Grinding Behavior and Potential Beneficiation Options of Bauxite Ores
Abstract
:1. Introduction
2. Materials and Methods
3. Characterization of Bauxite Ore
4. Results and Discussion
4.1. Kinetic Behavior of Grinding Process
4.2. Al2O3 and Fe2O3 Content of the Selective Grinding Products
4.3. Magnetic Separation Efficiency on Bauxite
4.4. Magnetic Separation Efficiency after Reduction Roasting of Bauxite
4.5. Characterization of Magnetic Separation Products
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cardenia, C.; Balomenos, E.; Panias, D. Iron Recovery from Bauxite Residue Through Reductive Roasting and Wet Magnetic Separation. J. Sustain. Metall. 2019, 5, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Gibson, B.; Wonyen, D.G.; Chelgani, S.C. A Review of Pretreatment of Diasporic Bauxite Ores By Flotation Separation. Miner. Eng. 2017, 114, 64–73. [Google Scholar] [CrossRef]
- Bogatyrev, B.A.; Zhukov, V.V.; Tsekhovsky, Y.G. Formation conditions and regularities of the distribution of large and superlarge bauxite deposits. Lithol. Miner. Resour. 2009, 44, 135–151. [Google Scholar] [CrossRef]
- Ahmadnejad, F.; Zamanian, H.; Taghipour, B.; Zarasvandi, A.; Buccione, R.; Ellahi, S.S. Mineralogical and geochemical evolution of the Bidgol bauxite deposit, Zagros Mountain Belt, Iran: Implications for ore genesis, rare earth elements fractionation and parental affinity. Ore Geol. Rev. 2017, 86, 755–783. [Google Scholar] [CrossRef]
- Vind, J.; Malfliet, A.; Blanpain, B.; Tsakiridis, P.E.; Tkaczyk, A.H.; Vassiliadou, V.; Panias, D. Rare Earth Element Phases in Bauxite Residue. Minerals 2018, 8, 77. [Google Scholar] [CrossRef] [Green Version]
- Mucsi, G.; Csőke, B.; Solymár, K. Grindability characteristics of lateritic and karst bauxites. Int. J. Miner. Process. 2011, 100, 96–103. [Google Scholar] [CrossRef]
- Laskou, M.; Andreou, G. Rare earth element distribution and REE-minerals from the Parnassos-Ghiona bauxite deposits, Greece. In Proceedings of the 7th Biennial SGA Meeting, Athens, Greece, 24–28 August 2003; Society for Geology Applied to Mineral Deposit: Genéve, Switzerland, 2003; pp. 89–92. [Google Scholar]
- Eliopoulos, D.; Economou, G.; Tzifas, I.; Papatrechas, C. The potential of rare earth elements in Greece. In Proceedings of the ERES2014: First European Rare Earth Resources Conference, Milos, Greece, 4–7 September 2014. [Google Scholar]
- U.S. Geological Survey. Bauxite and Alumina. Available online: http://minerals.usgs.gov/minerals/pubs/commodity/bauxite (accessed on 30 March 2020).
- Laskou, M.; Economou-Eliopoulos, M.; Mitsis, I. Bauxite ore as an energy source for bacteria driving iron-leaching and bio-mineralization. Hell. J. Geosci. 2010, 45, 163–174. [Google Scholar]
- Gamaletsos, P.N.; Godelitsas, A.; Kasama, T.; Church, N.S.; Douvalis, A.P.; Göttlicher, J.; Steininger, R.; Boubnov, A.; Pontikes, Y.; Tzamos, E.; et al. Nano-mineralogy and -geochemistry of high-grade diasporic karst-type bauxite from Parnassos-Ghiona mines, Greece. Ore Geol. Rev. 2017, 84, 228–244. [Google Scholar] [CrossRef]
- Mutakyahwa, M.K.D.; Ikingura, J.R.; Mruma, A.H. Geology and geochemistry of bauxite deposits in Lushoto District, Usambara Mountains, Tanzania. J. Afr. Earth Sci. 2003, 36, 357–369. [Google Scholar] [CrossRef]
- de Aquino, T.F.; Riella, H.G.; Bernardin, A.M. Mineralogical and physical-chemical characterization of a bauxite ore from Lages, Santa Catarina, Brazil, for refractory production. Miner. Process. Extr. Metall. Rev. 2011, 32, 137–149. [Google Scholar] [CrossRef]
- Kumar, M.; Senapati, B.; Kumar, C.S. Beneficiation of high silica bauxite ores of India an innovative approach. In Light Metals 2013; The Minerals, Metals & Materials Series; Sadler, B.A., Ed.; Springer: Cham, Switzerland, 2016; pp. 187–190. [Google Scholar]
- Rao, D.S.; Das, B. Characterization and beneficiation studies of a low grade bauxite ore. J. Inst. Eng. (India): Ser. D 2014, 95, 81–93. [Google Scholar] [CrossRef]
- Sadler, L.Y.; Venkataraman, C. A process for enhanced removal of iron from bauxite ores. Int. J. Miner. Process. 1991, 31, 233–246. [Google Scholar] [CrossRef]
- Pickles, C.A.; Lu, T.; Chambers, B.; Forster, J. A study of reduction and magnetic separation of iron from high iron bauxite ore. Can. Metall. Q. 2012, 51, 424–433. [Google Scholar] [CrossRef]
- Komnitsas, K.; Bartzas, G.; Paspaliaris, I. Efficiency of limestone and red mud barriers: Laboratory column studies. Miner. Eng. 2004, 17, 183–194. [Google Scholar] [CrossRef]
- Rivera, R.M.; Xakalashe, B.; Ounoughene, G.; Binnemans, K.; Friedrich, B.; Gerven, T.V. Selective rare earth element extraction using high-pressure acid leaching of slags arising from the smelting of bauxite residue. Hydrometallurgy 2019, 184, 162–174. [Google Scholar] [CrossRef]
- Ou, L.M.; Feng, Q.M.; Zhang, G.F.; Chen, Y. Comminution property of bauxite and selective separation of Al and Si in bauxite. Miner. Process. Extr. Metall. 2008, 117, 179–184. [Google Scholar] [CrossRef]
- Pehlivan, A.; Aydin, A.O.; Alp, A. Alumina extraction from low-grade diasporic bauxite by pyro- hydro metallurgical process. SAÜ Fen Bilimleri Enstitüsü Dergisi 2012, 16, 92–98. [Google Scholar] [CrossRef]
- Gu, F.; Li, G.; Peng, Z.; Luo, J.; Deng, B.; Rao, M.; Zhang, Y.; Jiang, T. Upgrading Diasporic Bauxite Ores for Iron and Alumina Enrichment Based on Reductive Roasting. J. Miner. Met. Mater. Soc. (TMS) 2018, 70, 1893–1901. [Google Scholar] [CrossRef]
- Marino, S.; Wang, X.; Lin, C.; Miller, J. The flotation of a gibbsite bauxite ore. In Proceedings of the 9th International Alumina Quality Workshop, Perth, Australia, 18–22 March 2012; pp. 345–350. [Google Scholar]
- Bolsaitis, P.; Chang, V.; Schorin, H.; Aranguren, R. Beneficiation of ferruginous bauxite by high-gradient magnetic separation. Int. J. Miner. Process. 1981, 8, 249–263. [Google Scholar] [CrossRef]
- White, J.C. Domestic saprolites as potential substitutes for refractory grade bauxite. Ind. Eng. Chem. Res. 1987, 26, 7–11. [Google Scholar] [CrossRef]
- Kahn, H.; Tassinari, M.M.L.; Ratti, G. Characterization of Bauxite Fines Aiming to Minimize Their Iron Content. Miner. Eng. 2003, 16, 1313–1315. [Google Scholar] [CrossRef]
- Rao, R.B.; Besra, L.; Reddy, B.R.; Banerjee, G.N. The effect of pretreatment on magnetic separation of ferruginous minerals in bauxite. Magn. Electr. Sep. 1997, 8, 115–123. [Google Scholar] [CrossRef]
- Bittencourt, L.R.M.; Lin, C.L.; Miller, J.D. Flotation recovery of high-purity gibbsite concentrates from a Brazilian bauxite ore. In Advanced Materials-Application of Mineral and Metallurgical Processing Principles; Society of Mining Engineers of AIME: Salt Lake City, UT, USA, 1990; pp. 77–85. [Google Scholar]
- Barbosa, F.D.M.; Bergerman, M.G.; Horta, D.G. Removal of iron-bearing minerals from gibbsitic bauxite by direct froth flotation. Tecnol. Metal. Mater. Min. 2016, 13, 106–112. [Google Scholar] [CrossRef]
- Marino, S.L. The flotation of marginal Gibbstitic bauxite ores from Paragominas-Brazil. Master’s Thesis, University of Utah, Salt Lake City, UT, USA, 2012. [Google Scholar]
- Patermarakis, G.; Paspaliaris, Y. The leaching of iron oxides in boehmitic bauxite by hydrochloric acid. Hydrometallurgy 1989, 23, 77–90. [Google Scholar] [CrossRef]
- Szabo, I.; Ujhidy, A.; Jelinko, R.; Vassanyi, R.I. Decrease of iron content of bauxite through high-temperature chlorination. Hung. J. Ind. Chem. 1989, 17, 465–475. [Google Scholar]
- Ofori-Sarpong, G.; Abbey, C.E.; Asamoah, R.K.; Amankwah, R.K. Bauxite enrichment by microwave-magnetising roasting using sawdust as reducing agent. Am. J. Chem. Eng. 2014, 2, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Han, Y.; Tian, Y.; Hong, W. Medium Characteristics on Selective Grinding of Low grade Bauxite. Adv. Mater. Res. 2010, 158, 159–166. [Google Scholar] [CrossRef]
- Herbst, J.A.; Fuerstenau, D.W. Scale-up procedure for continuous grinding mill design using population balance models. Int. J. Miner. Process. 1980, 7, 1–31. [Google Scholar] [CrossRef]
- Austin, L.G.; Klimpel, R.R.; Luckie, P.T. Process Engineering of Size Reduction: Ball Milling; SME–AIME: New York, NY, USA, 1984. [Google Scholar]
- Petrakis, E.; Stamboliadis, E.; Komnitsas, K. Identification of optimal mill operating parameters during grinding of quartz with the use of population balance modelling. KONA Powder Part. J. 2017, 34, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Katubilwa, F.M.; Moys, M.H. Effect of ball size distribution on milling rate. Miner. Eng. 2009, 22, 1283–1288. [Google Scholar] [CrossRef]
- Rajamani, R.K.; Guo, D. Acceleration and deceleration of breakage rates in wet ball mills. Int. J. Miner. Process. 1992, 34, 103–118. [Google Scholar] [CrossRef]
- Bilgili, E.; Scarlett, B. Population balance modeling of non-linear effects in milling processes. Powder Technol. 2005, 153, 59–71. [Google Scholar] [CrossRef]
- Petrakis, E.; Karmali, V.; Bartzas, G.; Komnitsas, K. Grinding kinetics of slag and effect of final particle size on the compressive strength of alkali activated materials. Minerals 2019, 9, 714. [Google Scholar] [CrossRef] [Green Version]
- Harris, C.C. The Alyavdin-Weibull Plot of Grinding Data and the Order of Kinetics. Powder Technol. 1973, 7, 123–127. [Google Scholar] [CrossRef]
- Beke, B. The Process of Fine Grinding; Dr. W. Junk Publishers: The Hague, The Netherlands, 1981. [Google Scholar]
- Gamaletsos, P.; Godelitsas, A.; Kasama, T.; Kuzmin, A.; Lagos, M.; Mertzimekis, T.J.; Göttlicher, J.; Steininger, R.; Xanthos, S.; Pontikes, Y.; et al. The role of nano-perovskite in the negligible thorium release in seawater from Greek bauxite residue (red mud). Sci. Rep. 2016, 6, 21737. [Google Scholar] [CrossRef] [Green Version]
- Young, R.A. The Rietveld Method; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Smith, P. The processing of high silica bauxites—Review of existing and potential processes. Hydrometallurgy 2009, 98, 162–176. [Google Scholar] [CrossRef]
- Rai, S.; Nimje, M.T.; Chaddha, M.J.; Modak, S.; Rao, K.R.; Agnihotri, A. Recovery of iron from bauxite residue using advanced separation techniques. Miner. Eng. 2019, 134, 222–231. [Google Scholar] [CrossRef]
- Deng, B.; Si, P.; Bauman, L.; Luo, J.; Rao, M.; Peng, Z.; Jiang, T.; Li, G.; Zhao, B. Photocatalytic activity of CaTiO3 derived from roasting process of bauxite residue. J. Clean. Prod. 2020, 244, 118598. [Google Scholar] [CrossRef]
- Yılmaz, K.; Birol, B.; Sarıdede, M.N.; Yiğit, E. Pre-Beneficiation of Low Grade Diasporic Bauxite Ore by Reduction Roasting. World Academy of Science, Engineering and Technology. Int. J. Chem. Mol. Nucl. Mater. Metall. Eng. 2015, 9, 1075–1078. [Google Scholar]
- Kloprogge, J.T.; Ruan, H.D.; Frost, R.L. Thermal decomposition of bauxite minerals: Infrared emission spectroscopy of gibbsite, boehmite and diaspore. J. Mater. Sci. 2002, 37, 1121–1129. [Google Scholar] [CrossRef] [Green Version]
- Laskou, M.; Margomenou-Leonidopoulou, G.; Balek, V. Thermal characterization of Bauxite samples. J. Therm. Anal. Calorim. 2006, 84, 141–145. [Google Scholar] [CrossRef]
- Ostojić, G.; Lazić, D.; Škundrić, B.; Škundrić, J.P.; Sladojević, S.; Kešelj, D.; Blagojević, D. Chemical-mineralogical characterization of bauxites from different deposits. Contemp. Mater. 2014, 1, 84–94. [Google Scholar]
- Castaldi, P.; Silvetti, M.; Enzo, S.; Deiana, S. X-ray diffraction and thermal analysis of bauxite ore-processing waste (red mud) exchanged with arsenate and phosphate. Clays Clay Miner. 2011, 59, 189–199. [Google Scholar] [CrossRef]
- Fuerstenau, D.W.; Phatak, P.B.; Kapur, P.C.; Abouzeid, A.-Z.M. Simulation of the grinding of coarse/fine (heterogeneous) systems in a ball mill. Int. J. Miner. Process. 2011, 99, 32–38. [Google Scholar] [CrossRef]
- Petrakis, E.; Karmali, V.; Komnitsas, K. Factors affecting nickel upgrade during selective grinding of low-grade limonitic laterites. Miner. Process. Extr. Metall. Trans. Inst. Min. Metall. 2018. [Google Scholar] [CrossRef]
- Fuerstenau, D.W.; Sastry, K.V.S.; Hanson, J.S.; Narayanan, K.S.; Urbina, R.H.; Diao, J.; Chen, W. Coal Surface Control for Advanced Fine Coal Flotation; Project No. DE-AC22-88PC88878, Final Report; University of California: Berkeley, CA, USA; University of Utah: Salt Lake City, UT, USA; Columbia University: New York, NY, USA; Praxis Engineers: Milpitas, CA, USA, 1992. [Google Scholar]
- Drzymala, J.; Ahmed, H.A.M. Mathematical equations for approximation of separation results using the Fuerstenau upgrading curves. Int. J. Miner. Process. 2005, 76, 55–65. [Google Scholar] [CrossRef]
- Li, X.; Xiao, W.; Liu, W.; Liu, G.; Peng, Z.; Zhou, Q.; Qi, T. Recovery of alumina and ferric oxide from Bayer red mud rich in iron by reduction sintering. Trans. Nonferrous Met. Soc. China 2009, 19, 1342–1347. [Google Scholar] [CrossRef]
- Ravisankar, V.; Venugopal, R.; Bhat, H. Investigation on beneficiation of goethite-rich iron ores using reduction roasting followed by magnetic separation. Miner. Process. Extr. Metall. 2017. [Google Scholar] [CrossRef]
- Chun, T.J.; Zhu, D.Q.; Pan, J. Simultaneously roasting and magnetic separation to treat low grade siderite and hematite ores. Miner. Process. Extr. Metall. Rev. 2015, 4, 223. [Google Scholar] [CrossRef]
- Kaußen, F.K.; Friedrich, B. Methods for Alkaline Recovery of Aluminum from Bauxite Residue. J. Sustain. Metall. 2016. [Google Scholar] [CrossRef] [Green Version]
- Jang, K.-O.; Nunna, V.R.M.; Hapugoda, S.; Nguyen, A.V.; Bruckard, W.J. Chemical and mineral transformation of a low grade goethite ore by dehydroxylation, reduction roasting and magnetic separation. Miner. Eng. 2014, 60, 14–22. [Google Scholar] [CrossRef]
- Samouhos, M.; Taxiarchou, M.; Tsakiridis, P.E.; Potiriadis, K. Greek “red mud” residue: A study of microwave reductive roasting followed by magnetic separation for a metallic iron recovery process. J. Hazard. Mater. 2013, 254, 193–205. [Google Scholar] [CrossRef] [PubMed]
Item | Description | 1st Series | 2nd Series | 3rd Series |
---|---|---|---|---|
Material | Bulk density (g/cm3) | 1.82 | 1.82 | 1.82 |
Material filling volume, fc (%) | 5 | 10 | 15 | |
Interstitial filling, U (%) | 31 | 63 | 94 | |
Pulp density, % (by weight) | 60 | 60 | 60 | |
Item | Description | In all series | ||
Mill | Diameter, D (cm) | 20.4 | ||
Length, L (cm) | 16.6 | |||
Volume, V (cm3) | 5423 | |||
Operational speed, Ν (rpm) | 66 | |||
Critical speed, Νc (rpm) | 93.7 | |||
Balls | Diameter, d (mm) | 40, 25.4, 12.7 | ||
Number | 13, 51, 407 | |||
Weight (g) | 3403.9, 3463.6, 3407 | |||
Density (g/cm3) | 7.85 | |||
Porosity (%) | 40 | |||
Ball filling volume, J (%) | 40 |
Size (mm) | Mass (%wt) | Al2O3 (%wt) | Fe2O3 (%wt) | SiO2 (%wt) | TiO2 (%wt) | LOI a (%wt) | Al2O3/SiO2 | Al2O3/Fe2O3 |
---|---|---|---|---|---|---|---|---|
1.70–3.35 | 38.52 | 58.76 | 21.34 | 1.68 | 3.90 | 5.1 | 34.98 | 2.75 |
0.850–1.70 | 20.93 | 59.45 | 21.38 | 1.43 | 3.81 | 2.7 | 41.51 | 2.78 |
0.425–0.850 | 14.69 | 58.33 | 22.32 | 1.44 | 3.90 | 1.9 | 40.63 | 2.61 |
0.212–0.425 | 9.95 | 58.37 | 22.38 | 1.41 | 3.94 | 1.3 | 41.35 | 2.61 |
0.106–0.212 | 6.66 | 57.65 | 23.00 | 1.64 | 3.99 | 0.9 | 35.23 | 2.51 |
−0.106 | 9.25 | 50.38 | 28.68 | 2.62 | 4.43 | 1.2 | 19.25 | 1.76 |
Total | 100.0 | 57.95 | 22.39 | 1.65 | 3.94 | 13.0 | 36.55 | 2.62 |
Parameter | fc = 5% | fc = 10% | fc = 15% |
---|---|---|---|
K | 0.206 | 0.059 | 0.043 |
M | 0.780 | 1.084 | 0.987 |
R2 (adj.) | 0.999 | 0.999 | 0.996 |
Sample | Al2O3 (wt%) | Fe2O3 (wt%) | SiO2 (wt%) | TiO2 (wt%) | LOI a (wt%) |
---|---|---|---|---|---|
NMI | 68.23 | 16.58 | 2.32 | 1.14 | 9.73 |
MIII | 58.05 | 27.25 | 0.89 | 5.14 | 7.67 |
Feed material (bauxite) | 57.95 | 22.39 | 1.65 | 3.94 | 13.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrakis, E.; Bartzas, G.; Komnitsas, K. Grinding Behavior and Potential Beneficiation Options of Bauxite Ores. Minerals 2020, 10, 314. https://doi.org/10.3390/min10040314
Petrakis E, Bartzas G, Komnitsas K. Grinding Behavior and Potential Beneficiation Options of Bauxite Ores. Minerals. 2020; 10(4):314. https://doi.org/10.3390/min10040314
Chicago/Turabian StylePetrakis, Evangelos, Georgios Bartzas, and Konstantinos Komnitsas. 2020. "Grinding Behavior and Potential Beneficiation Options of Bauxite Ores" Minerals 10, no. 4: 314. https://doi.org/10.3390/min10040314
APA StylePetrakis, E., Bartzas, G., & Komnitsas, K. (2020). Grinding Behavior and Potential Beneficiation Options of Bauxite Ores. Minerals, 10(4), 314. https://doi.org/10.3390/min10040314