seismic-Scale Evidence of Thrust-Perpendicular Normal Faulting in the Western Outer Carpathians, Poland" Minerals 11, no. 11: 1252. https://doi.org/10.3390/min11111252
APA StyleBarmuta, J., Starzec, K., & Schnabel, W. (2021). Seismic-Scale Evidence of Thrust-Perpendicular Normal Faulting in the Western Outer Carpathians, Poland. Minerals, 11(11), 1252. https://doi.org/10.3390/min11111252