Uncovering Cleaner Method for Underground Metal Mining: Enterprise-Level Assessment for Current and Future Energy Consumption and Carbon Emission from Life-Cycle Perspective
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Boundary Definition
2.2. Life Cycle Assessment for Energy Consumptions and Carbon Emissions
2.2.1. Electricity
2.2.2. Fossil Fuel
2.2.3. Industrial Explosive
2.2.4. Cement
2.2.5. Carbon Sink Loss
2.3. Bottom-Up Assessment for Energy-Conservation and Carbon-Abatement Potential
2.4. Data Source
3. Results
3.1. Energy Consumptions and Carbon Emissions
3.1.1. Life-Cycle Energy Consumption
3.1.2. Life-Cycle Carbon Emissions
3.2. Energy Conservation and Carbon Abatement Potentials
3.2.1. Energy Conservation Potentials
3.2.2. Carbon Abatement Potentials
4. Policy Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Carbon Source | Heat Values | Carbon Emission Factors | Note |
---|---|---|---|
Electricity | 3.6 GJ/MWh | 1.0826 tCO2 /MWh [55] | Jilin, Liaoning |
0.9419 tCO2 /MWh [55] | Hebei, Shandong | ||
0.8922 tCO2 /MWh [55] | Gansu | ||
0.7921 tCO2 /MWh [55] | Anhui, Jiangsu, Fujian | ||
0.8587 tCO2 /MWh [55] | Hubei, Sichuan | ||
0.8042 tCO2 /MWh [55] | Hainan | ||
Diesel | 45.766 GJ/t | 4.4409 tCO2/t | |
Industrial explosive | 1438 GJ/t | 1.4251 tCO2 eq/t | Emulsion explosive |
Cement | 0.442 t CO2 eq/t | ||
Carbon sink loss | 0.590 kg C/m2·a | Deciduous needleleaf forest | |
0.759 kg C/m2·a | Deciduous broadleaf forest | ||
1.058 kg C/m2·a | Evergreen broadleaf forest |
Appendix B
No. | Lifetime (a) | (k CNY/unit) | (TJ/unit) | (t CO2/unit) | Unit |
---|---|---|---|---|---|
T01 | 10 | 0.413 | 4.728 | 0.426 | kW·a |
T02 | 20 | 2.703 | 18.376 | 1.654 | kW·a |
T03 | 8 | 2.080 | 38.449 | 3.464 | kW·a |
T04 | 1 | 0.043 | 1.631 | 0.146 | t diesel |
T05 | 10 | 10.258 | 58.553 | 5.275 | LDH·a |
T06 | 15 | 0.200 | 0.114 | 0.008 | kt ore·a |
T07 | 5 | 0.193 | 3.006 | 0.271 | kW·a |
T08 | 20 | 6.000 | 37.511 | 3.380 | kW·a |
T09 | 15 | 0.870 | 2.064 | 0.186 | kW·a |
T10 | 20 | 3.571 | 4.396 | 1.119 | kW·a |
T11 | 20 | 0.500 | 3.941 | 0.315 | kW·a |
T12 | 20 | 0.022 | 0.272 | 0.024 | kW·a |
T13 | 10 | 0.995 | 10.982 | 0.989 | kW·a |
T14 | 20 | 0.769 | 3.607 | 0.323 | kW·a |
T15 | 30 | 3310.345 | 7680.193 | 691.724 | km·a |
References
- National Bureau of Statistic. Bulletin of the Seventh National Census (No. 2)—National Population Situation. 2021. Available online: www.stats.gov.cn/tjsj/tjgb/rkpcgb/qgrkpcgb/202106/t20210628_1818821.html (accessed on 11 May 2021).
- International Energy Agency. World Energy Outlook 2010; International Energy Agency: Paris, France, 2010.
- Li, D.; Huang, G.; Zhu, S.; Chen, L.; Wang, J. How to peak carbon emissions of provincial construction industry? Scenario analysis of Jiangsu Province. Renew. Sustain. Energy Rev. 2021, 144, 110953. [Google Scholar] [CrossRef]
- Zhou, A.; Li, J. Investigate the impact of market reforms on the improvement of manufacturing energy efficiency under China’s provincial-level data. Energy 2021, 228, 120562. [Google Scholar] [CrossRef]
- Xing, X.; Wang, R.; Bauer, N.; Ciais, P.; Cao, J.; Chen, J.; Tang, X.; Wang, L.; Yang, X.; Boucher, O.; et al. Spatially explicit analysis identifies significant potential for bioenergy with carbon capture and storage in China. Nat. Commun. 2021, 12, 3159. [Google Scholar] [CrossRef] [PubMed]
- Vacchi, M.; Siligardi, C.; Demaria, F.; Cedillo-González, E.I.; González-Sánchez, R.; Settembre-Blundo, D. Technological Sustainability or Sustainable Technology? A Multidimensional Vision of Sustainability in Manufacturing. Sustainability 2021, 13, 9942. [Google Scholar] [CrossRef]
- Heidarzadeh, S.; Saeidi, A.; Rouleau, A. Use of Probabilistic Numerical Modeling to Evaluate the Effect of Geomechanical Parameter Variability on the Probability of Open-Stope Failure: A Case Study of the Niobec Mine, Quebec (Canada). Rock Mech. Rock Eng. 2020, 53, 1411–1431. [Google Scholar] [CrossRef]
- Hamdi, P.; Stead, D.; Elmo, D.; Töyrä, J. Use of an integrated finite/discrete element method-discrete fracture network approach to characterize surface subsidence associated with sub-level caving. Int. J. Rock Mech. Min. Sci. 2018, 103, 55–67. [Google Scholar] [CrossRef]
- Ma, D.; Zhang, J.; Duan, H.; Huang, Y.; Li, M.; Sun, Q.; Zhou, N. Reutilization of gangue wastes in underground backfilling mining: Overburden aquifer protection. Chemosphere 2021, 264, 128400. [Google Scholar] [CrossRef]
- Sotoudeh, F.; Nehring, M.; Kizil, M.; Knights, P. Integrated underground mining and pre-concentration systems; A critical review of technical concepts and developments. Int. J. Min. Reclam. Environ. 2021, 35, 153–182. [Google Scholar] [CrossRef]
- Hurtado, J.P.; Díaz, N.; Acuña, E.I.; Fernández, J. Shock losses characterization of ventilation circuits for block caving production levels. Tunn. Undergr. Space Technol. 2014, 41, 88–94. [Google Scholar] [CrossRef]
- Liu, Y.; Ge, Y.; Zhang, C.; Ren, F.; Ma, J.; Ren, G. Cylindrical Caved Space Stability Analysis for Extension Prediction of Mining-Induced Surface Subsidence. Geofluids 2021, 2021, 4309530. [Google Scholar] [CrossRef]
- Li, L.C.; Tang, C.A.; Zhao, X.D.; Cai, M. Block caving-induced strata movement and associated surface subsidence: A numerical study based on a demonstration model. Bull. Eng. Geol. Environ. 2014, 73, 1165–1182. [Google Scholar] [CrossRef]
- He, T.; Xiao, W.; Zhao, Y.; Deng, X.; Hu, Z. Identification of waterlogging in Eastern China induced by mining subsidence: A case study of Google Earth Engine time-series analysis applied to the Huainan coal field. Remote. Sens. Environ. 2020, 242, 111742. [Google Scholar] [CrossRef]
- Chen, C.; Li, X.; Chen, X.; Chai, J.; Tian, H. Development of cemented paste backfill based on the addition of three mineral additions using the mixture design modeling approach. Constr. Build. Mater. 2019, 229, 116919. [Google Scholar] [CrossRef]
- Zhao, X.; Fourie, A.; Qi, C.-C. Mechanics and safety issues in tailing-based backfill: A review. Int. J. Miner. Met. Mater. 2020, 27, 1165–1178. [Google Scholar] [CrossRef]
- Yang, P.; Li, L.; Aubertin, M. A New Solution to Assess the Required Strength of Mine Backfill with a Vertical Exposure. Int. J. Géoméch. 2017, 17, 04017084. [Google Scholar] [CrossRef]
- Yin, S.; Shao, Y.; Wu, A.; Wang, H.; Liu, X.; Wang, Y. A systematic review of paste technology in metal mines for cleaner production in China. J. Clean. Prod. 2020, 247, 119590. [Google Scholar] [CrossRef]
- Dong, L.; Tong, X.; Li, X.; Zhou, J.; Wang, S.; Liu, B. Some developments and new insights of environmental problems and deep mining strategy for cleaner production in mines. J. Clean. Prod. 2019, 210, 1562–1578. [Google Scholar] [CrossRef]
- Hertwich, E.G. Life Cycle Approaches to Sustainable Consumption: A Critical Review. Environ. Sci. Technol. 2005, 39, 4673–4684. [Google Scholar] [CrossRef] [PubMed]
- Yong, J.Y.; Klemeš, J.J.; Varbanov, P.; Huisingh, D. Cleaner energy for cleaner production: Modelling, simulation, optimisation and waste management. J. Clean. Prod. 2016, 111, 1–16. [Google Scholar] [CrossRef]
- International Organization for Standardization. Environmental Management—Life Cycle Assessment: Principles and Frame-Work (ISO 14040); International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- Norgate, T.; Haque, N. Energy and greenhouse gas impacts of mining and mineral processing operations. J. Clean. Prod. 2009, 18, 266–274. [Google Scholar] [CrossRef]
- Farjana, S.H.; Huda, N.; Mahmud, M.A.P. Impacts of aluminum production: A cradle to gate investigation using life-cycle assessment. Sci. Total Environ. 2019, 663, 958–970. [Google Scholar] [CrossRef]
- Memary, R.; Giurco, D.; Mudd, G.; Mason, L. Life cycle assessment: A time-series analysis of copper. J. Clean. Prod. 2012, 33, 97–108. [Google Scholar] [CrossRef]
- Shao, S.; Liu, J.; Geng, Y.; Miao, Z.; Yang, Y. Uncovering driving factors of carbon emissions from China’s mining sector. Appl. Energy 2016, 166, 220–238. [Google Scholar] [CrossRef]
- Lin, B.; Xu, L. Energy conservation of electrolytic aluminum industry in China. Renew. Sustain. Energy Rev. 2015, 43, 676–686. [Google Scholar] [CrossRef]
- Berghout, N.; Meerman, H.; van den Broek, M.; Faaij, A. Assessing deployment pathways for greenhouse gas emissions reductions in an industrial plant—A case study for a complex oil refinery. Appl. Energy 2019, 236, 354–378. [Google Scholar] [CrossRef] [Green Version]
- Tutak, M.; Brodny, J.; Bindzár, P. Assessing the Level of Energy and Climate Sustainability in the European Union Countries in the Context of the European Green Deal Strategy and Agenda 2030. Energies 2021, 14, 1767. [Google Scholar] [CrossRef]
- Brodny, J.; Tutak, M. The analysis of similarities between the European Union countries in terms of the level and structure of the emissions of selected gases and air pollutants into the atmosphere. J. Clean. Prod. 2021, 279, 123641. [Google Scholar] [CrossRef]
- An, J.; Mikhaylov, A.; Richter, U.H. Trade war effects: Evidence from sectors of energy and resources in Africa. Heliyon 2020, 6, e05693. [Google Scholar] [CrossRef] [PubMed]
- Zuberi, M.J.S.; Patel, M.K. Bottom-up analysis of energy efficiency improvement and CO2 emission reduction potentials in the Swiss cement industry. J. Clean. Prod. 2017, 142, 4294–4309. [Google Scholar] [CrossRef]
- Chen, L.-J.; Fang, Z.-H.; Xie, F.; Dong, H.-K.; Zhou, Y.-H. Technology-side carbon abatement cost curves for China’s power generation sector. Mitig. Adapt. Strat. Glob. Chang. 2020, 25, 1305–1323. [Google Scholar] [CrossRef]
- Tesema, G.; Worrell, E. Energy efficiency improvement potentials for the cement industry in Ethiopia. Energy 2015, 92, 2042–2052. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Q.; Xu, L.; Tong, Y.; Jia, X.; Tian, H. Water-energy-carbon nexus assessment of China’s iron and steel industry: Case study from plant level. J. Clean. Prod. 2020, 253, 119910. [Google Scholar] [CrossRef]
- Chen, H.; Kang, J.-N.; Liao, H.; Tang, B.-J.; Wei, Y.-M. Costs and potentials of energy conservation in China’s coal-fired power industry: A bottom-up approach considering price uncertainties. Energy Policy 2017, 104, 23–32. [Google Scholar] [CrossRef]
- Toleikyte, A.; Kranzl, L.; Müller, A. Cost curves of energy efficiency investments in buildings—Methodologies and a case study of Lithuania. Energy Policy 2018, 115, 148–157. [Google Scholar] [CrossRef]
- Long, W.; Wang, S.; Lu, C.; Xue, R.; Liang, T.; Jiang, N.; Zhang, R. Quantitative assessment of energy conservation potential and environmental benefits of an iron and steel plant in China. J. Clean. Prod. 2020, 273, 123163. [Google Scholar] [CrossRef]
- Liu, X.; Yuan, Z.; Xu, Y.; Jiang, S. Greening cement in China: A cost-effective roadmap. Appl. Energy 2017, 189, 233–244. [Google Scholar] [CrossRef]
- Akhtar, S.; Kumral, M.; Sasmito, A.P. Correlating variability of the leakage characteristics with the hydraulic performance of an auxiliary ventilation system. Build. Environ. 2017, 121, 200–214. [Google Scholar] [CrossRef]
- Masnadi, M.S.; El-Houjeiri, H.M.; Schunack, D.; Li, Y.; Roberts, S.O.; Przesmitzki, S.; Brandt, A.R.; Wang, M. Well-to-refinery emissions and net-energy analysis of China’s crude-oil supply. Nat. Energy 2018, 3, 220–226. [Google Scholar] [CrossRef]
- Abdul-Manan, A.F.; Alarfaj, A.; Babiker, H. Oil refining in a CO2 constrained world: Effects of carbon pricing on refineries globally. Energy 2017, 121, 264–275. [Google Scholar] [CrossRef]
- Argonne National Laboratory. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model, GREET 1.8d.1; Argonne National Laboratory: Argonne, IL, USA, 2010. Available online: http://greet.es.anl.gov (accessed on 14 December 2010).
- Pepekin, V.I.; Gubin, S.A. Heat of explosion of commercial and brisant high explosives. Combust. Explos. Shock. Waves 2007, 43, 212–218. [Google Scholar] [CrossRef]
- Lu, H.; Qi, C.; Chen, Q.; Gan, D.; Xue, Z.; Hu, Y. A new procedure for recycling waste tailings as cemented paste backfill to underground stopes and open pits. J. Clean. Prod. 2018, 188, 601–612. [Google Scholar] [CrossRef]
- Shen, L.; Gao, T.; Zhao, J.; Wang, L.; Wang, L.; Liu, L.; Chen, F.; Xue, J. Factory-level measurements on CO2 emission factors of cement production in China. Renew. Sustain. Energy Rev. 2014, 34, 337–349. [Google Scholar] [CrossRef]
- Wei, J.; Cen, K. Empirical assessing cement CO2 emissions based on China’s economic and social development during 2001–2030. Sci. Total Environ. 2019, 653, 200–211. [Google Scholar] [CrossRef]
- Woo, K.-S.; Eberhardt, E.; Elmo, D.; Stead, D. Empirical investigation and characterization of surface subsidence related to block cave mining. Int. J. Rock Mech. Min. Sci. 2013, 61, 31–42. [Google Scholar] [CrossRef]
- Ciais, P.; Reichstein, M.; Viovy, N.; Granier, A.; Ogée, J.; Allard, V.; Aubinet, M.; Buchmann, N.; Bernhofer, C.; Carrara, A.; et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 2005, 437, 529–533. [Google Scholar] [CrossRef]
- Hubau, W.; Lewis, S.L.; Phillips, O.L.; Affum-Baffoe, K.; Beeckman, H.; Cuní-Sanchez, A.; Daniels, A.K.; Ewango, C.E.N.; Fauset, S.; Mukinzi, J.M.; et al. Asyn-chronous carbon sink saturation in African and Amazonian tropical forests. Nature 2020, 579, 80–87. [Google Scholar] [CrossRef] [Green Version]
- D’Adamo, I.; Ferella, F.; Gastaldi, M.; Maggiore, F.; Rosa, P.; Terzi, S. Towards sustainable recycling processes: Wasted printed circuit boards as a source of economic opportunities. Resour. Conserv. Recycl. 2019, 149, 455–467. [Google Scholar] [CrossRef]
- National Development and Reform Commission. The National Promotion Catalog of Key Energy Conservation and Low-Carbon Technologies (Section of Energy Conservation), 2017 ed.; National Development and Reform Commission: Beijing, China, 2017.
- Hasanbeigi, A.; Morrow, W.; Masanet, E.; Sathaye, J.; Xu, T. Energy efficiency improvement and CO2 emission reduction opportunities in the cement industry in China. Energy Policy 2013, 57, 287–297. [Google Scholar] [CrossRef]
- Keikkala, G.; Kask, A.; Dahl, J.; Malyshev, V.; Kotomkin, V. Estimation of the potential for reduced greenhouse gas emission in North-East Russia: A comparison of energy use in mining, mineral processing and residential heating in Kiruna and Kirovsk-Apatity. Energy Policy 2007, 35, 1452–1463. [Google Scholar] [CrossRef]
- National Development and Reform Commission. China Regional Baseline Emission Factors, 2019; National Development and Reform Commission: Beijing, China, 2020.
No. | Name of Technologies | Affiliation |
---|---|---|
T01 | Curved blade series centrifugal fan technology | Fan system |
T02 | Permanent magnet eddy current flexible transmission | Fan system |
T03 | Two-stage oil injection high efficiency screw air compressor | Drills |
T04 | Cleaner and efficiency-enhanced fuel for vehicle | Fossil-fueled LDH |
T05 | Intelligent engine cooling | Fossil-fueled LDH |
T06 | Potential Energy Recovery in Excavators | Electric LDH |
T07 | Speed control for frequency converter | Crusher |
T08 | Cast copper rotors for electric motors | Vibration feeder |
T09 | Hybrid AC drive shunting locomotive | Electric locomotive |
T10 | Frequency conversion system for belt conveyor | Belt conveyor |
T11 | Three-phase sampling and fast response electromotor | Hoister |
T12 | High voltage variable frequency modulated speed system | Hoister |
T13 | Frequency conversion optimization control system | Water pump |
T14 | Optimizing user-side voltage quality by electromagnetic balance regulation | Backfilling equipment |
T15 | Energy-saving copper-clad aluminum tube bus | Power bus |
Caving-Based Cases | Backfilling-Based Cases | ||||||
---|---|---|---|---|---|---|---|
No. | Sum | No. | Sum | ||||
C02 | 11.92 | 8.69 | 20.61 | B07 | 19.26 | 6.15 | 25.41 |
C06 | 14.08 | 12.16 | 26.24 | B01 | 28.76 | 6.19 | 34.96 |
C13 | 21.49 | 9.29 | 30.78 | B09 | 36.14 | --- | 36.14 |
C11 | 24.66 | 12.74 | 37.4 | B12 | 48.31 | --- | 48.31 |
C10 | 32.58 | 7.14 | 39.72 | B08 | 46.48 | 8.73 | 55.21 |
C05 | 37.87 | 4.42 | 42.29 | B02 | 66.71 | 7.55 | 74.26 |
C04 | 37.98 | 7.91 | 45.89 | B06 | 76.36 | 6.37 | 82.73 |
C07 | 29.95 | 20.84 | 50.79 | B13 | 49.32 | 35.14 | 84.46 |
C12 | 39.06 | 12.6 | 51.66 | B10 | 85.25 | 2.77 | 88.02 |
C03 | 45.79 | 11.82 | 57.61 | B03 | 88.81 | --- | 88.81 |
C01 | 46.15 | 14.87 | 61.02 | B11 | 76.5 | 16.82 | 93.32 |
C17 | 55.37 | 7.7 | 63.07 | B04 | 56.66 | 39.66 | 96.33 |
C09 | 57.67 | 7.3 | 64.97 | B05 | 108.72 | 3.49 | 112.21 |
C16 | 65.45 | --- | 65.45 | ||||
C08 | 59.83 | 6.64 | 66.47 | ||||
C14 | 57.02 | 36.44 | 93.47 | ||||
C15 | 63.47 | 43.8 | 107.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, S.; Liu, Y.; Ren, G. Uncovering Cleaner Method for Underground Metal Mining: Enterprise-Level Assessment for Current and Future Energy Consumption and Carbon Emission from Life-Cycle Perspective. Minerals 2021, 11, 1170. https://doi.org/10.3390/min11111170
Ren S, Liu Y, Ren G. Uncovering Cleaner Method for Underground Metal Mining: Enterprise-Level Assessment for Current and Future Energy Consumption and Carbon Emission from Life-Cycle Perspective. Minerals. 2021; 11(11):1170. https://doi.org/10.3390/min11111170
Chicago/Turabian StyleRen, Sitong, Yang Liu, and Gaofeng Ren. 2021. "Uncovering Cleaner Method for Underground Metal Mining: Enterprise-Level Assessment for Current and Future Energy Consumption and Carbon Emission from Life-Cycle Perspective" Minerals 11, no. 11: 1170. https://doi.org/10.3390/min11111170
APA StyleRen, S., Liu, Y., & Ren, G. (2021). Uncovering Cleaner Method for Underground Metal Mining: Enterprise-Level Assessment for Current and Future Energy Consumption and Carbon Emission from Life-Cycle Perspective. Minerals, 11(11), 1170. https://doi.org/10.3390/min11111170