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Abstract: China has committed to peak its carbon emissions by 2030, which puts forward a new
issue for underground metal mines—selecting a cleaner mining method which requires less energy
and generates less carbon emissions. This paper proposes an enterprise-level model to estimate
life-cycle energy consumption and carbon emissions, which takes more carbon sources (e.g., cement
and carbon sink loss) into consideration to provide more comprehensive insights. Moreover, this
model is integrated with the energy-conservation supply curve and the carbon abatement cost
curve to involve production capacity utilization in the prediction of future performance. These two
approaches are applied to 30 underground iron mines. The results show that (1) caving-based cases
have lower energy consumption and carbon emissions, i.e., 673.64 GJ/kt ore, 52.21 GJ/kt ore (only
considering electricity and fossil fuel), and 12.11 CO2 eq/kt ore, as compared the backfilling-based
cases, i.e., 710.08 GJ/kt ore, 63.70 GJ/kt ore, and 40.50 t CO2 eq/kt ore; (2) caving-based cases
present higher carbon-abatement potential (more than 12.95%) than the backfilling-based vases
(less than 9.68%); (3) improving capacity utilization facilitates unit cost reduction to mitigate energy
consumption and carbon emissions, and the energy-conservation and carbon-abatement potentials
will be developed accordingly.

Keywords: metal mining; energy consumption; carbon dioxide emission; life cycle assessment;
conservation supply curve; abatement cost curve

1. Introduction

Under the driving effect of more than 1.4 billion people and fast-growing economy [1],
China has been the largest carbon emitter since 2007, as well as the largest energy consumer
since 2010 [2,3]. To mitigate global climate change, China announced a series of ambitious
long-term targets, e.g., peaking carbon emission by 2030 [4], and carbon neutrality around
2060 [5]. This poses a new problem for China’s underground metal mines—selecting a
cleaner method to extract minerals, which requires less energy and generates fewer carbon
emissions [6].

Open-stope, caving, and backfilling are three conventional and mainstream mining
methods for underground metal mines [7–10]. The caving method is favored due to high
cost efficiency [11], but the surface subsidence associated still heavily restricts its applica-
tion [12,13]. Considering the increasing public concern for surface subsidence [14], more
and more projects employ the backfilling method, because it can preserve the ground sur-
face by backfilling and supporting the void after deposit excavation [15]. Moreover, many
projects initially by open stope also backfill their voids subsequently, to protect the ground
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surface, and the open-stope method is rarely employed individually in China’s under-
ground metal mines now [16,17]. Considering the advantage of ground surface preserva-
tion, some researchers have regarded the backfilling method (including conventional back-
filling and subsequent backfilling after open stope) as the cleaner mining method [18,19].
However, such analysis is still inadequate, because cleaner production aims to mitigate
environment impact of industrial production from a life-cycle perspective [20,21].

Life-cycle assessment (LCA) is a systematical framework to assess environmental
impact of industrial production [22], and it has been applied to test energy consumption
and carbon emissions in metal mining sector. Norgate and Haque [23] carried out an LCA
on the energy consumptions and carbon emissions in the production for iron, bauxite, and
copper concentrates in Australia. Farjana et al. [24] divided the life cycle of aluminum
production into four steps, i.e., bauxite extraction, alumina production, smelting, and
ingot casting, and the energy consumption of aluminum produced in China was estimated
accordingly. Memary et al. [25] analyzed the variation of life-cycle carbon emissions of
Australia’s copper production between 1940 and 2008. Shao et al. [26] calculated the carbon
emissions of China’s ferrous and non-ferrous metal mining sector and five sub-sectors.
Due to the challenges associated with both the engineering-based model on enterprise
level, and the accessibility of input data required, previous life-cycle analysis is generally
conducted based on economic or statistical data on the national, regional, or sectoral level.
Evidently, such macroscale and rough assessments cannot provide detailed information to
screen the cleaner mining method from open-stope, caving, and backfilling, e.g., life-cycle
energy consumption and the carbon emissions from the metal minerals extracted from the
deposit by various mining methods.

Due to the inevitable conflict between economic development, energy conservation
and carbon emission reduction, predicting energy conservation and carbon-abatement
potential has become a critical issue in numerous industrial sectors [27,28]. Such predic-
tions are critically important for both government and enterprise, because macro-scale
fiscal policy and enterprise-level investment strategies are based upong them [29–31]. The
conservation supply curve (CSC) and abatement cost curve (ACC) are most popular bottom-
up tools for such prediction, and they have been applied in some energy-intensive and
carbon-intensive sectors, power generation, cement, iron and steel [32–35]. Chen et al. [36]
analyzed the cost and potentials of energy conservation in China’s coal-fired power sector
under the uncertainties of coal and carbon price by the CSC involving 32 technologies.
Toleikyte et al. [37] tested the contribution of 30 technologies to save energy, if they were
deployed in the building sector in Lithuania, and a promotion portfolio was established by
cost-effective analysis based on the ACCs of these technologies. Long et al. [38] utilized the
CSC approach to predict the potential of China’s iron and steel sectors to reduce the emis-
sions of greenhouse gases by 2030 in multiple scenarios. Liu et al. [39] constructed a supply
curve of energy and electricity for 23 technologies, and proposed a technology promotion
roadmap for saving energy and reducing carbon emissions in China’s cement sector.

Although the CSC and ACC approaches have been widely discussed, some draw-
backs still restrict them from being used in this study. The first drawback is the absence
of consideration for the difference between production capacity and actual output, i.e.,
capacity utilization. In previous studies, the investment in and the contribution of a tech-
nology to mitigate energy consumption and carbon emissions were calculated based on
production capacity. However, it seems that such contributions heavily depend on the
actual output, rather than production capacity, because the accumulated contributions of
multiple technologies cannot exceed the energy consumed or carbon emissions generated
on-site. Another drawback is that they assume the unit energy-conservation or carbon
abatement cost of a technology is constant over the entire range of application. Due to the
close relationship between the actual output and the contribution of a technology to saving
energy and reducing carbon emissions, it can be expected that the unit cost should vary in
the projects with different capacity utilization.
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Therefore, due to the absence of either a detailed inventory or robust approach, it is
still an intractable issue to uncover the cleaner mining method from open-stope, caving,
and backfilling, especially under the consideration of both current and future performance
regarding energy consumption and carbon emissions of metal miners from a life-cycle
perspective. In order to bridge this research gap, we established an enterprise-level model
to estimate present life-cycle energy consumption and carbon emissions. Moreover, this life-
cycle model is integrated with the CSC and ACC approach to predict future performance.
Eventually, 30 underground iron mines are involved as case studies to uncover the cleanest
mining method. This work contributes to the existing literature from both theoretical and
practical perspectives. Theoretically, it provides a robust approach to test the current and
future life-cycle energy consumption and carbon emissions of metal mineral extraction
by underground mining to guide policy design or improvement. In practice, this model
can provide detailed predictions of various technologies to mitigate energy consumption
and carbon emissions in different projects, which means it facilitates the determination of
whether a technology should be employed.

2. Materials and Methods
2.1. System Boundary Definition

The research scope of this study is the entire life cycle of minerals extraction in
underground metal mines, from deposit discovery to raw ore being transported to dressing
plants. This life cycle can be categorized into nine stages, e.g., ventilation, drilling, blasting,
supporting, loading, haulage, crushing, backfilling, and dewatering. Three type of energy
are considered in the life-cycle assessment for energy consumption, i.e., electricity, fossil
fuels, and industrial explosives. In addition to these energies, we also take cement and
carbon sink loss into account as carbon sources, which are rarely assessed as such in
the existing literature. This system boundary defined is valid not only for assessing life-
cycle energy consumption and carbon emissions at present, but also for predicting energy
conservation and carbon abatement potential in the future. Additionally, it should be noted
that the functional unit has been defined to be per kiloton extracted metal ore to unify the
results of various indicators from different cases.

2.2. Life Cycle Assessment for Energy Consumptions and Carbon Emissions

The model to estimate life-cycle energy consumptions and carbon emissions by energy
type (or carbon source) is described below.

2.2.1. Electricity

Electricity is the predominant energy source in underground metal mines to maintain
a favorable environment at the underground working faces [40]. Equations (1) and (2)
are proposed to quantify the energy consumption and indirect carbon emissions from
electricity-powered equipment, respectively.

ECEL =
∑i α·Pi·tEl

i
QOre (1)

CEEL =
∑i EFEl ·Pi·tEl

i
QOre (2)

where ECEL and CEEL are the unit energy consumption and unit carbon emission from
electricity-powered mining equipment, respectively; α is a coefficient to standardize the
unit of energy consumption; EFEL is the carbon emission factor of electricity; Pi is the power
of mining equipment i; tEL

i is the operating time of electricity-powered mining equipment i
annually; and QOre is the annual yield of minerals in a underground metal mine.
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2.2.2. Fossil Fuel

Fossil fuel is another primary energy source, especially in the development engi-
neering, due to its advantage of flexibility. Consuming fossil fuel leads to both direct
and indirect carbon emissions which occur in their production and combustion, respec-
tively [41–43]. The energy consumption and carbon emissions related to fossil fuels can be
calculated by Equations (3) and (4), respectively.

ECFF =
∑j ∑i (NCVj)

−1·QFF
i,j ·tFF

i

QOre (3)

CEFF =
∑j ∑i EFFF

j ·QFF
i,j ·tFF

i

QOre (4)

where ECFF and CEFF are the unit energy consumption and unit carbon emissions related
to fossil fuels, respectively; NCVj is the net calorific value of the fossil fuel j; EFFF

j is s
the carbon emission factor of fossil fuel j; Qi,j QFF

i,j is the consumption of fossil fuel j by

mining equipment i in unit time; and tFF
i is the annual operating time of mining equipment

i powered by fossil fuel.

2.2.3. Industrial Explosive

Underground metal mines utilize the energy released by industrial explosives in
blasting reactions to break intact hard rocks. Producing industrial explosives generates
indirect carbon emissions, but the direct emissions depend on the proportion of blasting
agents and additives [44]. Equations (5) and (6) are valid to estimate the energy released in
blasting reaction and the carbon emissions, respectively.

ECIE = ∑
j

DHj·QIE
j (5)

CEIE = ∑j EFIE
j ·QIE

j (6)

where ECIE and CEIE are the unit energy consumption and unit carbon emission due to
industrial explosives, respectively; DHj is the detonation heat of the industrial explosive j;
EFIE

j is the carbon emission factor of the industrial explosive j; and QIE
j is the consumption

of industrial explosive j to break unit quantity of rocks.

2.2.4. Cement

Cement is required in underground metal mines using either the open-stope, caving
or backfilling methods to enhance the stability of shafts, tunnels, and chambers. But
backfilling-based mines require much more cement to cement the materials backfilled into
the void after deposit excavation [45]. Although no energy consumption related to cement
takes place in the mining site, indirect carbon emissions still occur, such as carbon dioxide
emitted in limestone quarries and clinker plants [46,47]. Such indirect carbon emissions
can be quantitively described by Equation (7).

CEC =
∑i EFC·QC

QOre (7)

where CEC is the unit carbon emission due to consumed cement; EFC is the carbon emission
factor of cement; and QC is the annual consumption of cement.

2.2.5. Carbon Sink Loss

In the underground metal mines using the open stope or caving methods, large-scale
subsidence is commonly observed on ground surface [48]. The destruction of vegetation raises
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direct carbon emissions, which can be quantitatively described by the net primary production
(NPP) [49,50]. And the carbon emission can be calculated by Equation (8), accordingly.

CECSL =
β·(NPP′ − NPP0)·S

QOre (8)

where CECSL is the unit carbon emission due to carbon sink loss; β is a coefficient to convert
the NPP to carbon emissions; NPP0 and NPP′ are the NPPs of the vegetation on the ground
surface before and after subsidence, respectively; and S is the area of the pit formed after
surface subsidence.

If the inputs listed in Equations (1)–(8) have been provided, the life-cycle unit energy
consumption and unit carbon emission in an underground metal mine can be estimated by
Equations (9) and (10), respectively.

EC = ∑
k

ECk (9)

E = ∑k CEk (10)

where EC and CE are the unit energy consumption and unit carbon emission of the minerals
in the life cycle from deposit to the gate of dressing plants, respectively; and ECk and CEk

are the unit energy consumption and unit carbon emission due to the energy or carbon
source k.

Equations (1)–(10) are the model proposed to assess the life-cycle energy consumption
and carbon emission of the minerals extracted from underground metal mines.

Compared with existing models, this approach extends the scope of energy and carbon
sources by taking industrial explosive, cement, and carbon sink loss into consideration.
Hence, it can be expected to provide comprehensive insight into the environmental impact
of underground metal mining sector. Moreover, this approach utilizes engineering-based
data as inputs, this enables it to relate energy consumption and carbon emission directly
to the mining equipment and stage. This means it has the potential to be integrated with
the CSC and ACC approach to include production capacity utilization in assessments of
energy-conservation and carbon-abatement potentials.

2.3. Bottom-Up Assessment for Energy-Conservation and Carbon-Abatement Potential

Mining method selection is a strategic decision, which means not only the current
but also the future performance of energy consumption and carbon emissions are crit-
ical concerns. To develop the accuracy of the assessment for energy-conservation and
carbon-abatement potentials on enterprise level, we integrate the LCA model proposed
with the ECSC and CACC approaches to take capacity utilization into account. The con-
tribution of energy-saving technology and reduced carbon emissions can be estimated by
Equations (11) and (12), respectively.

ECMn,t =
ECi

t
ECCAP ·UECM0

n·CAPi
n (11)

CEMn,t =
CEi

t
CECAP ·UCEM0

n·CAPi
n (12)

where ECMn,t and CEMn,t are the potentials of technology n to mitigate energy consump-
tion and carbon emission in year t, respectively; ECi

t and CEi
t are the energy consumption

and carbon emissions due to mining equipment i in year t occurring on-site, which can be
estimated by the LCA model proposed; ECCAP and CECAP are the energy consumption
and carbon emissions in the original design, respectively; UECM0

n and UCEM0
n are unit

contribution of technology n to saving energy and reducing carbon emissions, which can
be derived from the illustrative examples employing this technology; and CAPi

n is the
installed capacity of mining equipment i, to which that technology n will be deployed.
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On the other hand, the investment in a technology still depends on the installed
capacity, and the associated cost to save unit energy or reduce unit carbon emissions can
be calculated by Equations (13) and (14), respectively.

CECM
n =

∑tn
t

[
(γ·UIn ·CAPi

n+∆OMn,t)
(1+r)t

]
− PC·∑tn

t CEMn,t

∑tn
t ECMn,t

(13)

CCEM
n =

∑tn
t

[
(γ·UIn ·CAPi

n+∆OMn,t)
(1+r)t

]
− PE·∑tn

t ECMn,t

∑tn
t CEMn,t

(14)

where CECM
n and CCEM

n are the unit cost to mitigate energy consumption and carbon
emission by employing technology n; tn is the lifetime of technology n; γ is a coeffi-
cient to spread investment for technology n over its lifetime, which can be calculated by
γ = r·

[
1− (1 + r)−tn

]
; r is the discount rate; UIn is the unit investment for technology n,

which can be calculated derived from the illustrative examples; ∆OMn,t is the additional
cost for operating and maintaining technology n; γ is a coefficient to spread investment for
technology n over its lifetime, which can be calculated by γ = r·

[
1− (1 + r)−tn

]
; r is the

discount rate; and PC and PE are the price of carbon and energy, respectively.
Equations (13) and (14) enable the break-even analysis to determine the employment

of a technology [51], such as Equations (15) and (16).

∆E
n = CECM

n − PE (15)

∆C
n = CCEM

n − PC (16)

where ∆E
n and ∆C

n are the indicators for the cost-effectiveness of technology n; and the
employment of a technology can be determined by testing whether ∆E

n > 0 or ∆C
n > 0

is satisfied.
Eventually, the potential of an underground metal mine to save energy or reduce

carbon emissions can be predicted by accumulating the contributions of these cost-effective
technologies. Compared with the conventional ECSC and CACC approaches, this approach
eliminates the negative impact of some assumptions on the results. Firstly, the produc-
tion capacity utilization is considered in accordance with the difference between on-site
energy consumption (or carbon emissions) and the value in original design. Secondly, the
assumption of constant unit cost is avoided.

2.4. Data Source

In total, 30 of China’s underground iron mines from 11 provinces were selected for this
study, including 17 caving-based and 13 backfilling-based cases, as illustrated in Figure 1.
The total yield is more than 70 million t iron ore per year, comprising ~34% of China’s iron
ore production from underground projects in 2019. The results proposed in this work can
be expected to represent the national common level. An inventory analysis was conducted
to obtain the inputs for estimating life-cycle of energy consumptions and carbon emissions,
as presented in Appendix A.

We applied the developed ECSC and CACC approaches to 8 projects from these
30 cases to uncover the difference between caving-based or backfilling-based cases to save
energy and reduce carbon emissions. Table 1 lists 15 the energy conservation and carbon
abatement (ECCA) technologies, promoted to the underground mining sector by China’s
NDRC [52]. More detailed information is provided in Appendix B. Additionally, some
assumptions should be noted, i.e., the discount rate is 15% [53], and the energy and carbon
prices equal to 100 CNY/GJ and 100 CNY/t CO2 eq, respectively.
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Figure 1. Distribution of underground iron mines involved in this study. The marks for case positions are colored according
to the mining method they utilized, i.e., red and blue represent caving and backfilling methods, respectively. The size of the
marks indicates their yields in 2019.

Table 1. Energy conservation and carbon abatement technologies.

No. Name of Technologies Affiliation

T01 Curved blade series centrifugal fan technology Fan system
T02 Permanent magnet eddy current flexible transmission Fan system
T03 Two-stage oil injection high efficiency screw air compressor Drills
T04 Cleaner and efficiency-enhanced fuel for vehicle Fossil-fueled LDH
T05 Intelligent engine cooling Fossil-fueled LDH
T06 Potential Energy Recovery in Excavators Electric LDH
T07 Speed control for frequency converter Crusher
T08 Cast copper rotors for electric motors Vibration feeder
T09 Hybrid AC drive shunting locomotive Electric locomotive
T10 Frequency conversion system for belt conveyor Belt conveyor
T11 Three-phase sampling and fast response electromotor Hoister
T12 High voltage variable frequency modulated speed system Hoister
T13 Frequency conversion optimization control system Water pump
T14 Optimizing user-side voltage quality by electromagnetic balance regulation Backfilling equipment
T15 Energy-saving copper-clad aluminum tube bus Power bus

3. Results
3.1. Energy Consumptions and Carbon Emissions
3.1.1. Life-Cycle Energy Consumption

Figure 2 provides the results of life cycle assessment for energy consumption in
30 underground iron mines. We calculated the average energy consumption in either
caving-based or backfilling-based cases to test the difference, and the results were 673.64
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and 710.08 GJ/kt, respectively. However, such results are still insufficient to demonstrate
that the caving method is more effective in energy consumption than the backfilling, due
to the predominant role of explosive-related energy. For instance, the energy consumption
in Jin’an (B09, 605.83 GJ/kt) is higher than that in Xiaoguanzhuang (C09, 595.73 GJ/kt).
But if the explosive-related energy is ruled out, Jin’an’s energy consumption (36.14 GJ/kt)
falls below that in Xiaoguanzhuang (64.97 GJ/kt). Thus, we compared only the energy
consumption involving electricity and diesel between the caving-based and backfilling-
based cases, to eliminate the interference of industrial explosives, as listed in Table 2.
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When only the energy consumption related to electricity and fossil fuel are considered,
Table 2 shows more that caving-based cases (9 of 17) present lower energy consumption
(colored by blue), than backfilling-based cases (5 of 13). Particularly, the energy consump-
tion due to electricity was much lower in the caving-based (38.85 GJ/kt, average-weighted),
than in the cases using the backfilling method (56.68 GJ/kt, average-weighted). This
accounts for the phenomenon that caving-based cases require less energy (52.21 GJ/kt,
average-weighted) than the backfilling-based (63.70 GJ/kt, average-weighted), although
they consume more fossil fuels (13.36 GJ/kt and 7.02 GJ/kt for the caving-based and
backfilling-based average-weighted, respectively). Thus, the results of the LCA illustrated
in Figure 2 and Table 2 demonstrate that caving method is superior to backfilling in
energy consumption.

3.1.2. Life-Cycle Carbon Emissions

Figure 3 provides the carbon intensity supply curve of the 30 underground iron mines,
and it explicitly shows that the carbon emissions in caving-based cases are much lower than
that in the backfilling-based cases. In the caving-based cases, the carbon emissions varied
between 4.73 t CO2 eq/kt (C02, Gongchangling) and 20.25 t CO2 eq/kt (C15, Jinshandian),
and the weighted average was 12.11 t CO2 eq/kt. Meanwhile, these values in the backfilling-
based increases from 32.30 t CO2 eq/kt (B07, Wuji) to 50.47 t CO2 eq/kt (B05, Jinling), and
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the weighted average was 40.50 t CO2 eq/kt. This means that the caving method is also
superior to backfilling in carbon emissions.

Table 2. Energy consumption without the consideration of industrial explosives. The results are
colored by red and blue in varying intensity to indicate the difference between the results of each
case and the average overall, i.e., 46.42, 10.67, and 57.09 GJ/kt for ECEL, ECFF, and sum of ECEL and
ECFF, respectively.

Caving-Based Cases Backfilling-Based Cases
No. ECEL ECFF Sum No. EC1 EC2 Sum

C02 11.92 8.69 20.61 B07 19.26 6.15 25.41
C06 14.08 12.16 26.24 B01 28.76 6.19 34.96
C13 21.49 9.29 30.78 B09 36.14 — 36.14
C11 24.66 12.74 37.4 B12 48.31 — 48.31
C10 32.58 7.14 39.72 B08 46.48 8.73 55.21
C05 37.87 4.42 42.29 B02 66.71 7.55 74.26
C04 37.98 7.91 45.89 B06 76.36 6.37 82.73
C07 29.95 20.84 50.79 B13 49.32 35.14 84.46
C12 39.06 12.6 51.66 B10 85.25 2.77 88.02
C03 45.79 11.82 57.61 B03 88.81 — 88.81
C01 46.15 14.87 61.02 B11 76.5 16.82 93.32
C17 55.37 7.7 63.07 B04 56.66 39.66 96.33
C09 57.67 7.3 64.97 B05 108.72 3.49 112.21
C16 65.45 — 65.45
C08 59.83 6.64 66.47
C14 57.02 36.44 93.47
C15 63.47 43.8 107.27
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The contribution of each carbon source is also illustrated in Figure 3, which explains
the underlying drivers for the difference of carbon emission in either the caving-based
or backfilling-based cases. It can be observed that the carbon emissions in the caving-
based cases were dominated by electricity (more than 68.32%), and the contribution of
carbon sink loss was less than 5.67%. In some caving-based cases, such as C01 (Banshi),
C02 (Gongchangling), C04 (Xiaowanggou), C05 (Maogong), C06 (Heishan), C07 (Xingshan),
C11 (Jingtieshan), C16 (Jining), and C17 (Shilu), no carbon emissions related to carbon sink
loss occurred, because the underground mining was implemented after surface mining.
Surface mining, rather than underground caving, is responsible for the destruction of
ground vegetation and the associated carbon sink loss.

In the backfilling-based cases, cement is another primary contributor to carbon emis-
sion, besides electricity. And cement’s contribution heavily depends on the cement–sand
ratio of the slurry backfilled into the void after deposit excavation. For instance, in cases
utilizing a lower cement–sand ratio slurry, e.g., B03 (Fuquan, cement-sand ratio is 1:12)
and B10 (Longtangyan, cement-sand ratio is 1:10), the contribution is obviously lower
than that in other cases (cement-sand ratio higher than 1:8). This reveals that lowering
the cement-sand ratio is a robust approach to mitigate carbon emissions in backfilling-
based underground metal mines, in addition to the conventional approaches focused on
conserving electricity and fossil fuel.

It should be noted that the energy consumption in China’s caving-based iron mines
(Table 2) is similar to the inventory in the existing literature. For instance, the energy
consumption in Kiruna iron mine, Sweden, is 46.728 GJ/kt, and contribution of electricity
and fossil fuel are 41.4 and 5.328 GJ/kt, respectively [54]. Such results validate the results
in this study, although it is difficult to compare the results of carbon emissions directly
because the carbon emission factor of electricity significantly varies in different countries.
The results of life cycle assessments for energy consumption and carbon emissions in
30 underground metal mines demonstrate that caving is cleaner than backfilling for deposit
excavation. This phenomenon is opposite to the view in the existing literature [18,19],
because those studies only considered environmental impacts due to surface destruction,
rather than from a life cycle perspective. This indicates a one-sided preference is very likely
to mislead policy decisions. For instance, the promotion of the backfilling method will raise
the energy consumption and carbon emissions of China’s metal mining sector. On the other
hand, the results also indicate that energy conservation and carbon abatement actions for
underground metal mines should primarily focus on mitigating electricity consumption,
but additional attention is required to reducing the cement–sand ratio of backfilling slurry
in backfilling-based mines.

3.2. Energy Conservation and Carbon Abatement Potentials
3.2.1. Energy Conservation Potentials

Figure 4 shows the ECSCs of 15 ECCA technologies (Table 2), when they are applied
to the selected caving-based (i.e., Xiaowanggou (C03), Yanqianshan (C04), Maogong (C05),
and Shilu (C17)), and backfilling-based cases (i.e., Luohe (B06), Wuji (B07), Lilou (B08),
and Longtangyan (B10)). The production capacity utilization was calculated based on the
energy consumption and carbon emissions occurring in 2019.

As can be seen from Figure 4, the unit costs to save energy present significant variations
in the different cases. Yanqianshan (Figure 4b) present a much higher unit cost than other
cases, because Yanqianshan’s capacity utilization is lower than all the other cases, i.e.,
production capacity is 8 million t/a, and the outputs in 2019 is 2.9 million 8 million t/a.
Such a low capacity utilization raises the unit cost to conserve energy, and further reduces
the potential of Yanqianshan to save energy. When the prices of energy and carbon are equal
to 120 CNY/GJ and 100 CNY/t CO2 eq, Yanqianshan has the potential to reduce its energy
consumption from 45.89 GJ/kt (without the consideration for the energy released in blasting
reactions by industrial explosives, as listed in Table 2) to 38.47 GJ/kt, 16.17%. Meanwhile,
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the energy-conservation in other cases was 40.97% (Xiaowanggou), 44.64% (Maogong),
38.48% (Shilu), 40.52% (Luohe), 37.56% (Wuji), 43.16% (Lilou), and 40.56% (Longtangyan).
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Apart from the case of Yanqianshan, the energy conservation potentials of the involved
cases all varied around 40%, although the ECSCs present significant variation in each case.
This reveals no significant difference of energy conservation potential can be observed
between the caving-based and backfilling-based cases. However, because backfilling-based
cases requires more energy to extract unit minerals at present, it can be expected the higher
energy consumption in the projects using the backfilling method will continue in the future.

3.2.2. Carbon Abatement Potentials

Figure 5 provides the CACCs of 15 ECCA technologies, when they were deployed
to the caving-based (i.e., Xiaowanggou (C03), Yanqianshan (C04), Maogong (C05), and
Shilu (C17), or backfilling-based cases (i.e., Luohe (B06), Wuji (B07), Lilou (B08), and
Longtangyan (B10). Because the benefit from conserved energy surpasses the investment
and additional operating and maintainance cost for employing these technologies, the
unit carbon abatement cost of some technologies presents a negative value, such as T01 in
Xiaowanggou (−1063.33 CNY/t CO2 eq), T12 in Yanqianshan (−468.12 CNY/t CO2 eq),
T03 in Luohe (−1119.57 CNY/t CO2 eq), and T04 in Wuji (−994.98 CNY/t CO2 eq). This
means these technologies will be utilized, no matter how high the carbon price.

The CAACs illustrated in Figure 5 enable the prediction of the future performance of
carbon emissions in underground iron mines. When the prices of energy and carbon are
equal to 120 CNY/GJ and 100 CNY/t CO2 eq, the caving-based cases have the potentials to
reduce the carbon emissions by 12.95% (in Xiaowanggou, from 14.38 to 12.52 t CO2 eq/kt),
5.20% (in Yanqianshan, from 12.55 to 11.89 t CO2 eq/kt), 13.73% (in Maogong, from 12.26 to
10.58 t CO2 eq/kt), and 15.70% (in Shilu, from 13.81 to 11.64 t CO2 eq/kt), respectively. The
lower production utilization in Yanqianshan is responsible for this difference, because it
raises the unit cost to reduce carbon emissions. Consequently, if Yanqianshan’s production
were to reach its designed capacity, its carbon abatement potential will significantly increase,
because more ECCA technologies will be effective in the break-even analysis.

On the other hand, backfilling-based cases presented significant lower carbon-abatement
potential than the caving-based cases, except Yanqianshan. For instance, the cases of Luohe,
Wuji, Lilou, and Longtangyan had the potential to reduce their carbon emissions by 7.02%
(from 42.51 to 39.62 t CO2 eq/kt), 2.62% (from 32.30 to 31.45 t CO2 eq/kt), 5.23% (from
40.56 to 38.44 t CO2 eq/kt), and 9.68% (from 32.90 to 29.72 t CO2 eq/kt), respectively. The
absence of technology to lower the cement–sand ratio in backfilling slurry accounts for this
phenomenon. As depicted in Table 1, ECCA technologies in the mining sector primarily
work by saving electricity and fossil fuels, but the predominant role of cement in the carbon
emissions from caving-based mining eliminates their potential to reduce carbon emissions.
This demonstrates that technologies which can save cement and cement consumption
in the backfilling stage are necessary for backfilling-based underground metal mines, in
addition to the conventional ones promoted by China’s NDRC.
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4. Policy Implications

From the analysis in this work, we propose the following suggestions for policy design
and implementation.

Firstly, before the policy-making process, a standardized model is necessary to as-
sess the environmental impact of the underground metal mining sector, comprehensively.
Existing studies regard backfilling as the cleaner mining method [18,19], because it can
protect the ground surface from large-scale destruction. However, the quantitative re-
sults from a life-cycle perspective (Figures 2–5) explicitly show caving is cleaner. This
phenomenon reveals that this one-sided preference is very likely to mislead the policy
decisions, especially in the absence of sufficient inventory. Thus, policymakers need a
series of standardized models to assess the various impacts of underground metal mines on
the environment, which should emphasize indicator selection, system boundary definition,
and the preference of policies.

Secondly, Chinese governments can promote the caving method for peaking the carbon
emissions from underground metal mining sector by 2030. The results from 30 underground
iron mines (Figures 3 and 4) show the caving-based mining has lower unit carbon emissions
and higher carbon-abatement potential. If the productivity by the backfilling method is
replaced by the caving method, the overall carbon emissions of China’s metal supply will
decrease accordingly.

Thirdly, China’s government can implement a mandatory policy to define a threshold
of production capacity utilization for underground metal mining sector. The results in
Section 3.2 explicitly demonstrate that developing production capacity utilization facilitates
a reduction to the unit cost of ECCA technologies to save energy and reduce carbon
emissions. This means the threshold of production capacity utilization is an indirect
but robust approach to motivate the enthusiasm of underground metal mines, because
employing cost-effective ECCA technologies is a profitable decision.

5. Conclusions

To peak the carbon emissions in underground mining sector by 2030, uncovering
a cleaner method has been a critical concern for both mining enterprise and China’s
government. This paper proposes an enterprise-level model under the LCA framework
to estimate the energy consumption and carbon emissions of underground metal mines,
integrated with CSC and ACC, to include production capacity utilization in predictions of
future performance. Detailed data from 30 underground iron mines are provided, which is
a contribution due to the absence of sufficient inventory in the existing literature.

The results of the LCA demonstrate that caving is the cleaner method for deposit exca-
vation from a life-cycle perspective. These cases require less energy (673.64 GJ/kt, 52.21 GJ/kt
without industrial explosive) and generate less carbon emissions (12.11 t CO2 eq/kt), than
backfilling-based mines, i.e., 710.08 GJ/kt, 56.68 GJ/kt without industrial explosive, and
40.50 t CO2 eq/kt. Additionally, although no significant difference of energy conservation
potential can be seen among the cases using either the caving or backfilling methods, the
carbon abatement potential in the caving-based method is much higher (from 5.20% to
15.70%) than in the backfilling-based cases (from 2.62% to 9.68%). These results show that
backfilling is the cleaner mining method, and that the existing literature is no longer valid
from life-cycle perspective, because they demonstrate a one-sided preference very likely to
mislead policy decisions.

In accordance with the engineering-based data from 30 underground iron mines, some
implications for policy design can be summarized. Firstly, a comprehensive inventory and
standardized model, especially from a life-cycle perspective, is suggested to be employed
for policy decisions, to mitigate the effect of the one-sided preference. Secondly, to peak the
carbon emissions from China’s metal mining sector, the promotion of the caving method is
suggested. Thirdly, a mandatory policy to improve production capacity utilization is also
proposed, because this tactic facilitates energy savings and reduces carbon emissions of
underground metal mines by reducing the unit cost for employing ECCA technologies.
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Appendix A

Table A1. Heat values and carbon emission factors of energy or carbon sources.

Carbon Source Heat Values Carbon Emission Factors Note

Electricity 3.6 GJ/MWh

1.0826 tCO2 /MWh [55] Jilin, Liaoning
0.9419 tCO2 /MWh [55] Hebei, Shandong
0.8922 tCO2 /MWh [55] Gansu
0.7921 tCO2 /MWh [55] Anhui, Jiangsu, Fujian
0.8587 tCO2 /MWh [55] Hubei, Sichuan
0.8042 tCO2 /MWh [55] Hainan

Diesel 45.766 GJ/t 4.4409 tCO2/t
Industrial explosive 1438 GJ/t 1.4251 tCO2 eq/t Emulsion explosive

Cement 0.442 t CO2 eq/t

Carbon sink loss
0.590 kg C/m2·a Deciduous needleleaf forest
0.759 kg C/m2·a Deciduous broadleaf forest
1.058 kg C/m2·a Evergreen broadleaf forest

Appendix B

Table A2. Inputs required for the energy conservation supply curve and carbon abatement cost curve
of different ECCA technologies.

No. Lifetime (a) UIn
(k CNY/unit)

UESn
(TJ/unit)

UCRn
(t CO2/unit) Unit

T01 10 0.413 4.728 0.426 kW·a
T02 20 2.703 18.376 1.654 kW·a
T03 8 2.080 38.449 3.464 kW·a
T04 1 0.043 1.631 0.146 t diesel
T05 10 10.258 58.553 5.275 LDH·a
T06 15 0.200 0.114 0.008 kt ore·a
T07 5 0.193 3.006 0.271 kW·a
T08 20 6.000 37.511 3.380 kW·a
T09 15 0.870 2.064 0.186 kW·a
T10 20 3.571 4.396 1.119 kW·a
T11 20 0.500 3.941 0.315 kW·a
T12 20 0.022 0.272 0.024 kW·a
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Table A2. Cont.

No. Lifetime (a) UIn
(k CNY/unit)

UESn
(TJ/unit)

UCRn
(t CO2/unit) Unit

T13 10 0.995 10.982 0.989 kW·a
T14 20 0.769 3.607 0.323 kW·a
T15 30 3310.345 7680.193 691.724 km·a
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