Ge-Hg-Rich Sphalerite and Pb, Sb, As, Hg, and Ag Sulfide Assemblages in Mud Volcanoes of Sakhalin Island, Russia: An Insight into Possible Origin
Abstract
:1. Introduction
2. Background Geology
2.1. Local Geology
2.2. Local Metallogeny
3. Sampling Sites
3.1. Pugachev Mud Volcano
3.2. South Sakhalin Mud Volcano
4. Methods
4.1. Sampling
4.2. Analytical Procedures
5. Results
5.1. General Characteristic of Eruption Products of Pugachev and South Sakhalin MVs
5.2. Heavy Fractions in Ejecta of Sakhalin MVs: Mineralogy and Geochemistry
5.2.1. FeS2 Modifications
5.2.2. Pb, Sb, As, Hg, Cu, and Ag Hosts
5.3. Sphalerite
5.3.1. Morphology
5.3.2. Chemistry
5.3.3. X-ray Diffraction and Crystal Structure
5.3.4. Raman Spectroscopy
6. Discussion
6.1. Trace-Element Fingerprints of Sakhalin MV Sphalerites
6.2. Hg and Ge in the ZnS Structure
6.3. Conditions of Sulfide Mineralization and Sources of Material in Ejecta of Sakhalin MVs
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cook, N.J.; Ciobanu, C.L.; Pring, A.; Skinner, W.; Shimizu, M.; Danyushevsky, L.; Saini-Eidukat, B.; Melcher, F. Trace and minor elements in sphalerite: A LA-ICPMS study. Geochim. Cosmochim. Act. 2009, 73, 4761–4791. [Google Scholar] [CrossRef]
- Grammatikopoulos, T.A.; Valeyev, O.; Roth, T. Compositional variation in Hg-bearing sphalerite from the polymetallic Eskay Creek deposit, British Columbia, Canada. Geochemistry 2006, 66, 307–314. [Google Scholar] [CrossRef]
- Vasil’ev, V.I. New data on the composition of metacinnabar and Hg-sphalerite with an isomorphous Cd admixture. Russ. Geol. Geophys. 2011, 52, 701–708. [Google Scholar] [CrossRef]
- Dini, A.; Benvenuti, M.; Lattanzi, P.; Tanelli, G. Mineral assemblages in the hg-Zn-(Fe)-S system at Levigliani, Tuscany, Italy. Eur. J. Miner. 1995, 7, 417–428. [Google Scholar] [CrossRef] [Green Version]
- Costagliola, P.; Benvenuti, M.; Tanelli, G.; Cortecci, G.; Lattanzi, P. The barite-pyrite-iron oxides deposit of Monte Arsiccio (Apuane Alps). Geological setting, mineralogy, fluid inclusions, stable isotopes and genesis. Boll. Della Soc. Geol. Ital. 1990, 109, 267–277. [Google Scholar]
- Leonard, B.F.; Desborough, G.A. Polhemusite, a new Hg-Zn sulfide from Idaho. Am. Mineralog. 1978, 63, 1153–1161. [Google Scholar]
- Höll, R.; Kling, M.; Schroll, E. Metallogenesis of germanium—A review. Ore Geol. Rev. 2007, 30, 145–180. [Google Scholar] [CrossRef]
- Ye, L.; Cook, N.J.; Ciobanu, C.L.; Yuping, L.; Qian, Z.; Tiegeng, L.; Wei, G.; Yulong, Y.; Danyushevskiy, L. Trace and minor elementsin sphalerite from base metal deposits in South China: A LA-ICPMS study. Ore Geol. Rev. 2011, 39, 188–217. [Google Scholar] [CrossRef]
- Belissont, R.; Boiron, M.C.; Luais, B.; Cathelineau, M. LA-ICP-MS analyses of minor and trace elements and bulk Ge isotopes in zoned Ge-rich sphalerites from the Noailhac-Saint-Salvy deposit (France): Insights into incorporation mechanisms and ore deposition processes. Geochim. Cosmochim. Acta 2014, 126, 518–540. [Google Scholar] [CrossRef]
- Bonnet, J.; Cauzid, J.; Testemale, D.; Kieffer, I.; Proux, O.; Lecomte, A.; Bailly, L. Characterization of germanium speciation in sphalerite (ZnS) from Central and Eastern Tennessee, USA, by X-ray absorption spectroscopy. Minerals 2017, 7, 79. [Google Scholar] [CrossRef] [Green Version]
- Wei, C.; Ye, L.; Hu, Y.; Danyushevskiy, L.; Li, Z.; Huang, Z. Distribution and occurrence of Ge and related trace elements in sphalerite from the Lehong carbonate-hosted Zn-Pb deposit, northeastern Yunnan, China: Insights from SEM and LA-ICP-MS studies. Ore Geol. Rev. 2019, 115, 103175. [Google Scholar] [CrossRef]
- Liu, T.; Zhu, C.; Yang, G.; Zhang, G.; Fan, H.; Zhang, Y.; Wen, H. Primary study of germanium isotope composition in sphalerite from the Fule Pb-Zn deposit, Yunnan province. Ore Geol. Rev. 2020, 120, 103466. [Google Scholar] [CrossRef]
- Saini-Eidukat, B.; Melcher, F.; Lodziak, J. Zinc-germanium ores of the Tres Marias mine, Chihuahua, Mexico. Miner. Depos. 2009, 44, 363–370. [Google Scholar] [CrossRef]
- Cook, N.J.; Etschmann, B.; Ciobanu, C.L.; Geraki, K.; Howard, D.L.; Williams, T.; Rae, N.; Pring, F.; Chen, G.; Johannessen, B.; et al. Distribution and substitution mechanism of Ge in a Ge-(Fe)-bearing sphalerite. Minerals 2015, 5, 117–132. [Google Scholar] [CrossRef] [Green Version]
- Goldmann, S.; Junge, M.; Wirth, R.; Schreiber, A. Distribution of trace elements in sphalerite and arsenopyrite on the nanometre-scale-discrete phases versus solid solution. Eur. J. Mineral. 2019, 31, 325–333. [Google Scholar] [CrossRef] [Green Version]
- Bauer, M.E.; Burisch, M.; Ostendorf, J.; Krause, J.; Frenzel, M.; Seifert, T.; Gutzmer, J. Trace element geochemistry of sphalerite in contrasting hydrothermal fluid systems of the Freiberg district, Germany: Insights from LA-ICP-MS analysis, near-infrared light microthermometry of sphalerite-hosted fluid inclusions, and sulfur isotope geochemistry. Miner. Depos. 2019, 54, 237–262. [Google Scholar] [CrossRef]
- Zonenshain, L.P.; Kuzmin, M.I.; Natapov, L.M.; Page, B.M. Sikhote-Alin-Sakhalin Foldbelt. In Geology of the USSR: A Plate-Tectonic Synthesis; Zonenshain, L.P., Kuzmin, M.I., Natapov, L.M., Page, B.M., Eds.; AGU: Washington, DC, USA, 1990; pp. 109–120. [Google Scholar]
- Maruyama, S.; Isozaki, Y.; Kimura, G.; Terabayashi, M. Paleogeographic maps of the Japanese Islands: Plate tectonic synthesis from 750 Ma to the present. Isl. Arc. 1997, 6, 91–120. [Google Scholar] [CrossRef]
- Koulakov, I.Y.; Dobretsov, N.L.; Bushenkova, N.A.; Yakovlev, A.V. Slab shape in subduction zones beneath the Kurile-Kamchatka and Aleutian arcs based on regional tomography results. Russ. Geol. Geophys. 2011, 52, 650–667. [Google Scholar] [CrossRef]
- Koulakov, I.; Serdyukov, A.S.; Konovalov, A.V.; Mikhailov, V.I.; Safonov, D.A.; Duchkov, A.A.; El Khrepy, S. Possible sources of hydrothermal activity and mud volcanism in southern S akhalin inferred from local earthquake seismic tomography. Geochem. Geophys. Geosys. 2017, 18, 1943–1958. [Google Scholar] [CrossRef]
- Chelnokov, G.A.; Bragin, I.V.; Kharitonova, N.A. Geochemistry of mineral waters and associated gases of the Sakhalin Island (Far East of Russia). J. Hydrol. 2018, 559, 942–953. [Google Scholar] [CrossRef]
- Maruyama, S.; Seno, T. Orogeny and relative plate motions: Example of the Japanese Islands. Tectonophysics 1986, 127, 305–329. [Google Scholar] [CrossRef]
- Rozhdestvensky, V.S. Mercury mineralization of Sakhalin Island. In Issues of Mercury Metallogeny (Based on Materials from Siberia and the Far East); Smirnov, V.I., Kuznetsov, V.A., Radkevich, E.A., Obolensky, A.A., Eds.; Nauka: Moscow, Russia, 1968; pp. 209–217. (In Russian) [Google Scholar]
- Khanchuk, A.I. Pre-Neogene tectonics of the Sea-of-Japan region: A view from the Russian side. Earth Sci. 2001, 55, 275–291. [Google Scholar] [CrossRef]
- Grannik, V.M. Reconstruction of the Sakhalin marginal paleobasin by geological and petrochemical data. Doklady. Earth Sci. 2012, 442, 215–219. [Google Scholar] [CrossRef]
- Vereshchagin, V.N. The main features of the geological structure of the Sakhalin Island. In Geology of USSR, Volume XXXIII (Sakhalin Island), Geological Description; Sidorenko, A.V., Ed.; Nedra: Moscow, Russia, 1970; pp. 29–38. (In Russian) [Google Scholar]
- Kalinchuk, V.V.; Astakhov, A.S. Atmochemical mercury dispersion aureoles over active geologic structures of the northern Sea of Japan. Russ. Geol. Geophys. 2014, 55, 1379–1386. [Google Scholar] [CrossRef]
- Merenkov, A.M. Mineral Resources of the Sakhalin Region; Sakhalin Publishing House: Yuzhno-Sakhalinsk, Russia, 2002; pp. 55–74. (In Russian) [Google Scholar]
- Veselov, O.V.; Soinov, V.V. The heat flow of Sakhalin and the southern Kuril Islands. In Structure and Composition of the Sedimentary Cover of the Northwest Pacific Ocean; Iliev, A.Y., Ed.; Institute of Marine Geology and Geophysics Far Eastern Branch Russian Academy of Sciences: Yuzhno-Sakhalinsk, Russia, 1997; Volume 4, pp. 153–176. (In Russian) [Google Scholar]
- Melnikov, O.A.; Ershov, V.V. Mud (gas-water-lithoclastite) volcanism of the Sakhalin Island: History, results and prospects in research. Vestnik Far East. Branch Russ. Acad. Sci. 2010, 6, 87–93. (In Russian) [Google Scholar]
- Kopf, A.J. Significance of mud volcanism. Rev. Geophys. 2002, 40, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Lobodenko, I.Y. Holocene Tectonic Fractures in the Zones of the Hokkaido-Sakhalin and Central Sakhalin Faults. Ph.D. Thesis, Lomonosov Moscow State University, Moscow, Russia, 2010. (In Russian). [Google Scholar]
- Veselov, O.V.; Volgin, P.F.; Lutaya, L.M. Structure of the sedimentary cover of the Pugachevo mud volcano area in Sakhalin: Evidence from geophysical modeling. Russ. J. Pac. Geol. 2012, 6, 413–422. [Google Scholar] [CrossRef]
- Kovtunovich, Y.M.; Gritsenko, I.I.; Rozhdestvensky, V.B.; Semenov, D.F. Geology of USSR, Volume XXXIII (Sakhalin Island), Mineral Resources; Sidorenko, A.V., Ed.; Nedra: Moscow, Russia, 1974; pp. 123–131. (In Russian) [Google Scholar]
- Sorochinskaya, A.V.; Shakirov, R.B.; Obzhirov, A.I.; Zarubina, N.V.; Karabtsov, A.A. Gasgeochemical and mineralogical features of mud volcanoes on the Sakhalin Island. Vestnik Far East. Branch Russ. Acad. Sci. 2008, 4, 58–65. (In Russian) [Google Scholar]
- Melnikov, O.A.; Ershov, V.V.; Ung, K.C.; Se, S.R. Dynamics of the gryphon activity of gas-water lithoclastic (mud) volcanoes and their relation to the natural seismicity as exemplified by Yuzhno-Sakhalinsk Volcano (Sakhalin Island). Russ. J. Pac. Geol. 2008, 2, 397–411. [Google Scholar] [CrossRef]
- Ershov, V.V.; Mel’nikov, O.A. Unusual eruption of the main Pugachevo gas-water-lithoclastic (mud) volcano in Sakhalin during the winter of 2005. Russ. J. Pac. Geol. 2007, 1, 366–370. [Google Scholar] [CrossRef]
- Melnikov, O.A. On the Dynamics and Origin of the Pugachevo Group of Gas-Water-Lithoclast (“Mud”) Volcanoes on Sakhalin Island: Visual Observations and Orohydrography. J. Volcanol. Seismol. 2011, 5, 409–420. [Google Scholar] [CrossRef]
- Mishurinskij, D.V.; Ershov, V.V.; Zharkov, R.V.; Kopanina, A.V.; Kozlov, D.N.; Lebedeva, E.V.; Abdullaeva, I.V.; Vlasova, I.I.; Mikhalev, D.V. Geological-geomorphological and landscape-ecological features of the Pugachev Mud Volcano as a basis for organization and information support of the tourist route (Sakhalin Island). Geosys. Transit. Zones 2018, 2, 398–408. (In Russian) [Google Scholar] [CrossRef]
- Poplavskaya, L.N.; Nagornykh, T.V.; Fokina, T.A.; Poplavsky, A.A.; Permikin, Y.Y.; Streltsov, M.I.; Kim, C.U.; Safonov, D.A.; Melnikov, O.A.; Obrabin, L.S.; et al. Uglegorsko-Ainu earthquake on August 4, 2000 with MS=7.0, I0=8-9 (Sakhalin). In Earthquakes of Northern Eurasia in 2000; Starovoit, O.E., Ed.; GS RAS: Obninsk, Russia, 2006; pp. 265–284. (In Russian) [Google Scholar]
- Melnikov, O.A.; Sergeev, K.F.; Rybin, A.V.; Jarkov, R.V. Nature of mud volcanism: Evidence from the latest active eruption of a mud (gas-water-lithoclastite) volcano in Sakhalin. Dokl. Earth Sci. 2005, 400, 168–172. [Google Scholar]
- Nikitenko, O.A.; Ershov, V.V. Hydrogeochemical characteristic of mud volcanism manifestations on Sakhalin Island. Geosys. Transit. Zones 2020, 4, 321–350. (In Russian) [Google Scholar] [CrossRef]
- Argentov, V.V.; Zhigulev, V.V.; Melnikov, O.A.; Patrikeev, V.N. The experience in application of small-depth seismic investigations for revealing of structure of the Yuzhny-Sakhalin gas-water-mud volcano. Tikhookeansk. Geol. 2001, 20, 3–11. (In Russian) [Google Scholar]
- Zhigulev, V.V.; Gurinov, M.G.; Ershov, V.V. Deep structure of the Yuzhno-Sakhalinsk mud volcano: Results of multidisciplinary seismic surveys. Russ. J. Pac. Geol. 2008, 2, 294–298. [Google Scholar] [CrossRef]
- Ershov, V.V.; Levin, B.W.; Mel’nikov, O.A.; Domansky, A.V. Manifestations of the Nevelsk and Gornozavodsk Earthquakes of 2006–2007 in the dynamics of gryphon activity of the Yuzhno-Sakhalinsk Gas-Water-Lithoclastic (Mud) Volcano. Dokl. Earth Sci. 2008, 423, 1443–1447. [Google Scholar] [CrossRef]
- Ershov, V.V.; Shakirov, R.B.; Melnikov, O.A.; Kopanina, A.V. Variations in the parameters of mud volcanic activity and their relationship with the seismicity of the south of Sakhalin Island. Reg. Geol. Metallog. 2010, 42, 49–57. (In Russian) [Google Scholar]
- Shatsky, V.; Sitnikova, E.; Kozmenko, O.; Palessky, S.; Nikolaeva, I.; Zayachkovsky, A. Behavior of incompatible elements during ultrahigh-pressure metamorphism (by the example of rocks of the Kokchetav massif). Russ. Geol. Geophys. 2006, 47, 482–496. [Google Scholar]
- Sokol, E.V.; Kokh, S.N.; Seryotkin, Y.V.; Deviatiiarova, A.S.; Goryainov, S.V.; Sharygin, V.V.; Khoury, H.N.; Karmanov, N.S.; Danilovsky, V.A.; Artemyev, D.A. Ultrahigh-temperature sphalerite from Zn-Cd-Se-rich combustion metamorphic marbles, Daba Complex, Central Jordan: Paragenesis, chemistry, and structure. Minerals 2020, 10, 822. [Google Scholar] [CrossRef]
- Shuvaeva, O.V.; Gustaytis, M.A.; Anoshin, G.N. Mercury speciation in environmental solid samples using thermal release technique with atomic absorption detection. Anal. Chim. Acta 2008, 621, 148–154. [Google Scholar] [CrossRef]
- Kokh, S.N.; Sokol, E.V.; Gustaytis, M.; Sokol, I.A.; Deviatiiarova, A.S. Onshore mud volcanoes as a geological source of mercury: Case study from the Kerch Peninsula, Caucasus continental collision zone. Sci. Total Environ. 2021, 751, 141806. [Google Scholar] [CrossRef]
- Kokh, S.N.; Sokol, E.V.; Gustaytis, M.A. Mercury Anomaly in Oligocene-Miocene Maykop Group Sediments (Caucasus Continental Collision Zone): Mercury Hosts, Distribution, and Sources. Minerals 2021, 11, 751. [Google Scholar] [CrossRef]
- Lavrushin, V.Y.; Guliev, I.S.; Kikvadze, O.E.; Aliev, A.A.; Pokrovsky, B.G.; Polyak, B.G. Waters from mud volcanoes of Azerbaijan: Isotopic-geochemical properties and generation environments. Lithol. Miner. Res. 2015, 50, 1–25. [Google Scholar] [CrossRef]
- Karandashev, V.K.; Leikin, A.Y.; Khvostikov, V.A.; Kutseva, N.K.; Pirogova, S.V. Water analysis by inductively coupled plasma mass spectrometry. Inorg. Mater. 2016, 52, 1391–1404. [Google Scholar] [CrossRef]
- Sokol, E.; Kokh, S.; Kozmenko, O.; Novikova, S.; Khvorov, P.; Nigmatulina, E.; Belogub, E.; Kirillov, M. Mineralogy and geochemistry of mud volcanic ejecta: A new look at old issues (a case study from the Bulganak field, Northern Black Sea). Minerals 2018, 8, 344. [Google Scholar] [CrossRef] [Green Version]
- Sokol, E.V.; Kokh, S.N.; Kozmenko, O.A.; Lavrushin, V.Y.; Belogub, E.V.; Khvorov, P.V.; Kikvadze, O.E. Boron in an onshore mud volcanic environment: Case study from the Kerch Peninsula, the Caucasus continental collision zone. Chem. Geol. 2019, 525, 58–81. [Google Scholar] [CrossRef]
- Lavrent’ev, Y.G.; Karmanov, N.S.; Usova, L.V. Electron probe microanalyses of minerals: Microanalyzer or scanning electron microscope? Russ. Geol. Geophys. 2015, 56, 1154–1161. [Google Scholar] [CrossRef]
- Sharygin, V.V.; Yakovlev, G.A.; Wirth, R.; Seryotkin, Y.V.; Sokol, E.V.; Nigmatulina, E.N.; Karmanov, N.S.; Pautov, L.A. Nataliakulikite, Ca4Ti2(Fe3+,Fe2+)(Si,Fe3+,Al)O11, a new perovskite-supergroup mineral from Hatrurim Basin, Negev Desert, Israel. Minerals 2019, 9, 700. [Google Scholar] [CrossRef] [Green Version]
- Sharygin, V.V. Phase CuCrS2. In Iron Meteorite Uakit (IIAB), Buryatia, Russia: Preliminary Data; Earth and Environmental Sciences Book Series, Minerals: Structure, Properties, Methods of Investigation; Votyakov, S., Kiseleva, D., Grokhovsky, V., Shchapova, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 229–236. [Google Scholar]
- Goldstein, J.I.; Newbury, D.E.; Echlin, P.; Joy, D.C.; Lyman, C.E.; Lifshin, E.; Sawyer, L.; Michael, J.R. Quantitative X-ray Analysis: The Basics. In Scanning Electron Microscopy and X-ray Microanalysis; Springer: Berlin/Heidelberg, Germany, 2003; pp. 391–451. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Ershov, V.V.; Shakirov, R.B.; Obzhirov, A.I. Isotopic-geochemical characteristics of free gases of the South Sakhalin mud volcano and their relationship to regional seismicity. Dokl. Earth Sci. 2011, 440, 1334–1339. [Google Scholar] [CrossRef]
- Nikitenko, O.A.; Ershov, V.V.; Perstneva, J.A.; Bondarenko, D.D.; Baloglanov, E.E.; Abbasov, O.R. Substance composition produced by mud volcanoes of Sakhalin Island and Azerbaijan: The first comparison. Geosys. Transit. Zones 2018, 2, 346–358. (In Russian) [Google Scholar] [CrossRef]
- Ershov, V.V. On the problem of variability of the chemical composition for mud-volcanic waters using the example of the Yuzhno-Sakhalinsk mud volcano. Rus. J. Pac. Geol. 2017, 11, 73–80. [Google Scholar] [CrossRef]
- Nikitenko, O.A.; Ershov, V.V.; Levin, B.W. The first identification of hydrogeochemical indicators of mud volcanic activity. Dokl. Earth Sci. 2017, 477, 1445–1448. [Google Scholar] [CrossRef]
- You, C.F. Thermal ionization mass spectrometry techniques for boron isotopic analysis: A review. In Handbook of Stable Isotope Analytical Techniques, 1st ed.; de Groot, P.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2004; Volume 1, pp. 142–152. [Google Scholar]
- Ershov, V.V.; Nikitenko, O.A.; Perstneva, Y.A. Geochemistry of mud and fluid migration in mud volcanoes. Vestn. Far East. Branch Russ. Acad. Sci. 2016, 5, 52–58. (In Russian) [Google Scholar]
- Chudaeva, V.A.; Chudaev, O.V.; Yurchenko, S.G. Chemical composition of precipitation in the southern part of the Russian Far East. Water Res. 2008, 35, 58–70. [Google Scholar] [CrossRef]
- Bruland, K.W.; Lohan, M.C. Controls of trace metals in seawater. In Treatise on Geochemistry: The Oceans and Marine Geochemistry; Elderfield, H., Ed.; Elsevier: New York, NY, USA, 2004; Volume 6, pp. 23–47. [Google Scholar]
- Burton, J.D. The Ocean: A Global Geochemical System. In Oceanography an Illustrated Guide; Summerhayes, C.P., Thorpe, S.A., Eds.; CRC Press: Boca Raton, FL, USA, 1996; pp. 165–181. [Google Scholar]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. In The Crust. Treatise on Geochemistry, 1st ed.; Rudnick, R.L., Ed.; Elsevier: Amsterdam, The Netherlands, 2003; Volume 3, pp. 1–64. [Google Scholar]
- Rickard, D. Sulfidic Sediments and Sedimentary Rocks. In Developments in Sedimentology; van Loon, A.J., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; Volume 6. [Google Scholar]
- Buzatu, A.; Buzgar, N.; Damian, G.; Vasilache, V.; Apopei, A.I. The determination of the Fe content in natural sphalerites by means of Raman spectroscopy. Vib. Spectrosc. 2013, 68, 220–224. [Google Scholar] [CrossRef]
- Bernstein, L.R. Germanium geochemistry and mineralogy. Geochim. Cosmochim. Acta 1985, 49, 2409–2422. [Google Scholar] [CrossRef]
- Johan, Z.; Oudin, E.; Picot, P. Analogues germanifères et gallifères des silicates et oxydes dans les gisements de zinc des Pyrénées centrales, France. argutite et carboirite, deux nouvelles espèces minerales. Tscherm. Mineral. Petrogr. Mitt. 1983, 31, 97–119. [Google Scholar] [CrossRef]
- Johan, Z.; Oudin, E. Présence de grenats, Ca3Ga2(GeO4)3, Ca3All2((Ge, Si)O4)3 et d’un équivalent ferrifère, germanifère et gallifère de la sapphirine, Fe4(Ga, Sn, Fe)4(Ga, Ge)6O20, dans la blende des gisements de la zone axiale pyrénéenne. Conditions de la formation des phases germanifères et gallifères. C. R. Acad. Sci. Ser. IIA 1986, 303, 811–816. [Google Scholar]
- Johan, Z. Indium and germanium in the structure of sphalerite: An example of coupled substitution with copper. Mineral. Petrol. 1988, 39, 211–229. [Google Scholar] [CrossRef]
- Cassard, D.; Chabod, J.C.; Marcoux, E.; Bourgine, B.; Castaing, C.; Gros, Y.; Kosakevich, A.; Moisy, M.; Viallefond, L. Mise en place et origine des minéralisations du gisement à Zn, Ge, Ag, (Pb, Cd) de Noailhac—Saint-Salvy (Tarn, France). Chron. Recherche Miniére 1996, 514, 3–37. [Google Scholar]
- Moh, G.H.; Jäger, A. Phasengleichgewichte des Systems Ge-Pb-Zn-S in Relation zu Germanium-Gehalten Alpiner Pb-Zn-Lagerstätten; Verhandlungen der Geologischen Bundesanstalt: Vienna, Austria, 1978; pp. 437–440. [Google Scholar]
- Gruzdev, V.S. Isomorphism of zinc and mercury in natural sphalerites and metacinnabarites. Dokl. USSR Acad. Sci. 1975, 225, 661–664. (In Russian) [Google Scholar]
- Vasiliev, V.I.; Lavrentiev, Y.G. New findings of mercury-containing sphalerites and their significance. Geol. Geophys. 1976, 1, 48–53. (In Russian) [Google Scholar]
- Powell, W.G.; Pattison, D.R. An exsolution origin for low-temperature sulfides at the Hemlo gold deposit, Ontario, Canada. Econ. Geol. 1997, 92, 569–577. [Google Scholar] [CrossRef]
- Liu, J.; Rong, Y.; Zhang, S. Mineralogy of Zn-Hg-S and Hg-Se-S Series Minerals in Carbonate-Hosted Mercury Deposits in Western Hunan, South China. Minerals 2017, 7, 101. [Google Scholar] [CrossRef] [Green Version]
- Tonkachev, D.E.; Chareev, D.A.; Tagirov, B.R.; Merkulova, M.V.; Trigub, A.L.; Vikentiev, I.V.; Kovalchuk, E.V. Chemical state of Hg in synthetic crystals of Hg-sphalerite and Zn-metacinnabarite according to X-ray absorption spectroscopy. In Proceedings of the IX Russian Scientific School with International Participation, Moscow, Russia, 25–29 November 2019; Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of Russian Academy of Sciences: Moscow, Russia, 2019. (In Russian). [Google Scholar]
- Tauson, V.L.; Abramovich, M.G. A Study of the System ZnS-HgS by the Hydrothermal Method. Geochem. Int. 1980, 17, 117–128. [Google Scholar]
- Osadchii, E.G. The kesterite-velikite (Cu2Zn1-xHgxSnS4) and sphalerite-metacinnabarite (Zn1-xHgxS) solid solutions in the system Cu2SnS3-ZnS-HgS at temperatures of 850°, 700° and 500 °C. Neues Jahrbuch für Mineralogie. Monatshefte 1990, H1, 13–34. [Google Scholar]
- Frenzel, M.; Hirsch, T.; Gutzmer, J. Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type—A meta-analysis. Ore Geol. Rev. 2016, 76, 52–78. [Google Scholar] [CrossRef]
- Makovicky, E. Crystal structures of sulfides and other chalcogenides. Rev. Mineral. Geochem. 2006, 61, 7–125. [Google Scholar] [CrossRef]
- Rickard, D.; Luther, G.W., III. Metal sulfide complexes and clusters. Rev. Mineral. Geochem. 2006, 61, 421–504. [Google Scholar] [CrossRef]
- Pearce, C.I.; Pattrick, R.A.; Vaughan, D.J. Electrical and magnetic properties of sulfides. Rev. Mineral. Geochem. 2006, 61, 127–180. [Google Scholar] [CrossRef]
- Fleet, M.E. Phase equilibria at high temperatures. Rev. Mineral. Geochem. 2006, 61, 365–419. [Google Scholar] [CrossRef]
- Lavrushin, V.Y.; Kopf, A.; Deyhle, A.; Stepanets, M.I. Formation of mud-volcanic fluids in Taman (Russia) and Kakhetia (Georgia): Evidence from boron isotopes. Lithol. Miner. Res. 2003, 38, 120–153. [Google Scholar] [CrossRef]
- Ershov, V.V.; Levin, B.V. New data on the material composition of mud volcano products on Kerch Peninsula. Dokl. Earth Sci. 2016, 471, 1149–1153. [Google Scholar] [CrossRef]
- Kikvadze, O.E.; Lavrushin, V.Y.; Polyak, B.G. Chemical geothermometry: Application to mud volcanic waters of the Caucasus region. Front. Earth Sci. 2020, 14, 738–757. [Google Scholar] [CrossRef]
- Lavrushin, V.Y.; Aydarkozhina, A.S.; Sokol, E.V.; Chelnokov, G.A.; Petrov, O.L. Mud Volcanic Fluids of the Kerch–Taman Region: Geochemical Reconstructions and Regional Trends. Communication 1: Geochemical Features and Genesis of Mud-Volcanic Waters. Lithol. Miner. Res. 2021, 56, 461–486. [Google Scholar] [CrossRef]
- Kharaka, Y.K.; Mariner, R.H. Chemical geothermometers and their application to formation waters from sedimentary basins. In Thermal History of Sedimentary Basins. Methods and Case Histories; Naeser, N.D., McCulloh, T.H., Eds.; Springer: New York, NY, USA, 1989; pp. 99–117. [Google Scholar] [CrossRef]
- Morse, J.W.; Luther, G., III. Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochim. Cosmochim. Acta 1999, 63, 3373–3378. [Google Scholar] [CrossRef]
- Fitzgerald, W.F.; Lamborg, C.H.; Hammerschmidt, C.R. Marine biogeochemical cycling of mercury. Chem. Rev. 2007, 107, 641–662. [Google Scholar] [CrossRef]
- Gworek, B.; Bemowska-Kałabun, O.; Kijeńska, M.; Wrzosek-Jakubowska, J. Mercury in marine and oceanic waters—A review. Water Air Soil Pollut. 2016, 227, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Ferrara, R.; Mazzolai, B.; Lanzillotta, E.; Nucaro, E.; Pirrone, N. Volcanoes as emission sources of atmospheric mercury in the Mediterranean basin. Sci. Total Environ. 2000, 259, 115–121. [Google Scholar] [CrossRef]
- Nriagu, J.; Becker, C. Volcanic emissions of mercury to the atmosphere: Global and regional inventories. Sci. Total Environ. 2003, 304, 3–12. [Google Scholar] [CrossRef]
- Pyle, D.M.; Mather, T.A. The importance of volcanic emissions for the global atmospheric mercury cycle. Atmos. Environ. 2003, 37, 5115–5124. [Google Scholar] [CrossRef]
- Witt, M.L.I.; Mather, T.A.; Pyle, D.M.; Aiuppa, A.; Bagnato, E.; Tsanev, V.I. Mercury and halogen emissions from Masaya and Telica volcanoes, Nicaragua. J. Geophys. Res. Solid Earth 2008, 113, B06203. [Google Scholar] [CrossRef]
- Mason, R.P. Mercury emissions from natural processes and their importance in the global mercury cycle. In Mercury Fate and Transport in the Global Atmosphere; Masson, R., Pirrone, N., Eds.; Springer: Boston, MA, USA, 2009; pp. 173–191. [Google Scholar] [CrossRef]
- Mason, R.P.; Choi, A.L.; Fitzgerald, W.F.; Hammerschmidt, C.R.; Lamborg, C.H.; Soerensen, A.L.; Sunderland, E.M. Mercury biogeochemical cycling in the ocean and policy implications. Environ. Res. 2012, 119, 101–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuang, L.; Song, Y.; Liu, Y.; Fard, M.; Hou, Z. Major and trace elements and sulfur isotopes in two stages of sphalerite from the world-class Angouran Zn-Pb deposit, Iran: Implications for mineralization conditions and type. Ore Geol. Rev. 2019, 109, 184–200. [Google Scholar] [CrossRef]
Sample | III-8b/1 | |||||
---|---|---|---|---|---|---|
Grain | 1 | |||||
BSE-image | Point | Zn | Fe | Hg | S | Total |
| EDS data, wt% | |||||
1 | 43.81 | <0.30 | 29.48 | 26.29 | 99.58 | |
2 | 49.47 | <0.30 | 22.47 | 28.38 | 100.32 | |
3 | 56.40 | <0.30 | 13.35 | 30.39 | 100.14 | |
4 | 59.10 | <0.30 | 9.74 | 30.72 | 99.56 | |
Formula based on S = 1, apfu | ||||||
1 | 0.817 | 0.000 | 0.179 | 1.000 | ||
2 | 0.855 | 0.000 | 0.137 | 1.000 | ||
3 | 0.910 | 0.000 | 0.070 | 1.000 | ||
4 * | 0.943 | 0.000 | 0.051 | 1.000 | ||
Average matrix composition | (Zn0.926Hg0.061)Σ0.987S | |||||
Average high Hg zones composition | (Zn0.803Hg0.158)Σ0.961S |
Mineral | Formula | Pugachev MV | South Sakhalin MV | |||||
---|---|---|---|---|---|---|---|---|
PG-18-1-1 | PG-18-8-1 | PG-18-7-1 | US-18-1-3 | US-18-6-1 | US-18-5-3 | US-18-4-4 | ||
Pyrite (biomorphic and framboidal aggregates) | FeS2 cub | ●● | ●● | ● | ●● | ●● | ● | ●● |
Pyrite (crystals) | FeS2 cub | ●● | ● | ●● | ●● | ●● | ● | ● |
Sphalerite low-Hg (Hg < 0.3 wt%) | ZnS cub | ● | ■ | ♦ | * | ■ | ||
Sphalerite medium-Hg (0.3 < Hg ≤ 3 wt%) | (Zn,Hg)S cub | ■ | ♦ | ♦ | ♦ | ■ | ♦ | ♦ |
Sphalerite high-Hg (3 < Hg ≤ 27 wt%) | (Zn,Hg)S cub | ♦ | ♦ | ♦ | ||||
Galena | PbS | ♦ | ♦ | ♦ | ■ | ♦ | ♦ | |
Marcasite | FeS2 rhom | ♦ | ♦ | ■ | ■ | |||
Realgar | As4S4 | ♦ | ♦ | ♦ | ♦ | ♦ | ||
Boulangerite | Pb5Sb4S11 | ♦ | ♦ | ♦ | ♦ | |||
Acanthite | α-Ag2S | * | * | * | * | * | ||
Chalcopyrite | CuFeS2 | * | ■ | |||||
Bournonite | CuPbSbS3 | ♦ | ♦ | ♦ | ||||
Metacinnabar | HgS cub | ♦ | ♦ | |||||
Robinsonite | Pb4Sb6S13 | ♦ | ||||||
Cinnabar | HgS trig | * | * | |||||
Moeloite | Pb6Sb6S17 | * | ||||||
Stibnite | Sb2S3 | * |
UCC, ppm | South Sakhalin MV | Pugachev MV | |||
---|---|---|---|---|---|
Mud Masses | Heavy Fractions | Mud Masses | Heavy Fractions | ||
n = 21 | n = 8 | n = 12 | n = 7 | ||
Zn | 67.0 | 73.2 | 172 | 72.5 | 179 |
Hg | 0.05 | 0.07 | 0.09 | 0.53 | 1.24 |
As | 4.80 | 9.20 | 14.9 | 11.4 | 31.5 |
Ge | 0.40 | 0.80 | 1.05 | 0.77 | 2.03 |
Se | 0.09 | <1.80 | 2.88 | <1.80 | 3.05 |
Cu | 28.0 | 39.4 | 44.9 | 25.9 | 42.1 |
Sb | 0.40 | 0.50 | 0.47 | 0.90 | 2.03 |
Bi | 0.16 | 0.25 | 0.27 | 0.21 | 0.20 |
Pb | 17.0 | 18.4 | 19.2 | 13.8 | 26.2 |
Co | 17.3 | 10.8 | 14.4 | 9.60 | 19.7 |
Ni | 47.0 | 22.1 | 30.1 | 20.8 | 43.6 |
Mo | 1.10 | 0.28 | 0.32 | 0.29 | 0.43 |
Cd | 0.09 | 0.12 | 0.09 | 0.08 | 0.11 |
Tl | 0.90 | 0.44 | 0.43 | 0.40 | 0.40 |
Sample | Grain | WDS Data, wt% | Formula Based on S = 1, apfu | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Zn | Fe | Cd | Hg | S | Total | Zn | Fe | Cd | Hg | S | ||
Pugachev MV | ||||||||||||
PG-18-1-1 | 1-2 | 66.43 | 0.19 | <0.15 | <0.10 | 32.66 | 99.28 | 0.997 | 0.003 | 0.000 | 0.000 | 1.000 |
1-3 | 66.00 | 0.16 | <0.15 | 0.30 | 32.62 | 99.07 | 0.996 | 0.003 | 0.000 | 0.001 | 1.000 | |
2-1 | 66.29 | <0.03 | <0.15 | <0.10 | 32.72 | 99.00 | 1.000 | 0.000 | 0.000 | 0.000 | 1.000 | |
2-3 | 66.43 | 0.48 | <0.15 | <0.10 | 32.66 | 99.57 | 0.992 | 0.008 | 0.000 | 0.000 | 1.000 | |
2-8 | 65.59 | 0.13 | <0.15 | 1.04 | 33.32 | 100.08 | 0.993 | 0.002 | 0.000 | 0.005 | 1.000 | |
3-3 | 66.06 | 0.24 | <0.15 | <0.10 | 32.82 | 99.13 | 0.996 | 0.004 | 0.000 | 0.000 | 1.000 | |
3-8 | 66.27 | 0.13 | <0.15 | <0.10 | 32.89 | 99.3 | 0.998 | 0.002 | 0.000 | 0.000 | 1.000 | |
6-3 * | 66.12 | 0.17 | <0.15 | <0.10 | 32.71 | 99.01 | 0.997 | 0.003 | 0.000 | 0.000 | 1.000 | |
63.72 | 0.37 | <0.15 | 2.70 | 32.48 | 99.26 | 0.980 | 0.007 | 0.000 | 0.014 | 1.000 | ||
62.08 | 0.70 | <0.15 | 4.51 | 32.49 | 99.78 | 0.964 | 0.013 | 0.000 | 0.023 | 1.000 | ||
61.11 | 0.63 | <0.15 | 6.17 | 31.62 | 99.53 | 0.957 | 0.012 | 0.000 | 0.031 | 1.000 | ||
6-4 * | 65.80 | 0.31 | 0.22 | 0.31 | 32.55 | 99.21 | 0.991 | 0.005 | 0.002 | 0.002 | 1.000 | |
63.87 | 0.76 | <0.15 | 1.69 | 32.74 | 99.06 | 0.978 | 0.014 | 0.000 | 0.008 | 1.000 | ||
59.52 | 1.31 | <0.15 | 7.79 | 32.01 | 100.63 | 0.936 | 0.024 | 0.000 | 0.040 | 1.000 | ||
58.01 | 1.52 | <0.15 | 10.01 | 31.33 | 100.87 | 0.920 | 0.028 | 0.000 | 0.052 | 1.000 | ||
6-5 | 65.85 | <0.03 | <0.15 | 1.07 | 32.96 | 100.09 | 0.995 | 0.000 | 0.000 | 0.005 | 1.000 | |
64.96 | 0.14 | <0.15 | 1.57 | 32.75 | 99.42 | 0.990 | 0.002 | 0.000 | 0.008 | 1.000 | ||
6-6 | 66.10 | 0.21 | <0.15 | <0.10 | 32.79 | 99.1 | 0.996 | 0.004 | 0.000 | 0.000 | 1.000 | |
6-9 | 64.56 | <0.03 | <0.15 | 1.38 | 33.27 | 99.01 | 0.993 | 0.000 | 0.000 | 0.007 | 1.000 | |
62.90 | 0.45 | <0.15 | 3.47 | 32.47 | 99.28 | 0.974 | 0.008 | 0.000 | 0.018 | 1.000 | ||
South Sakhalin MV | ||||||||||||
US-18-4-4 | 4-3 | 66.56 | <0.03 | 0.20 | <0.10 | 32.90 | 99.66 | 0.998 | 0.000 | 0.002 | 0.000 | 1.000 |
4-4 | 66.45 | 0.04 | 0.20 | <0.10 | 32.41 | 99.10 | 0.998 | 0.001 | 0.002 | 0.000 | 1.000 | |
65.96 | <0.03 | 0.17 | <0.10 | 32.56 | 99.10 | 0.998 | 0.000 | 0.002 | 0.000 | 1.000 | ||
US-18-6-1 | 9-2 * | 66.24 | 0.26 | <0.15 | <0.10 | 32.66 | 99.16 | 0.995 | 0.005 | 0.000 | 0.000 | 1.000 |
62.62 | 0.85 | <0.15 | 3.69 | 32.34 | 99.51 | 0.966 | 0.015 | 0.000 | 0.019 | 1.000 | ||
57.18 | 1.78 | <0.15 | 8.76 | 31.71 | 99.43 | 0.920 | 0.034 | 0.000 | 0.046 | 1.000 | ||
9-5 * | 65.63 | 0.09 | <0.15 | <0.10 | 33.50 | 99.21 | 0.999 | 0.001 | 0.000 | 0.000 | 1.000 | |
64.87 | 0.10 | <0.15 | 1.96 | 32.56 | 99.48 | 0.988 | 0.002 | 0.000 | 0.010 | 1.000 | ||
61.53 | 0.35 | <0.15 | 5.55 | 31.98 | 99.42 | 0.965 | 0.006 | 0.000 | 0.028 | 1.000 | ||
58.98 | 0.79 | <0.15 | 9.47 | 31.59 | 100.82 | 0.936 | 0.015 | 0.000 | 0.049 | 1.000 | ||
55.04 | 0.95 | <0.15 | 14.09 | 30.45 | 100.53 | 0.906 | 0.018 | 0.000 | 0.076 | 1.000 | ||
US-18-6-1 | 9-6 * | 66.01 | 0.08 | <0.15 | <0.10 | 32.96 | 99.05 | 0.999 | 0.001 | 0.000 | 0.000 | 1.000 |
65.98 | 0.26 | <0.15 | 0.25 | 32.99 | 99.48 | 0.994 | 0.005 | 0.000 | 0.001 | 1.000 | ||
64.09 | 0.19 | <0.15 | 2.26 | 32.56 | 99.09 | 0.985 | 0.003 | 0.000 | 0.011 | 1.000 | ||
62.60 | 0.34 | <0.15 | 4.77 | 32.63 | 100.34 | 0.970 | 0.006 | 0.000 | 0.024 | 1.000 | ||
59.51 | 0.56 | <0.15 | 7.61 | 31.78 | 99.47 | 0.950 | 0.010 | 0.000 | 0.040 | 1.000 | ||
52.92 | 1.17 | <0.15 | 16.43 | 29.87 | 100.39 | 0.887 | 0.023 | 0.000 | 0.090 | 1.000 | ||
9-12 * | 65.99 | 0.48 | <0.15 | <0.10 | 32.66 | 99.13 | 0.992 | 0.008 | 0.000 | 0.000 | 1.000 | |
56.07 | 0.49 | <0.15 | 10.17 | 32.65 | 99.38 | 0.936 | 0.008 | 0.000 | 0.056 | 1.000 | ||
9-16 * | 66.44 | 0.11 | <0.15 | <0.10 | 32.49 | 99.03 | 0.998 | 0.002 | 0.000 | 0.000 | 1.000 | |
56.09 | 0.17 | <0.15 | 10.26 | 32.62 | 99.14 | 0.941 | 0.003 | 0.000 | 0.056 | 1.000 |
Pugachev MV | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
BSE image | Data | Point | Zn | Fe | Ga | Ge | Hg | Cd | S | Total |
| EDS, wt% | 1 | 65.98 | <0.20 | <0.30 | <0.30 | <0.30 | <0.20 | 33.08 | 99.06 |
2 | 66.49 | <0.20 | <0.30 | <0.30 | <0.30 | <0.20 | 32.99 | 99.48 | ||
LA-ICPMS, ppm | 3 | - | 493 | 86.6 | 3292 | 101 | 634 | - | ||
4 | - | 440 | 89.5 | 3317 | 83.2 | 647 | - | |||
| Data | Point | Zn | Fe | Ga | Ge | Hg | Cd | S | Total |
EDS, wt% | 1 | 66.20 | <0.20 | <0.30 | <0.30 | <0.30 | <0.20 | 32.99 | 99.19 | |
2 | 66.28 | <0.20 | <0.30 | <0.30 | <0.30 | <0.20 | 33.00 | 99.28 | ||
3 | 66.37 | <0.20 | <0.30 | <0.30 | <0.30 | <0.20 | 33.41 | 99.78 | ||
WDS, wt% | 4 | 66.27 | 0.13 | <0.22 | <0.30 | <0.10 | <0.15 | 32.89 | 99.30 | |
LA-ICPMS, ppm | 5 | - | 783 | 114 | 3367 | 132 | 330 | - | ||
6 | - | 808 | 141 | 3395 | 170 | 527 | - | |||
| Data | Point | Zn | Fe | Ga | Ge | Hg | Cd | S | Total |
EDS, wt% | 1 | 66.28 | <0.20 | <0.30 | <0.30 | <0.30 | <0.20 | 33.09 | 99.37 | |
2 | 66.88 | <0.20 | <0.30 | <0.30 | <0.30 | <0.20 | 33.09 | 99.97 | ||
LA-ICPMS, ppm | 3 | - | 268 | 130 | 3250 | 1365 | 351 | - | ||
4 | - | 270 | 88.6 | 3249 | 1331 | 332 | - | |||
South Sakhalin MV | ||||||||||
| Data | Point | Zn | Fe | Ga | Ge | Hg | Cd | S | Total |
EDS, wt% | 1 | 67.00 | 0.26 | <0.30 | <0.30 | <0.30 | <0.20 | 33.44 | 100.87 | |
2 | 66.33 | 0.38 | <0.30 | <0.30 | <0.30 | <0.20 | 33.26 | 99.97 | ||
WDS, wt% | 3 | 66.56 | 0.23 | <0.22 | <0.30 | <0.10 | <0.15 | 32.29 | 99.09 | |
4 | 66.24 | 0.26 | <0.22 | <0.30 | <0.10 | <0.15 | 32.66 | 99.16 | ||
5 | 66.44 | 0.29 | <0.22 | <0.30 | <0.10 | <0.15 | 32.67 | 99.40 | ||
LA-ICPMS, ppm | 6 | - | 1551 | 257 | 3185 | 265 | 230 | - | ||
7 | - | 1675 | 284 | 3174 | 341 | 298 | - |
Pugachev MV | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
BSE image | Data | Point | Zn | Fe | Ga | Ge | Hg | Cd | S | Total |
| EDS, wt% | 1 | 66.64 | <0.20 | <0.30 | <0.30 | <0.30 | <0.20 | 32.96 | 99.60 |
WDS, wt% | 2 | 66.00 | 0.16 | <0.22 | <0.30 | <0.10 | <0.15 | 32.62 | 99.07 | |
LA-ICPMS, ppm | 3 | - | 920 | 199 | 3389 | 857 | 422 | - | ||
4 | - | 1264 | 235 | 3381 | 1292 | 346 | - | |||
| Data | Point | Zn | Fe | Ga | Ge | Hg | Cd | S | Total |
EDS, wt% | 1 | 58.82 | 0.85 | <0.30 | <0.30 | 8.58 | <0.20 | 31.55 | 99.80 | |
2 | 66.56 | 0.25 | <0.30 | <0.30 | <0.30 | <0.20 | 33.23 | 100.04 | ||
WDS, wt% | 3 | 66.22 | 0.17 | <0.22 | <0.30 | <0.10 | <0.15 | 32.71 | 99.01 | |
4 | 62.90 | 0.45 | <0.22 | <0.30 | 3.47 | <0.15 | 32.47 | 99.28 | ||
5 | 63.72 | 0.37 | <0.22 | <0.30 | 2.70 | <0.15 | 32.48 | 99.26 | ||
LA-ICPMS, ppm | 6 | - | 1086 | 104 | 3119 | 534 | 619 | - | ||
7 | - | 2017 | 58.7 | 3084 | 7507 | 563 | - | |||
South Sakhalin MV | ||||||||||
| Data | Point | Zn | Fe | Ga | Ge | Hg | Cd | S | Total |
EDS, wt% | 1 | 66.21 | 0.19 | <0.30 | <0.30 | <0.30 | <0.20 | 33.21 | 99.61 | |
2 | 65.64 | 0.22 | <0.30 | <0.30 | <0.30 | <0.20 | 33.20 | 99.06 | ||
3 | 66.73 | <0.20 | <0.30 | <0.30 | <0.30 | <0.20 | 33.35 | 100.08 | ||
WDS, wt% | 4 | 66.19 | 0.17 | <0.22 | <0.30 | 0.19 | <0.15 | 32.72 | 99.27 | |
5 | 65.97 | 0.22 | <0.22 | <0.30 | 0.30 | <0.15 | 32.63 | 99.13 | ||
LA-ICPMS, ppm | 6 | - | 1314 | 294 | 3141 | 1487 | 259 | - | ||
7 | - | 1088 | 259 | 3171 | 1082 | 296 | - | |||
| Data | Point | Zn | Fe | Ga | Ge | Hg | Cd | S | Total |
EDS, wt% | 1 | 59.81 | 0.46 | <0.30 | <0.30 | 7.92 | <0.20 | 31.56 | 99.75 | |
2 | 58.95 | 0.62 | <0.30 | <0.30 | 8.99 | <0.20 | 31.20 | 99.76 | ||
3 | 57.79 | 0.69 | <0.30 | <0.30 | 11.36 | <0.20 | 30.86 | 100.70 | ||
4 | 58.37 | 0.58 | <0.30 | <0.30 | 9.73 | <0.20 | 30.97 | 99.65 | ||
5 | 59.28 | 0.40 | <0.30 | <0.30 | 8.52 | <0.20 | 31.37 | 99.57 | ||
WDS, wt% | 6 | 66.01 | 0.08 | <0.22 | <0.30 | <0.10 | <0.15 | 32.96 | 99.05 | |
7 | 66.05 | 0.29 | <0.22 | <0.30 | 0.34 | <0.15 | 32.59 | 99.28 | ||
8 | 64.09 | 0.19 | <0.22 | <0.30 | 2.26 | <0.15 | 32.56 | 99.09 | ||
9 | 63.47 | 0.35 | <0.22 | <0.30 | 3.39 | <0.15 | 32.57 | 99.78 | ||
10 | 59.51 | 0.56 | 0.39 | <0.30 | 7.61 | <0.15 | 31.78 | 99.87 | ||
LA-ICPMS, ppm | 11 | - | 2711 | 82.9 | 2968 | 14,053 | 710 | - | ||
12 | - | 1811 | 145 | 3015 | 4566 | 571 | - |
Pugachev MV | South Sakhalin MV | |||||
---|---|---|---|---|---|---|
Average | Minimum | Maximum | Average | Minimum | Maximum | |
Mn | 2.70 | 0.808 | 6.61 | 6.47 | 0.783 | 36.3 |
Fe | 956 | 256 | 1519 | 946 | 205 | 2490 |
Co | 7.14 | 0.78 | 19.4 | 8.76 | 0.691 | 30.8 |
Ni | 0.255 | 0.019 | 5.76 | 0.478 | 0.028 | 4.32 |
Cu | 248 | 151 | 411 | 188 | 3.02 | 388 |
Ge | 3295 | 3180 | 3395 | 3258 | 3123 | 3408 |
Ga | 91.1 | 37.7 | 536 | 86.2 | 2.68 | 284 |
As | 8.96 | 0.600 | 50.9 | 5.03 | 0.299 | 132 |
Se | 84.6 | 33.6 | 162 | 99.3 | 37.5 | 172 |
Ag | 4.80 | 1.04 | 10.9 | 5.75 | 0.711 | 16.5 |
Cd | 455 | 89.0 | 679 | 997 | 129 | 3964 |
In | 1.31 | 0.31 | 11.3 | 1.54 | 0.049 | 6.91 |
Sb | 56.4 | 14.0 | 219 | 61.9 | 1.25 | 576 |
Hg | 153 | 81.0 | 232 | 222 | 69.4 | 564 |
Tl | 0.293 | 0.018 | 0.607 | 0.357 | 0.008 | 8.74 |
Pb | 52.2 | 6.95 | 150 | 46.1 | 0.732 | 605 |
Bi | 0.210 | 0.034 | 0.778 | 0.530 | 0.010 | 2.07 |
Pugachev MV | South Sakhalin MV | |||||
---|---|---|---|---|---|---|
Average | Minimum | Maximum | Average | Minimum | Maximum | |
Mn | 5.02 | 2.80 | 7.24 | 5.92 | 0.763 | 17.7 |
Fe | 950 | 268 | 2168 | 1832 | 907 | 5621 |
Co | 27.7 | 4.77 | 50.4 | 27.1 | 6.23 | 52.2 |
Ni | — | bdl | bdl | 1.15 | 0.124 | 1.00 |
Cu | 309 | 94.8 | 528 | 397 | 169 | 901 |
Ge | 3337 | 3249 | 3396 | 3113 | 2968 | 3305 |
Ga | 156 | 51.8 | 235 | 128 | 16.1 | 294 |
As | 6.63 | 0.486 | 12.5 | 10.2 | 0.713 | 33.3 |
Se | 73.6 | 25.4 | 120 | 72.5 | 29.9 | 297 |
Ag | 4.56 | 2.21 | 30.3 | 5.42 | 1.26 | 11.8 |
Cd | 393 | 242 | 666 | 504 | 259 | 710 |
In | 0.945 | 0.064 | 3.92 | 3.59 | 0.184 | 9.72 |
Sb | 131 | 22.1 | 3.42 | 79.2 | 10.1 | 149 |
Hg | 1058 | 456 | 1365 | 5412 | 284 | 22358 |
Tl | 0.121 | 0.054 | 0.381 | 0.154 | 0.016 | 0.497 |
Pb | 47.7 | 11.3 | 92.9 | 45.4 | 11.9 | 107 |
Bi | 0.201 | 0.037 | 0.883 | 0.367 | 0.044 | 0.631 |
Sample | Grain | EDS-WDS Data, Average Composition | XRD, Refinement of Structure | aexp, Å | acalc, Å |
---|---|---|---|---|---|
PG-18-1-1 | 1-2 | (Zn0.995Fe0.01)Σ0.996S | Zn4.01(2)S4 | 5.40658(13) | 5.40728 |
PG-18-1-1 | 6-3 | (Zn0.975Hg0.02Fe0.01)Σ0.979S | Zn3.948(12)Hg0.052(12)S4 | 5.40415(18) | 5.41339 |
US-18-6-1 | 9-5 | (Zn0.950Hg0.03)0.953S | Zn3.904(12)Hg0.096(12)S4 | 5.4208(2) | 5.4209 |
III-8b/1 | 1 | (Zn0.943Hg0.051)Σ0.961S | Zn3.776(16)Hg0.224(16)S4 | 5.4345(5) | 5.4336 |
PG-18-1-1 | 2 | (Hg0.855Zn0.09Fe0.01)Σ0.955S | Hg3.56(12)Zn0.44(12)S4 | 5.83204(18) | 5.82565 |
Sample | PG-18-1-1 | PG-18-1-1 | US-18-6-1 | III-8b/1 | PG-18-1-1 | |
---|---|---|---|---|---|---|
Grain | 1-2 | 6-3 | 9-5 | 1 | 2 | |
Crystal size (μm) | 420 × 330 × 20 | 170 × 150 × 120 | 230 × 200 × 150 | 150 × 70 × 60 | ||
Space group | ||||||
Mosaicity (deg.) | 0.90 | 0.96 | 1.08 | 4.88 | 1.63 | |
a (Å) | 5.40658(13) | 5.40415(18) | 5.4208(2) | 5.4345(5) | 5.83204(18) | |
V (Å3) | 158.040(11) | 157.827(16) | 159.288(18) | 160.50(4) | 198.364(18) | |
d (g/cm3) | 4.095 | 4.185 | 4.204 | 4.340 | 7.224 | |
F(000) | 184 | 187 | 189 | 195 | 359 | |
μ (MoKα) (mm–1) | 16.178 | 17.426 | 18.082 | 20.363 | 69.951 | |
θ range for data collection | 6.536–29.458 | 6.540–29.478 | 6.518–29.369 | 6.503–29.297 | 6.058–29.174 | |
Scan width (°/frame) | 1 | 1 | 1 | 1 | 1 | |
Exposure (min/frame) | 5 | 5 | 10 | 10 | 10 | |
No. of measured reflections | 1162 | 1198 | 668 | 935 | 641 | |
No. of unique reflections | 34 | 38 | 38 | 37 | 40 | |
No. of observed reflections (I > 2σ(I)) | 34 | 38 | 38 | 37 | 40 | |
Rint | 0.1515 | 0.0683 | 0.0949 | 0.0982 | 0.3038 | |
No. of parameters refined | 6 | 4 | 4 | 5 | 4 | |
Flack parameter | 0.01(11) | 0.11(6) | 0.05(6) | 0.08(7) | −0.1(4) | |
R1, wR2 for I > 2σ(I) | 0.0195, 0.0463 | 0.0157, 0.0401 | 0.0168, 0.0395 | 0.0213, 0.0517 | 0.0621, 0.1459 | |
R1, wR2 all data | 0.0195, 0.0463 | 0.0157, 0.0401 | 0.0168, 0.0395 | 0.0213, 0.0517 | 0.0621, 0.1459 | |
GooF | 1.167 | 1.325 | 1.161 | 1.469 | 1.316 | |
Residual electron density (e/Å3) | 0.453, −0.560 | 0.273, −1.014 | 0.398, −0.633 | 0.495, −0.676 | 1.444, −1.991 | |
Atomic position parameters (coordinates, Ueq (Å2) values, and occupancies) and interatomic distances (Å) | ||||||
M (¼,¼,¼) | Occ. | Zn1.003(7) | Zn0.987(3)Hg0.013(3) | Zn0.976(3)Hg0.024(3) | Zn0.944(4)Hg0.056(4) | Hg0.89(3)Zn0.11(3) |
Ueq | 0.0110(12) | 0.0116(2) | 0.0126(3) | 0.0134(4) | 0.0310(12) | |
S (0,0,0) | Ueq | 0.0094(4) | 0.0107(5) | 0.0131(4) | 0.021(6) | |
M–S(6×) | 2.34112(6) | 2.34022(7) | 2.34726(8) | 2.3532(2) | 2.52535(8) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sokol, E.V.; Kokh, S.N.; Nekipelova, A.V.; Abersteiner, A.; Seryotkin, Y.V.; Ershov, V.V.; Nikitenko, O.A.; Deviatiiarova, A.S. Ge-Hg-Rich Sphalerite and Pb, Sb, As, Hg, and Ag Sulfide Assemblages in Mud Volcanoes of Sakhalin Island, Russia: An Insight into Possible Origin. Minerals 2021, 11, 1186. https://doi.org/10.3390/min11111186
Sokol EV, Kokh SN, Nekipelova AV, Abersteiner A, Seryotkin YV, Ershov VV, Nikitenko OA, Deviatiiarova AS. Ge-Hg-Rich Sphalerite and Pb, Sb, As, Hg, and Ag Sulfide Assemblages in Mud Volcanoes of Sakhalin Island, Russia: An Insight into Possible Origin. Minerals. 2021; 11(11):1186. https://doi.org/10.3390/min11111186
Chicago/Turabian StyleSokol, Ella V., Svetlana N. Kokh, Anna V. Nekipelova, Adam Abersteiner, Yurii V. Seryotkin, Valeriy V. Ershov, Olga A. Nikitenko, and Anna S. Deviatiiarova. 2021. "Ge-Hg-Rich Sphalerite and Pb, Sb, As, Hg, and Ag Sulfide Assemblages in Mud Volcanoes of Sakhalin Island, Russia: An Insight into Possible Origin" Minerals 11, no. 11: 1186. https://doi.org/10.3390/min11111186
APA StyleSokol, E. V., Kokh, S. N., Nekipelova, A. V., Abersteiner, A., Seryotkin, Y. V., Ershov, V. V., Nikitenko, O. A., & Deviatiiarova, A. S. (2021). Ge-Hg-Rich Sphalerite and Pb, Sb, As, Hg, and Ag Sulfide Assemblages in Mud Volcanoes of Sakhalin Island, Russia: An Insight into Possible Origin. Minerals, 11(11), 1186. https://doi.org/10.3390/min11111186