Heavy Metal Content in the Plants (Pleurozium schreberi and Picea abies) of Environmentally Important Protected Areas of the Tatra National Park (the Central Western Carpathians, Poland)
Abstract
:1. Introduction
- they have a wide range of occurrence, in various habitats;
- they do not have a cuticle or an epidermis, thus, their leaves are easily permeable by metal ions;
- they are devoid of roots and conductive tissue, and they absorb mineral salts as well as heavy metal ions mainly from precipitation and dry deposition;
- they absorb metals mainly through a simple ion exchange process;
- the concentration of heavy metals in mosses is a function of the amount of heavy metal deposition from the air;
- some species have a multi-level structure, with annual increments forming distinct segments [24].
- wide geographic range;
- occurrence in various habitats;
- the presence of the annual growth of needles, making the registration of the concentration of chemical elements in various age ranges possible;
- ease of absorption of various components, especially sulphur and heavy metals, from atmospheric emissions.
2. Materials and Methods
2.1. Study Area
2.1.1. Kasprowy Wierch
2.1.2. Morskie Oko
2.2. Sampling and Analysis
2.2.1. Sampling
2.2.2. Chemical Analysis
2.2.3. Statistical Study
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nguyen, H.T.H.; Nguyen, B.Q.; Duong, T.T.; Bui, A.T.K.; Nguyen, H.T.A.; Cao, H.T.; Mai, N.T.; Nguyen, K.M.; Pham, T.T.; Kim, K.-W. Pilot-Scale Removal of Arsenic and Heavy Metals from Mining Wastewater Using Adsorption Combined with Constructed Wetland. Minerals 2019, 9, 379. [Google Scholar] [CrossRef] [Green Version]
- García-Lorenzo, M.L.; Crespo-Feo, E.; Esbrí, J.M.; Higueras, P.; Grau, P.; Crespo, I.; Sánchez-Donoso, R. Assessment of Potentially Toxic Elements in Technosols by Tailings Derived from Pb–Zn–Ag Mining Activities at San Quintín (Ciudad Real, Spain): Some Insights into the Importance of Integral Studies to Evaluate Metal Contamination Pollution Hazards. Minerals 2019, 9, 346. [Google Scholar] [CrossRef] [Green Version]
- Korzeniowska, J.; Panek, E. Trace Metal Concentrations in and Along the Road No. 7. Ecol. Chem. Eng. S 2019, 26, 651–663. [Google Scholar] [CrossRef] [Green Version]
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA; London, UK, 2001; pp. 15–204. [Google Scholar]
- Bergbäck, B.; Johansson, K.; Mohlander, U. Urban metal flows—A case study of Stockholm. Water Air Soil Pollut. 2001, 1, 3–24. [Google Scholar] [CrossRef]
- Sörme, L.; Bergbäck, B.; Lohm, U. Goods in the antroposphere as a metal emission source. Water Air Soil Pollut. 2001, 1, 213–227. [Google Scholar] [CrossRef]
- Lehndorf, E.; Schwark, L. Accumulation histories of major and trace elements on pine needles in the Cologne Conurbation as function of air Quality. Atmos. Environ. 2008, 42, 833–845. [Google Scholar] [CrossRef]
- Kowalska, J.; Gąsiorek, M.; Zadrożny, P.; Nicia, P.; Waroszewski, J. Deep Subsoil Storage of Trace Elements and Pollution Assessment in Mountain Podzols (Tatra Mts., Poland). Forests 2021, 12, 291. [Google Scholar] [CrossRef]
- Kubica, B.; Kwiatek, W.; Stobiński, M.; Skiba, S.; Skiba, M.; Gołaś, J.; Kubica, M.; Tuleja-Krysa, M.; Wrona, A.; Misiak, R.; et al. Concentration of 137Cs, 40K radionuclides and some heavy metals in soil samples from Chochołowska Valley from Tatra National Park. Pol. J. Environ. Stud. 2007, 16, 735–741. [Google Scholar]
- Miechówka, A.; Niemyska-Łukaszuk, J.; Ciarkowska, K. Heavy metals in selected non-forest soils from the Tatra National Park. Chem. Inżynieria Ekol. 2002, 9, 1433–1438. [Google Scholar]
- Miechówka, A.; Niemyska-Łukaszuk, J. Content diversity of Zb, Pb and Cd in Lithic Leptosols of the Tatra National Park (Poland). Oecologia Mont. 2004, 13, 1–5. [Google Scholar]
- Niemyska-Łukaszuk, J.; Miechówka, A.; Zadrożny, P. Całkowita zawartość ołowiu w profilach rankerów Tatrzańskiego Parku Narodowego [Total lead content in the profiles of rankers of the Tatra National Park]. Zesz. Probl. Postępów Nauk. Rol. 1999, 467, 429–437. [Google Scholar]
- Paukszto, A.; Mirosławski, J. Using stinging nettle (Urtica dioica L.) to assess the influence of long term emission upon pollution with metals of the Tatra National Park area (Poland). Atmos. Pollut. Res. 2019, 10, 73–79. [Google Scholar] [CrossRef]
- Staszewski, T.; Łukasik, W.; Kubiesa, P. Contamination of Polish national parks with heavy metals. Environ. Monit. Assess. 2012, 184, 4597–4608. [Google Scholar] [CrossRef]
- Stobiński, M.; Kubica, B. Chemometric analysis of 137Cs activity and heavy metals distribution in the Tatras’ soil. Int. J. Environ. Sci. Technol. 2017, 14, 1217–1224. [Google Scholar] [CrossRef]
- Świetlik, R.; Trojanowska, M.; Molik, A. Występowanie metali ciężkich (Cu, Ni, Pb i Zn) w mchach na terenie Kozienickiego Parku Krajobrazowego i Tatrzańskiego Parku Narodowego [Occurrence of heavy metals (Cu, Ni, Pb and Zn) in mosses in Kozienicki Landscape Park and Tatra National Park]. Monit. Sr. Przyr. 2016, 18, 71–81. [Google Scholar]
- Wieczorek, J.; Zadrożny, P. Content of Cd, Pb and Zn in Podzols Tatra National Park. Proc. ECOpole 2013, 7, 421–426. [Google Scholar] [CrossRef]
- Reimann, C.; Niskavaara, H.; Kashulina, G.; Filzmoser, P.; Boyd, R.; Volden, T.; Tomilina, O.; Bogatyrev, I. Critical remarks on the use of terrestrial moss (Hylocomium splendens and Pleurozium schreberi) for monitoring of airborne pollution. Environ. Pollut. 2001, 113, 41–57. [Google Scholar] [CrossRef]
- Świsłowski, P.; Kosior, G.; Rajfur, M. The influence of preparation methodology on the concentrations of heavy metals in Pleurozium schreberi moss samples prior to use in active biomonitoring studies. Environ Sci. Pollut. Res. 2021, 28, 10068–10076. [Google Scholar] [CrossRef] [PubMed]
- Cowden, P.; Aherne, J. Interspecies comparison of three moss species (Hylocomium splendens, Pleurozium schreberi, and Isothecium stoloniferum) as biomonitors of trace element deposition. Environ. Monit. Assess. 2019, 191, 220. [Google Scholar] [CrossRef]
- Nickel, S.; Schröder, W.; Schmalfuss, R.; Saathoff, M.; Harmens, H.; Mills, G.; Frontasyeva, M.V.; Barandovski, L.; Blum, O.; Carballeira, A.; et al. Modelling spatial patterns of correlations between concentrations of heavy metals in mosses and atmospheric deposition in 2010 across Europe. Environ. Sci. Eur. 2018, 30, 53. [Google Scholar] [CrossRef]
- Harmens, H.; Norris, D.; Sharps, K.; Mills, G.; Alber, R.; Aleksiayenak, Y.; Blum, O.; Cucu-Man, S.-M.; Dam, M.; De Temmerman, L.; et al. Heavy metal and nitrogen concentrations in mosses are declining across Europe whilst some “hotspots” remain in 2010. Environ. Pollut. 2015, 200, 93–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maňkovská, B.; Izakovičová, Z.; Oszlányi, J.; Frontasyeva, M. Temporal and spatial trends (1990–2010) of heavy metal accumulation in mosses in Slovakia. Biol. Divers. Conserv. 2017, 10, 28–32. [Google Scholar]
- Grodzińska, K. Long-term ecological monitoring in the National Parks of Poland. In Ecological Risks-Perspectives from Poland and United States; Grodziński, W., Cowling, E., Breymeyer, A., Eds.; National Academy Press: Washington, DC, USA, 1990; pp. 232–248. [Google Scholar]
- Čeburnis, D.; Steinnes, E. Conifer needles as biomonitors of atmospheric heavy metal deposition: Comparison with mosses and precipitation, role of the canopy. Atmos. Environ. 2000, 34, 4265–4271. [Google Scholar] [CrossRef]
- Viskari, E.; Kössi, S.; Holopainen, J. Norway spruce and spruce shoot aphid as indicators of traffic pollution. Environ. Pollut. 2000, 107, 305–314. [Google Scholar] [CrossRef]
- Trimbacher, C.; Weiss, P. Norway spruce: A novel method using surface characteristics and heavy metal concentrations of needles for a large-scale monitoring survey in Austria. Water Air Soil Pollut. 2004, 152, 363–386. [Google Scholar] [CrossRef]
- Suchara, I.; Sucharová, J.; Hola, M.; Reimann, C.; Boyd, R.; Filzmoser, P.; Englmaier, P. The performance of moss, grass, and 1- and 2-year old spruce needles as bio indicators of contamination: A comparative study at the scale of the Czech Republic. Sci. Total Environ. 2011, 409, 2281–2297. [Google Scholar] [CrossRef]
- Shetekauri, S.; Shetekauri, T.; Kvlividze, A.; Chaligava, O.; Kalabegishvili, T.; Kirkesali, E.; Frontasyeva, M.; Chepurchenko, O. Preliminary results of atmospheric deposition of major and trace elements in the greater and lesser Caucasus Mountains studied by the moss technique and neutron activation analysis. Ann. Di Bot. 2015, 5, 89–95. [Google Scholar] [CrossRef]
- Sahin, I.; Akcicek, E.; Guner, O.; Dogan, Y.; Ugulu, I. An investigation on determining heavy metal accumulation in plants growing at Kumalar Mountain in Turkey. Eurasia J. Biosci. 2016, 10, 22–29. [Google Scholar] [CrossRef]
- Zechmeister, H. Correlation between altitude and heavy metal deposition in the Alps. Environ. Pollut. 1995, 89, 73–80. [Google Scholar] [CrossRef]
- Šoltés, R. Correlation between altitude and heavy metal deposition in the Tatra Mts (Slovakia). Biologia 1998, 53, 85–90. [Google Scholar]
- Samecka-Cymerman, A.; Stankiewicz, A.; Kolon, K.; Kempers, A.; Musiał, M. Athyrium distentifolium used for bioindication at different altitudes in the Tatra National Park (South Poland). Ecotoxicol. Environ. Saf. 2012, 79, 184–188. [Google Scholar] [CrossRef]
- Panek, E. Trace Metals in Soils and in Selected Plant Species in Poland’s Carpathian Region; A Habilitation Dissertation at the AGH University of Science and Technology; AGH University of Science and Technology: Kraków, Poland, 2000; Volume 79, 106p. [Google Scholar]
- Kuklová, M.; Hniličková, H.; Hnilička, F.; Pivková, I.; Kukla, J. Toxic elements and energy accumulation in topsoil and plants of spruce ecosystems. Plant Soil Environ. 2017, 63, 402–408. [Google Scholar] [CrossRef] [Green Version]
- Solon, J.; Borzyszkowski, J.; Bidłasik, M.; Richling, A.; Badora, K.; Balon, J.; Brzezińska-Wójcik, T.; Chabudziński, Ł.; Dobrowolski, R.; Grzegorczyk, I.; et al. Physico-geographical mesoregions of Poland: Verifi cation and adjustment of boundaries on the basis of contemporary spatial data. Geogr. Pol. 2018, 91, 143–170. [Google Scholar] [CrossRef]
- Bac-Moszaszwili, M.; Burchart, J.; Głazek, J.; Iwanow, A.; Jaroszewski, W.; Kotański, Z.; Lefeld, J.; Mastella, L.; Ziomkowski, W.; Roniewicz, P.; et al. Mapa Geologiczna Tatr Polskich [Geological Map of the Polish Tatras] 1:30,000; Wydawnictwo Geologiczne: Warszawa, Poland, 1979. [Google Scholar]
- Piotrowska, K.; Kotański, Z.; Gawęda, A.; Piotrowski, J.; Rączkowski, W. Szczegółowa Mapa Geologiczna Polski. Arkusz Tatry Zachodnie [Detailed Geological Map of Poland. The Western Tatras Sheet]; NAG, PGI-NRI: Warsaw, Poland, 2008. [Google Scholar]
- Piotrowska, K.; Michalik, M.; Rączkowski, W.; Iwanow, A.; Wójcik, A.; Derkacz, M.; Wasiluk, R. Szczegółowa Mapa Geologiczna Polski. Arkusz Tatry Wysokie [Detailed Geological Map of Poland. The High Tatras Sheet]; NAG, PIG-PIB: Warszawa, Poland, 2013. [Google Scholar]
- Kotarba, A.; Kaszowski, L.; Krzemień, K. High-Mountain Denudational System in the Polish Tatra Mountains: Geographical Studies; Ossolineum: Wrocław, Poland, 1987; pp. 1–106. [Google Scholar]
- Klimaszewski, M. Rzeźba Tatr Polskich 1988 [Geomorphologic Relief in the Polish Part of Tatras]; Wydawnictwo PWN: Warszawa, Poland, 1988; pp. 1–707. [Google Scholar]
- Hreško, J.; Boltizar, M.; Bugar, G. The present-day development of landforms and landcover in alpine environment—Tatra Mts (Slovakia). Studia Geomorphol. Carpatho-Balc. 2005, 39, 23–48. [Google Scholar]
- Niedźwiedź, T. Sytuacje Synoptyczne i Ich Wpływ na Zróżnicowanie Przestrzenne Wybranych Elementów Klimatu w Dorzeczu Górnej Wisły [Synoptic Situations and Their Impact on the Spatial Variability of Selected Climate Elements in the Upper Vistula Basin]; A Habilitation Dissertation at the Jagiellonian University; Jagiellonian University: Kazimierz, Poland, 1981; Volume 58, 165p. [Google Scholar]
- Niedźwiedź, T. Climate of the Tatra Mountains. Mt. Res. Dev. 1992, 12, 131–146. [Google Scholar] [CrossRef]
- Drewnik, M. Geomorfologiczne Uwarunkowania Rozwoju Pokrywy Glebowej w Obszarach Górskich na Przykładzie Tatr [Geomorphological Conditions of the Development of the Soil Cover in Mountain Areas on the Example of the Tatra Mountains]; Wydawnictwo UJ: Kraków, Poland, 2008. [Google Scholar]
- Troll, C. High mountain belts between the polar caps and the equator: Their definition and lower limit. Arct. Alp. Res. 1973, 5, 19–28. Available online: https://www.jstor.org/stable/1550149 (accessed on 23 June 2021).
- Balon, J.; Jodłowski, M.; Krąż, P. The Tatra Mountains: Physico-geographical regions. In Atlas of the Tatr Mountains–Abiotic Nature; Plate I.4; Dąbrowska, K., Guzik, M., Eds.; Tatra National Park: Tatra County, Poland, 2015. [Google Scholar]
- Żmudzka, E.; Nejedlik, P.; Mikulova, K. Temperature, thermal indices. In Atlas of the Tatr Mountains–Abiotic Nature; Plate III.2; Dąbrowska, K., Guzik, M., Eds.; Tatra National Park: Tatra County, Poland, 2015. [Google Scholar]
- Ustrnul, Z.; Walawender, E.; Czekierda, D.; Štasny, P.; Lapin, M.; Mikulova, K. Precipitation and snow cover. In Atlas of The Tatr Mountains–Abiotic Nature; Plate III.3; Dąbrowska, K., Guzik, M., Eds.; Tatra National Park: Tatra County, Poland, 2015. [Google Scholar]
- Skiba, S.; Koreň, M.; Drewnik, M.; Kukla, J. Soils. In Atlas of the Tatr Mountains–Abiotic Nature; Plate V; Dąbrowska, K., Guzik, M., Eds.; Tatra National Park: Tatra County, Poland, 2015. [Google Scholar]
- Maňkovska, B.; Godzik, B.; Badea, O.; Shiparyk, Y.; Moravcik, P. Chemical and morphological characteristic of key tree species in the Carpathian Mountains. Environ. Pollut. 2004, 130, 41–54. [Google Scholar] [CrossRef]
- Sawidis, T.; Breuste, J.; Mitrovic, M.; Pavlovic, P.; Tsigaridas, K. Trees as bio indicator of heavy metal pollution in three European cities. Environ. Pollut. 2011, 159, 3560–3570. [Google Scholar] [CrossRef]
- Korzeniowska, J.; Krąż, P. Heavy Metals Content in the Soils of the Tatra National Park Near Lake Morskie Oko and Kasprowy Wierch—A Case Study (Tatra Mts, Central Europe). Minerals 2020, 10, 1120. [Google Scholar] [CrossRef]
- Frontasyeva, M.; Harmens, H.; Uzhinskiy, A.; Chaligava, O.; Participants of the Moss Survey. Mosses as biomonitors of air pollution: 2015/2016 survey on heavy metals, nitrogen and POPs in Europe and beyond. In Report of the ICP Vegetation Moss Survey Coordination Centre; Joint Institute for Nuclear Research: Dubna, Russia, 2020; p. 136. ISBN 978-5-9530-0508-1. [Google Scholar]
- Kosior, G.; Samecka-Cymerman, A.; Kolon, K.; Kempers, A. Bioindication capacity of metal pollution of native and transplanted Pleurozium schreberi under various levels of pollution. Chemosphere 2010, 81, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Parzych, A. Accumulation of heavy metals in moss species Pleurozium schreberi (Brid.) Mitt. and Hylocomium splendens (Hedw.) B.S.G. in Słowiński National Park. J. Elem. 2014, 19, 471–482. [Google Scholar] [CrossRef]
- Gerdol, R.; Bragazza, L. Effects of altitude on element accumulation in alpine moss. Chemosphere 2006, 64, 810–816. [Google Scholar] [CrossRef] [PubMed]
- Kovář, P. Conceptions of landscape ecological relevance emerged in the Czech botany during the second half of twentieth century. J. Landsc. Ecol. 2015, 8, 40–50. [Google Scholar] [CrossRef] [Green Version]
Sample Number | Altitude [Meters above Sea Level] | Geographical Coordinates | Dominant Area Exposure | Terrain Slope Grade | Land Cover Features | Geological Structure [38,39] | Physico-Geographical Mesoregion [36] |
---|---|---|---|---|---|---|---|
1 | 1100 | 49°15.572′ N 19°59.322′ E | NE | 20–30° | Coniferous forest, spruce forest | Boulders, gravel, sand, and silts of stones and river terraces 0.5–3.0 m high, e.g., rivers (Holocene) | The Reglowe Tatras |
2 | 1200 | 49°15.424′ N 19°59.645′ E | N | 30–40° | Coniferous forest, spruce forest | Dolomites, limestones, siltstones, and breccia (Lower Triassic) | The Reglowe Tatras |
3 | 1300 | 49°15.254′ N 19°59.681′ E | W | 20–30° | Glade (area covered with grasses, sedges, herbaceous plants) | Dolomites, limestones, siltstones, and breccia (Lower Triassic) | The Reglowe Tatras |
4 | 1400 | 49°15.252′ N 19°59.908′ E | NW | 20–30° | Rows and groups of the Norway spruce or the Swiss pine in the mountain pine, dense clumps of Norway spruce in the mountain pine | Dolomites and limestones, undivided (Middle Triassic) | The Reglowe Tatras |
5 | 1550 | 49°14.497′ N 20°00.097′ E | N | 0–10° | Glade (area covered with grasses, sedges, herbaceous plants) | Boulders, moraine rock debris, clayey (Pleistocene) | Western Tatras |
6 | 1650 | 49°14.133′ N 19°59.671′ E | SE | 20–30° | The mountain pine, glade (area covered with grasses, sedges, herbaceous plants) | Porphyry granites (Carbon) | Western Tatras |
7 | 1750 | 49°14.013′ N 19°59.446′ E | E | 10–20° | The mountain pine, glade (area covered with grasses, sedges, herbaceous plants) | Boulders and rock debris of rubble cones (screes) (Quaternary) | Western Tatras |
Sample Number | Altitude [Meters above Sea Level] | Geographical Coordinates | Dominant Area Exposure | Terrain Slope Grade | Land Cover Features | Geological Structure | Physico-Geographical Mesoregion [36] |
---|---|---|---|---|---|---|---|
8 | 1000 | 49°15.065′ N 20°05.898′ E | SE | 0–10° | Coniferous forest, spruce forest | Boulders, gravel, sand, clayey sands, and silts of cones, of fluvioglacial levels, and terraces 12.0–15.0 m high, e.g., rivers (Pleistocene) | High Tatras |
9 | 1100 | 49°13.984′ N 20°05.524′ E | NE | 20–30° | Coniferous forest, spruce forest | Granodiorites and tonalities, equal grained, grey (Carbon) | High Tatras |
10 | 1200 | 49°13.270′ N 20°05.647′ E | NE | 0–10° | Young Norway spruce stand | Boulders, moraine rock debris, clayey (Pleistocene) | High Tatras |
11 | 1300 | 49°12.893′ N 20°04.867′ E | NE | 10–20° | Coniferous forest, spruce forest | Boulders, rock debris, and silts of dump and alluvial cones (Pleistocene-Holocene) | High Tatras |
12 | 1400 | 49°12.021′ N 20°04.115′ E | E | 10–20° | Coniferous forest, spruce forest | Boulders, rock debris, and silts of dump and alluvial cones (Pleistocene-Holocene) | High Tatras |
Species | Research Site | Cd | Cr | Cu | Ni | Pb | Zn |
---|---|---|---|---|---|---|---|
Moss | MO | 1.3 | 1.2 | 1.2 | 1.3 | 1.2 | 1.2 |
KW | 1.5 | 1.4 | 1.5 | 1.5 | 1.4 | 1.3 | |
Norway spruce | MO | 1.2 | 1.2 | 1.3 | 1.2 | 1.2 | 1.2 |
KW | 1.6 | 1.5 | 1.6 | 1.7 | 1.7 | 1.5 |
Metal | Moss | Norway Spruce | ||||||
---|---|---|---|---|---|---|---|---|
MO | KW | MO | KW | |||||
Spearman’s | Kendall’s | Spearman’s | Kendall’s | Spearman’s | Kendall’s | Spearman’s | Kendall’s | |
Cd | 0.26259 | 0.19887 | 0.33778 | 0.25776 | 0.22449 | 0.16848 | 0.40877 | 0.32051 |
p | 0.0654 | 0.0661 | 0.0042 | 0.0037 | 0.1170 | 0.1185 | 0.0004 | 0.0003 |
Cr | 0.23334 | 0.18348 | 0.36764 | 0.29170 | 0.18775 | 0.13722 | 0.37305 | 0.27619 |
p | 0.1029 | 0.0838 | 0.0017 | 0.0008 | 0.1917 | 0.1963 | 0.0015 | 0.0015 |
Cu | 0.21225 | 0.17629 | 0.43813 | 0.33968 | 0.27554 | 0.21572 | 0.33454 | 0.25811 |
p | 0.1389 | 0.0969 | 0.0001 | 0.0001 | 0.0528 | 0.0425 | 0.0046 | 0.0030 |
Ni | 0.28137 | 0.22182 | 0.43869 | 0.32976 | 0.19064 | 0.14316 | 0.43630 | 0.33837 |
p | 0.0478 | 0.0368 | 0.0001 | 0.0002 | 0.1848 | 0.1764 | 0.0002 | 0.0001 |
Pb | 0.24461 | 0.19711 | 0.40418 | 0.30308 | 0.19067 | 0.14885 | 0.48218 | 0.36990 |
p | 0.0869 | 0.0633 | 0.0005 | 0.0005 | 0.1847 | 0.1605 | 0.0001 | 0.0001 |
Zn | 0.24894 | 0.19186 | 0.41102 | 0.30760 | 0.18769 | 0.14395 | 0.33803 | 0.25094 |
p | 0.0813 | 0.0697 | 0.0004 | 0.0004 | 0.1918 | 0.1737 | 0.0042 | 0.0039 |
Metal | Moss | Norway Spruce | ||||||
---|---|---|---|---|---|---|---|---|
KW | MO | KW | MO | |||||
Spearman’s | Kendall’s | Spearman’s | Kendall’s | Spearman’s | Kendall’s | Spearman’s | Kendall’s | |
Cd | 0.99103 | 0.97590 | 0.90000 | 0.80000 | 0.96429 | 0.90476 | 0.70000 | 0.60000 |
p | 0.0001 | 0.0024 | 0.0374 | 0.0500 | 0.0005 | 0.0043 | 0.1881 | 0.1416 |
Cr | 0.96429 | 0.90476 | 0.70000 | 0.60000 | 0.96429 | 0.90476 | 1.00000 | 1.00000 |
p | 0.0005 | 0.0043 | 0.1881 | 0.1416 | 0.0005 | 0.0043 | 0.0001 | 0.0143 |
Cu | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
p | 0.0001 | 0.0016 | 0.0001 | 0.0143 | 0.0001 | 0.0016 | 0.0001 | 0.0143 |
Ni | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
p | 0.0001 | 0.0016 | 0.0001 | 0.0143 | 0.0001 | 0.0016 | 0.0001 | 0.0143 |
Pb | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
p | 0.0001 | 0.0016 | 0.0001 | 0.0143 | 0.0001 | 0.0016 | 0.0001 | 0.0143 |
Zn | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 0.90000 | 0.80000 |
p | 0.0001 | 0.0016 | 0.0001 | 0.0143 | 0.0001 | 0.0016 | 0.0374 | 0.0500 |
Tested Area | Sample Number | Species of Plants | The Bioconcentration Factor (BCF) | |||||
---|---|---|---|---|---|---|---|---|
Cd | Cr | Cu | Ni | Pb | Zn | |||
KW | 1 | Moss | 1.1 | 0.3 | 0.9 | 0.5 | 0.1 | 0.4 |
Norway spruce | 0.8 | 0.2 | 0.7 | 0.5 | 0.1 | 0.2 | ||
2 | Moss | 1.3 | 0.4 | 1.0 | 0.6 | 0.1 | 0.4 | |
Norway spruce | 1.0 | 0.3 | 0.8 | 0.6 | 0.1 | 0.2 | ||
3 | Moss | 1.4 | 0.4 | 1.2 | 0.8 | 0.2 | 0.5 | |
Norway spruce | 1.0 | 0.3 | 0.9 | 0.7 | 0.1 | 0.3 | ||
4 | Moss | 1.9 | 0.5 | 2.1 | 1.3 | 0.2 | 0.6 | |
Norway spruce | 1.4 | 0.4 | 1.7 | 1.4 | 0.1 | 0.4 | ||
5 | Moss | 2.6 | 0.6 | 2.6 | 1.8 | 0.2 | 0.7 | |
Norway spruce | 2.1 | 0.5 | 2.1 | 1.9 | 0.1 | 0.4 | ||
6 | Moss | 2.7 | 0.6 | 3.8 | 1.8 | 0.3 | 0.7 | |
Norway spruce | 2.4 | 0.5 | 3.0 | 1.9 | 0.2 | 0.5 | ||
7 | Moss | 4.2 | 0.8 | 4.3 | 2.3 | 0.4 | 0.8 | |
Norway spruce | 3.6 | 0.7 | 3.5 | 2.3 | 0.3 | 0.5 | ||
MO | 8 | Moss | 1.5 | 0.7 | 1.2 | 2.6 | 0.2 | 0.5 |
Norway spruce | 1.2 | 0.5 | 0.8 | 2.0 | 0.1 | 0.3 | ||
9 | Moss | 1.9 | 0.8 | 1.5 | 3.1 | 0.2 | 0.6 | |
Norway spruce | 1.5 | 0.6 | 1.0 | 2.4 | 0.1 | 0.4 | ||
10 | Moss | 2.4 | 0.8 | 1.6 | 3.4 | 0.3 | 0.8 | |
Norway spruce | 1.7 | 0.6 | 1.1 | 2.5 | 0.1 | 0.5 | ||
11 | Moss | 3.8 | 0.9 | 1.9 | 5.8 | 0.3 | 1.0 | |
Norway spruce | 2.8 | 0.7 | 1.2 | 4.3 | 0.1 | 0.7 | ||
12 | Moss | 5.0 | 1.0 | 2.3 | 7.0 | 0.3 | 1.5 | |
Norway spruce | 3.8 | 0.8 | 1.6 | 5.3 | 0.2 | 0.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korzeniowska, J.; Krąż, P.; Dorocki, S. Heavy Metal Content in the Plants (Pleurozium schreberi and Picea abies) of Environmentally Important Protected Areas of the Tatra National Park (the Central Western Carpathians, Poland). Minerals 2021, 11, 1231. https://doi.org/10.3390/min11111231
Korzeniowska J, Krąż P, Dorocki S. Heavy Metal Content in the Plants (Pleurozium schreberi and Picea abies) of Environmentally Important Protected Areas of the Tatra National Park (the Central Western Carpathians, Poland). Minerals. 2021; 11(11):1231. https://doi.org/10.3390/min11111231
Chicago/Turabian StyleKorzeniowska, Joanna, Paweł Krąż, and Sławomir Dorocki. 2021. "Heavy Metal Content in the Plants (Pleurozium schreberi and Picea abies) of Environmentally Important Protected Areas of the Tatra National Park (the Central Western Carpathians, Poland)" Minerals 11, no. 11: 1231. https://doi.org/10.3390/min11111231
APA StyleKorzeniowska, J., Krąż, P., & Dorocki, S. (2021). Heavy Metal Content in the Plants (Pleurozium schreberi and Picea abies) of Environmentally Important Protected Areas of the Tatra National Park (the Central Western Carpathians, Poland). Minerals, 11(11), 1231. https://doi.org/10.3390/min11111231