## 1. Introduction

For quite some time, researchers have been pursuing an understanding of particle fracture at a fundamental level. This approach is necessary, as it would help in the design of equipment that achieves the most desirable outcomes. There has been appreciable progress to some extent, however, in most cases, the understanding is more focused on the equipment comminuting the particles. The JKMRC introduced a single breakage test equipment to establish a way of separating material breakage properties from the influence of equipment. This, however, introduces the challenge of relating material breakage response data obtained independent of the target comminution device to the performance to be expected. Thus, as Delboni and Morell [

1] point out, the identification of the mechanisms involved in comminution equipment is imperative for the successful modelling of its comminution process.

In the 19th century, Rittinger [

2] and Kick [

3] proposed some comminution energy laws; Kick proposed comminution energy to be a function of the volumetric reduction ratio, while Rittinger related it to the new surface area produced. It was however not possible based on these laws to predict how much energy would be required to achieve a particular level of size reduction. Reasonable success has somewhat been achieved by Bond’s energy law [

4], which was suggested to be based on Griffith’s law of crack propagation [

5].

The theory proposed by Griffith’s highlighted the importance of pre-existing flaws within particles. Using this theory, energy balance around the crack could be calculated and energy required to extend the crack and consequently produce a new surface could be thus determined. It will just be mentioned in passing that, while grinding is directed towards forming new surface area, most of the energy invested in the process is absorbed by other aspects unrelated to comminution, as Rumpf [

6] observed. This somewhat complicates the problem of relating input energy to the resulting product. In addition, no two particles will have an identical distribution of inherent cracks, and thus some statistical modelling of these tests is inevitable. It should also be pointed out that the tests must be representative of the stressing mechanism, that is to be expected in the comminution device being targeted by the test; otherwise, there would be little correlation between the test and the actual equipment performance.

The JKMRC initially introduced the pendulum test and refined the technique, by developing the drop-weight tester [

7,

8]. Further enhancement of the test procedure has been made by the introduction of the JK rotary breakage tester [

9], which has reduced the time required for testing significantly, though this test now relies more on a single impact than double impact.

Bwalya et al. [

10] explored a modified equation of Weichert [

11], and applied it to drop-weight test breakage data. This model went further by recognizing repeated breakage attempts as being equally important as energy input in determining the probability of particle breakage. This was the first time this factor was included, and this has since then appeared in later models [

12,

13,

14]. The tests were done on some specific material, which led to a successful demonstration of how this could be combined with the discrete element method (DEM) energy spectral output to predict milling rates of grinding processes. The model was described by this equation:

where

P_{b} is the probability of breaking a particle of mass

m in grams, and every particle which lost 25% or more by volume to daughter fragments due to breakage was recorded as broken

n and

E (J) are number of impact attempts and energy input level, respectively.

E_{x}_{0} (J) (particle threshold energy) is the minimum energy level required to initiate any form of breakage in a particle. This is derived by plotting energy levels against the probability of breakage; the point where the extrapolated curve crosses the x-axis is assumed to be the

E_{x}_{0} value.

To illustrate this method, a graph after Bwalya [

15] is shown in

Figure 1, and an example of the application of this same technique based on present work is presented in

Figure A1. Surprisingly, the

E_{x}_{0} value for any particle size for the gold waste-rock was described accurately by the equation:

where

m is the mass in grams.

The main feature that emerged from that work is that both input energy level and number of impact attempts significantly affect the probability of breakage. The higher the energy input level, the faster the breakage probability approaches the asymptotical maximum value of 1 with each repeated impact. With a lower energy input level, the breakage probability slope increase is much slower, thus, requires several more impact attempts to reach the value of 1. These characteristics are illustrated in

Figure 2, after Bwalya and Moys [

16]. While it is impressive that the probability of breakage can be well correlated with drop-weight test data, there is uncertainty with the determination of the energy that is actually used up in breakage.

The ultra-fast load cell (UFLC) that has been developed at The University of Utah [

17], has the advantage of capturing the fracture events at high resolution. A force-time profile is recorded during the contact event between impactor and particle, which is used to accurately calculate the energy input to the point of fracture. The force-time profile can also be used to study other events, such as secondary fracture, and for this reason, it has been a leading tool in characterizing single particle breakage with great detail [

18,

19].

Though the major goal of this research is to develop a scheme for using DEM to predict grinding rate in ball mills, the present work is limited to adequately modelling particle breakage response to varying levels of input energy and repeated stress application in drop weight tests. As observed by Genc et al. [

20], the drop weight tester has the advantages of being more flexible and generally yielding consistent results. A good overview of the current status of drop weight testing was given by Shi [

21]; Chandramohan et al. [

22]; Hosseinzadeh and Ergun [

23], whilst quantitative descriptions of breakage probability by repeated impacts were proposed by Bonfils et al. [

24]; Tavares and King [

25]. Shi’s [

21] review demonstrates how the adaptation of Equation (1) to the prediction of the breakage function has been successfully applied by the JKMRC to model numerous industrial cases.

The researchers cited above generally recognize the significance of both size related threshold energy, as well as cumulative impact effect. In this work, a modelling approach is developed that allows independent variation of both size related threshold energy and damage deterioration phenomenon, to cater for a wider range of materials. It remains to be seen if this approach will be able to correlate with material structure and flaws distribution.

To model particle breakage response to successive impacts, three key factors are considered:

The concept of rate of deterioration is based on the assumption that, for particles of the same material and same size, the resistance to breakage is supposed to be the same, and the only explanation for variation is that some will have larger existing flaws, causing them to break at earliest attempts. For some materials, to extend these flaws only requires a few impact attempts, while for other materials, crack growth with successive impacts will be slower. Plastic deformation may also, to some extent, contribute to the overall process that leads to eventual particle failure.

Figure 2 shows a typical increase in the probability of breakage as a function of impact energy, and Equation (2) shows how particle size relates with threshold energy. An explicit equation that builds on Equations (1) and (2) has been developed, which is written as follows:

where

a and

b are parameters modelling deterioration with each impact,

c and

d model how threshold energy varies with particle size. Moreover,

m as defined before is the particle mass in grams. An inquiry is thus made in this research to determine if the developed model can successfully establish the relationship between impact energy and the particle breakage and show how the threshold energy varies with particle size. A programme of experimental work on different materials is presented in a subsequent section to test this model.

## 2. Materials and Methods

This section contains a general procedure that was used for preparing the three different materials (silica sandstone, dolomite and low-grade coal sample) that were tested. A fourth material (gold waste rock) is considered from Bwalya’s thesis [

15] where a similar procedure was used. The crushed material was reduced to test size, using either rotary sampler or Riffler, and graded to different sizes using screens with a fourth root screen ratio limitation between the upper and lower screen. Each mass group comprised 150 particles, which were then subdivided into three groups of 50 particles.

Figure 3 shows the schematic of the preparation steps.

Table 1 gives the size classes that were prepared.

The particle groups were then subjected to breakage tests, particle by particle, in an in house- built drop weight tester manufactured in the Chemical and Metallurgical Engineering Department at the University of Witwatersrand (Johannesburg, South Africa). This is illustrated in

Figure 4. Since apart from density, particle shape is another important criterion that affects average mass of material retained on a screen,

Figure 5 is included to show the samples of material used, the size ranges of which are specified in

Table 1.

For each particular sub-group, the energy input was varied between 0.63 and 4.4 J by altering the mass of the weight and its drop height. The two steel disc weights used weighed 1.6 kg and 3.07 kg. Energy input was controlled by varying the drop height between 0.1 and 1.2 m, in steps of 0.08 m. These steps correspond to the position of holes in the vertical steel frame that allow the platform holding the magnet to be positioned flexibly, and tightened by pins.

To each of the particle groups prepared for the test, one breakage attempt was made on each particle, and every particle which lost 25% or more by volume to daughter fragments due to breakage was recorded as broken, as mentioned in the previous section. Those that survived were subjected to another impact and the number of broken particles at the second attempt was recorded once again. The maximum number of repeated attempts was pegged at 5. Upon completion of the test for a particular group, the resulting fragments from all the particles were combined and sieve analysed to determine the size distribution of the fragments, which will be the topic of a future publication by the authors.

The energy level would then be changed by adjusting the drop height or the drop weight and the procedure repeated for the next group of 50 particles. Thus, each mass group had a low, medium and high energy input level from which a breakage probability table was compiled (see

Table 2 as an example). Input energy for any particle was calculated using Equation (4):

where

M is the steel weight mass (kg),

g is the gravitational acceleration, and

h_{1} is the height above the platform where the drop weight is mounted. Moreover,

h_{2} is the final rest height after breakage, and this is dependent on the residue fragment size distribution.